Skip to main content

An Optical Satellite Controller Based on Diffractive Deep Neural Network

  • Conference paper
  • First Online:
  • 1309 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Abstract

Formulated as an optimal control problem, space relative trajectory planning is crucial for on-orbit servicing spacecraft on various missions. While a variety of deep-neural-network (DNN) methods have been proposed to solve the problem, they are energy-consuming and computationally consuming, which limits their on-board deployments. In this work, we proposed a kind of diffractive-deep-neural-network-based optical satellite controller, and transformed the solution of the optimal control problem into a light-field-based fine-grained regression task. Firstly, an electro-optic conversion module was designed to convert numerical relative state variables from electronic signals into light field as the input of a diffractive modulation (DM) module, the diffractive masks of which could be trained to implement complex light field transformation. We used another optic-electro conversion module to convert the light field at the output plane of DM module into electronic signals. Then, we trained the DM module to make the decoded electrical signals consistent with the desired optimal control commands. Therefore, when the light carrying input information and propagating through the well-trained diffractive masks, the DM module could perform diffract-based solution of optimal control problem. The simulation results substantiate the feasibility and effectiveness of our OC-Nets, which can achieve comparable performance to the latest classic DNN methods, except for a few acceptable errors. Different from classic models with much too energy consumption, once fabricated physically, the device of our optical controller can provide optimal control commands at the speed of light, with fairly little computational and energy consumption, and enable the on-board deployment on spacecraft.

This work was supported in part by the National Key Research and Development Program of China under Grant 2020AAA0105500, in part by the National Natural Science Foundation of China under Grant 61971020 and Grant 62031001.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bennett, T., Schaub, H.: Continuous-time modeling and control using nonsingular linearized relative-orbit elements. J. Guid. Control. Dyn. 39(12), 2605–2614 (2016)

    Article  Google Scholar 

  2. Bogacki, P., Shampine, L.F.: A 3 (2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyarko, G., Yakimenko, O., Romano, M.: Optimal rendezvous trajectories of a controlled spacecraft and a tumbling object. J. Guid. Control. Dyn. 34(4), 1239–1252 (2011)

    Article  Google Scholar 

  4. Bryson, A.E.: Applied Optimal Control: Optimization, Estimation and Control. CRC Press (1975)

    Google Scholar 

  5. Chang, J., Sitzmann, V., Dun, X., Heidrich, W., Wetzstein, G.: Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8(1), 1–10 (2018)

    Article  Google Scholar 

  6. Christodoulides, D.N., Coskun, T.H., Mitchell, M., Segev, M.: Theory of incoherent self-focusing in biased photorefractive media. Phys. Rev. Lett. 78(4), 646 (1997)

    Article  Google Scholar 

  7. Deng, Y., Bao, F., Kong, Y., Ren, Z., Dai, Q.: Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 653–664 (2017). https://doi.org/10.1109/TNNLS.2016.2522401

    Article  Google Scholar 

  8. Dou, H., Deng, Y., Yan, T., Wu, H., Lin, X., Dai, Q.: Residual D2NN: training diffractive deep neural networks via learnable light shortcuts. Opt. Lett. 45(10), 2688–2691 (2020)

    Article  Google Scholar 

  9. Feng, W., Han, L., Shi, L., Zhao, D., Yang, K.: Optimal control for a cooperative rendezvous between two spacecraft from determined orbits. J. Astronaut. Sci. 63(1), 23–46 (2016)

    Article  Google Scholar 

  10. Gu, Z., Gao, Y., Liu, X.: Optronic convolutional neural networks of multi-layers with different functions executed in optics for image classification. Opt. Express 29(4), 5877–5889 (2021)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Huang, G., Liu, S., Van der Maaten, L., Weinberger, K.Q.: ConDenseNet: an efficient DenseNet using learned group convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2752–2761 (2018)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Kulce, O., Mengu, D., Rivenson, Y., Ozcan, A.: All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl. 10(1), 1–17 (2021)

    Article  Google Scholar 

  15. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  16. Li, H., Dong, Y., Li, P., Deng, Y.: Optimal real-time approach and capture of uncontrolled spacecraft. J. Spacecr. Rocket. 58(6), 1762–1773 (2021)

    Article  Google Scholar 

  17. Li, W., Gong, S.: Free final-time fuel-optimal powered landing guidance algorithm combing lossless convex optimization with deep neural network predictor. Appl. Sci. 12(7), 3383 (2022)

    Article  Google Scholar 

  18. Li, Y., Chen, R., Sensale-Rodriguez, B., Gao, W., Yu, C.: Real-time multi-task diffractive deep neural networks via hardware-software co-design. Sci. Rep. 11(1), 1–9 (2021)

    Google Scholar 

  19. Lin, X., et al.: All-optical machine learning using diffractive deep neural networks. Science 361(6406), 1004–1008 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Misra, G., Izadi, M., Sanyal, A., Scheeres, D.: Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small solar system bodies. Adv. Space Res. 57(8), 1747–1761 (2016)

    Article  Google Scholar 

  21. Patterson, M.A., Rao, A.V.: GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using HP-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. (TOMS) 41(1), 1–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rahman, M.S.S., Li, J., Mengu, D., Rivenson, Y., Ozcan, A.: Ensemble learning of diffractive optical networks. Light Sci. Appl. 10(1), 1–13 (2021)

    Google Scholar 

  23. Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135(1), 497–528 (2009)

    Google Scholar 

  24. Scorsoglio, A., D’Ambrosio, A., Ghilardi, L., Gaudet, B., Curti, F., Furfaro, R.: Image-based deep reinforcement meta-learning for autonomous lunar landing. J. Spacecr. Rocket. 59(1), 153–165 (2022)

    Article  Google Scholar 

  25. Shi, J., Chen, Y., Zhang, X.: Broad-spectrum diffractive network via ensemble learning. Opt. Lett. 47(3), 605–608 (2022)

    Article  Google Scholar 

  26. Shi, J., et al: Multiple-view D2NNs array (MDA): realizing robust 3D object recognition (2021)

    Google Scholar 

  27. Starek, J.A., Açıkmeşe, B., Nesnas, I.A., Pavone, M.: Spacecraft autonomy challenges for next-generation space missions. In: Feron, E. (ed.) Advances in Control System Technology for Aerospace Applications. LNCIS, vol. 460, pp. 1–48. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-47694-9_1

    Chapter  Google Scholar 

  28. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, vol. 12. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  29. Veli, M., et al.: Terahertz pulse shaping using diffractive optical networks. In: CLEO: Science and Innovations, pp. SW3K-2. Optical Society of America (2021)

    Google Scholar 

  30. Wang, J., Wu, Y., Liu, M., Yang, M., Liang, H.: A real-time trajectory optimization method for hypersonic vehicles based on a deep neural network. Aerospace 9(4), 188 (2022)

    Article  Google Scholar 

  31. Xing, G.Q., Parvez, S.A.: Alternate forms of relative attitude kinematics and dynamics equations. In: Lynch, J.P. (ed.) 2001 Flight Mechanics Symposium, Greenbelt, MD, USA, pp. 83–97. NASA Goddard Space Flight Center (2001)

    Google Scholar 

  32. Yan, T., et al.: Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123(2), 023901 (2019)

    Article  Google Scholar 

  33. Zhao, Y., Yang, H., Li, S.: Real-time trajectory optimization for collision-free asteroid landing based on deep neural networks. Adv. Space Res. (2022)

    Google Scholar 

  34. Zhou, T., et al.: Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15(5), 367–373 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjue Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Dou, H., Li, H., Deng, Y. (2022). An Optical Satellite Controller Based on Diffractive Deep Neural Network. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics