Skip to main content

Aero-Engine Remaining Useful Life Prediction via Tensor Decomposition Method

  • Conference paper
  • First Online:
Book cover Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Included in the following conference series:

  • 1275 Accesses

Abstract

Aiming at the problems of low accuracy and long calculation time of remaining useful life (RUL) prediction of aero-engine by the data-driven method, a method for mining aero-engine information in tensor mode is proposed in this paper. Different from the traditional vector mode of data feature extraction, the tensor form of data can reflect the structure and correlation information among data. It has certain advantages when dealing with data that has strong coupling such as aero-engine signals. A large turbofan engine degradation simulation dataset (C-MAPSS dataset) with strong coupling provided by NASA is used to validate the method proposed in this paper. The results show that the data extracted by tensor decomposition method has better training effect than the unprocessed data in convolutional neural network (CNN), with the average prediction accuracy improved by 28.39%, and the average learning time shortened by 24.25%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaw, L.C., Mattingly, J.D.: Aircraft Engine Controls: Design, System Analysis, and Health Monitoring, pp. 136–138 (2009)

    Google Scholar 

  2. Vachtsevanos, G.J., Vachtsevanos, G.J.: Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Wiley Online Library (2006)

    Google Scholar 

  3. Li, X., Ding, Q., Sun, J.-Q.: Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 172, 1–11 (2018)

    Article  Google Scholar 

  4. Zhao, H., Zheng, N., Chen, T., Wei, K.: Aero engine rul prediction based on the combination of similarity and PSO-SVR (2021)

    Google Scholar 

  5. Li, H., Li, Y., Wang, Z., Li, Z.: Remaining useful life prediction of aero-engine based on PCA-LSTM. In: 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO), pp. 63–66. IEEE (2021)

    Google Scholar 

  6. Wang, T., Guo, D., Sun, X.-M.: Remaining useful life predictions for turbofan engine degradation based on concurrent semi-supervised model. Neural Comput. Appl. 34(7), 5151–5160 (2021). https://doi.org/10.1007/s00521-021-06089-1

    Article  Google Scholar 

  7. Wu, B., Shi, H., Zeng, J., Shi, G., Qin, Y.: Multi-sensor information fusion-based remaining useful life prediction with nonlinear wiener process. Meas. Sci. Technol. 33, 105106 (2022)

    Article  Google Scholar 

  8. Yuan, M., Wu, Y., Lin, L.: Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. In: IEEE International Conference on Aircraft Utility Systems (AUS), pp. 135–140. IEEE (2016)

    Google Scholar 

  9. Zhang, X., et al.: Remaining useful life estimation using CNN-XGB with extended time window. IEEE Access 7, 154386–154397 (2019)

    Article  Google Scholar 

  10. Al-Dulaimi, A., Zabihi, S., Asif, A., Mohammadi, A.: Hybrid deep neural network model for remaining useful life estimation. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3872–3876. IEEE (2019)

    Google Scholar 

  11. Ge, Y., Zhang, F.: Remaining useful life estimation for aero-engine with multiple working conditions via an improved generative adversarial network. J. Braz. Soc. Mech. Sci. Eng. 44(5), 1–12 (2022)

    Article  Google Scholar 

  12. Jing, C., Li, Z., Ping, D.: Remaining useful life prediction for Aero-Engines combining sate space model and KF algorithm. Trans. Nanjing Univ. Aeronaut. Astronaut. 34(03), 265–271 (2017)

    Google Scholar 

  13. da Costa, P.R.d.O., Akçay, A., Zhang, Y., Kaymak, U.: Remaining useful lifetime prediction via deep domain adaptation. Reliab. Eng. Syst. Saf. 195, 106682 (2020)

    Google Scholar 

  14. Xianda, Z.: Matrix Analysis and Application. Tsinghua University Press Co., Ltd., Beijing (2004)

    Google Scholar 

  15. Cichocki, A., et al.: Tensor Decompositions for Signal Processing Applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015)

    Article  Google Scholar 

  16. Hou, C., Nie, F., Zhang, C., Yi, D., Wu, Y.: Multiple rank multi-linear SVM for matrix data classification. Pattern Recogn. 47(1), 454–469 (2014)

    Article  MATH  Google Scholar 

  17. Cammoun, L., et al.: A review of tensors and tensor signal processing. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds.) Tensors in Image Processing and Computer Vision, pp. 1–32. Springer, London (2009). https://doi.org/10.1007/978-1-84882-299-3_1

  18. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling for aircraft engine run-to-failure simulation. In: 2008 International Conference on Prognostics and Health Management, pp. 1–9. IEEE (2008)

    Google Scholar 

  21. Che, M., Wei, Y.: Randomized algorithms for the approximations of Tucker and the tensor train decompositions. Adv. Comput. Math. 45(1), 395–428 (2018). https://doi.org/10.1007/s10444-018-9622-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeng, C., Ng, M.K.: Decompositions of third-order tensors: HOSVD, T-SVD, and Beyond. Numer. Linear Algebra Appl. 27(3), e2290 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sheehan, B.N., Saad, Y.: Higher order orthogonal iteration of tensors (HOOI) and its relation to PCA and GLRAM. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 355–365. SIAM (2007)

    Google Scholar 

  24. Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.: Incremental tensor analysis: Theory and applications. ACM Trans. Knowl. Disc. Data (TKDD) 2(3), 1–37 (2008)

    Article  Google Scholar 

  25. Zhong, M., Jiansheng, G., Taoyong, G., Sheng, M.: Remaining useful life prediction of aero-engine based on improved convolutional neural network. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 21(06), 19–25 (2020)

    Google Scholar 

  26. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6. IEEE (2017)

    Google Scholar 

  27. Wu, J.: Introduction to convolutional neural networks. National Key Lab for Novel Software Technology. Nanjing University, China, vol. 5, no. 23, p. 495 (2017)

    Google Scholar 

  28. Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  29. Jogin, M., Madhulika, M., Divya, G., Meghana, R., Apoorva, S.: Feature extraction using convolution neural networks (CNN) and deep learning. In: 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), pp. 2319–2323. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongZhi Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, J., Wang, X., Hu, Z. (2022). Aero-Engine Remaining Useful Life Prediction via Tensor Decomposition Method. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics