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For every fixed class of regular languages, there is a natural hierarchy of in-
creasingly more general problems: Firstly, the membership problem asks whether
a given language belongs to the fixed class of languages. Secondly, the separation
problem asks for two given languages whether they can be separated by a lan-
guage from the fixed class. And thirdly, the covering problem is a generalization
of separation problem to more than two given languages. Most instances of such
problems were solved by the connection of regular languages and finite monoids.
Both the membership problem and the separation problem were also extended to
ordered monoids. The computation of pointlikes can be interpreted as the algebraic
counterpart of the separation problem. In this paper, we consider the extension of
computation of pointlikes to ordered monoids. This leads to the notion of conelikes
for the corresponding algebraic framework.

We apply this framework to the Trotter-Weil hierarchy and both the full and
the half levels of the FO2 quantifier alternation hierarchy. As a consequence, we
solve the covering problem for the resulting subvarieties of DA. An important
combinatorial tool are uniform ranker characterizations for all subvarieties under
consideration; these characterizations stem from order comparisons of ranker posi-
tions.

1 Introduction

For a given variety of regular languages, there is a hierarchy of decision problems: First, we can
ask whether a given regular language is in the variety; this is known as themembership problem.
Very often, the membership problem is solved by giving an effective characterization. Famous
solutions to the membership problem includes Simon’s characterization of the piecewise testable
languages in terms of J -trivial monoids [22], and Schützenberger’s characterization of the star-
free languages by aperiodic monoids [20]. Inspired by these results, Eilenberg showed that
there exists a one to one correspondence between varieties of regular languages and varieties
of finite monoids [7]. This correspondence leads to an important approach for deciding the
membership problem: one verifies some equivalent algebraic property of the syntactic monoid.
The challenge here, however, is to identify the algebraic property and to prove its equivalence.
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A more general problem is the separation problem. Given two languages, it asks whether
there exists a language in the fixed variety which contains the first language and is disjoint with
the second language. By applying the separation problem to a language and its complement,
we obtain an answer to the membership problem. Thus, the separation problem is more general
than the membership problem. Moreover, the separation problem can be used as a tool to solve
the membership problem for varieties where this was not previously known; see e.g. [17]. A
further generalization is given by the covering problem [18]. This problem considers a finite
set of languages and a distinguished language, and asks how well the finite set of languages
can be separated by a cover of the distinguished language.

As noted by Almeida, the separation problem for regular languages can also be solved via
algebra by deciding so-called pointlikes [1]. The problem of deciding pointlikes is well studied,
and there are effective characterizations for many varieties, e.g. aperiodics [9],R-trivial monoids
[3], J -trivial monoids [4, 23] and finite groups [5].

A well studied fragment of first order logic is two-variable first-order logic FO2. The lan-
guages definable in FO2 form a variety, with the corresponding monoid variety DA. In the
study of FO2 and DA, two natural hierarchies have emerged: the Trotter-Weil hierarchy de-
fined by a deep connection to the hierarchy of bands, and the quantifier alternation hierarchy.
In stark contrast to the full FO quantifier alternation hierarchy, membership of the FO2 quan-
tifier alternation hierarchy is solved for all levels [14, 11, 8]. In particular, a tight connection
between the Trotter-Weil and the quantifier alternation hierarchy has appeared; Weil and the
second author showed that the join levels of the quantifier alternation hierarchy (i.e., the FO2

m

levels) correspond to the intersection levels of the Trotter-Weil hierarchy [14], and combining
two results from [13] and [8] shows that the join levels of the Trotter-Weil hierarchy correspond
to the intersection levels of the quantifier alternation hierarchy.

Rankers have emerged as an important tool in the study of FO2. These were first introduced
by Schwentick, Thérien, and Vollmer by the name of turtle programs [21]. Using comparisons
of restricted sets of rankers, Weis and Immerman gave a combinatorial characterization of the
full levels of the quantifier alternation hierarchy [24]. This approach was extended to the half-
levels of the quantifier alternation hierarchy in the PhD-thesis of Lauser [16]. The corners of
the Trotter-Weil hierarchy also admit ranker characterizations using the concept of condensed
rankers [15].

This article solves the covering problem (and thus also separation problem) for all levels of
the Trotter-Weil hierarchy and quantifier alternation hierarchy inside FO2. For this, we rely
on two main tools, conelikes and ranker comparisons. Conelikes are introduced in Section 3.
They extend pointlikes to ordered monoids, and are algebraic versions of the imprints used by
Place and Zeitoun; see e.g. [18]. Thus, they have a strong connection to the covering problem;
an algorithm for computing the conelikes with respect to a monoid variety can be used to solve
the covering problem for the corresponding language variety and vice versa.

Sections 4 and 5 deals with ranker comparisons. In Section 4, we give a framework for ranker
comparisons using general sets of ranker pairs. We show that any set of pairs of rankers which
is closed under ranker subwords gives rise to a stable relation and thus defines a monoid.

In Section 5, we use this framework to give uniform characterizations for all levels of the
Trotter-Weil and quantifier alternation hierarchy. In particular, we give a characterization
of the corners of the Trotter-Weil hierarchy in terms of ranker comparisons. Together, these
sets of ranker comparisons form a natural hierarchy, the ranker comparison hierarchy which
encompasses both the quantifier alternation hierarchy and the Trotter-Weil hierarchy.

The rest of the article is devoted to the solution of the covering problem. In Section 6, we
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present sets of subsets of a monoid which can be computed effectively. Our main theorem states
that these sets coincide with the conelikes (or the pointlikes for the unordered varieties). Our
main theorem also provides optimal separators: relational morphisms such that the conelikes
with respect to these morphisms are the same as the conelikes with respect to the corresponding
variety. The co-domains in these morphisms are defined using ranker comparisons.

After handling two special cases in Section 7, we use Section 8 to show that being in the
introduced sets implies being conelike with respect to the relevant variety. The more difficult
direction is showing that every conelike lies in the introduced sets. In Section 9, we show how
languages defined by ranker comparisons can be factored in a convenient way, and in Section
10, we use these factorizations to complete the circle. We show that given a monoid defined
by the proper set of ranker comparisons, the conelikes with respect to this monoid are all
in the corresponding set. In particular, this means that every conelike with respect to the
corresponding monoid variety is in the set.

2 Preliminaries

2.1 Words and Monoids

If M is a semigroup and e ∈ M satisfies ee = e, then e is idempotent. Given a semigroup M
there exists a (smallest) number ωM such that uωM is idempotent for each u ∈ M . If M is
clear from context, we write ω for this number. For sets S, T ⊆M , we have

ST = {st ∈M | s ∈ S, t ∈ T} .

Note that 2M is a monoid under this operation.
An important tool in semigroup theory are the Green’s relations, out of which we introduce

the following three. Given a monoid M and s, t ∈M , we define

• s ≤R t if sM ⊆ tM ,

• s ≤L t if Ms ⊆Mt,

• s ≤J t if MsM ⊆MtM .

We define s R t if s ≤R t and t ≤R s and we define s L t and s J t correspondingly.
We say that s <R t if s ≤R t but not s R t and equivalently for L and J . Let u ∈ A∗

and µ : A∗ → M . Then there is a unique factorization u = u1a1 . . . un−1an−1un such that
µ(u1a1 . . . ai) R µ(u1a1 . . . aiui+1) <R µ(u1a1 . . . aiui+1ai+1). This is the R-factorization of u
with respect to µ. The L-factorization of u with respect to µ is defined symmetrically.

Given a monoid M with a binary relation �, we say that � is stable if for all s, t, x, y ∈M ,
s � t implies xsy � xty. We say that a monoid is ordered if it is equipped with a stable order.
A congruence is a stable equivalence relation. In particular, any stable preorder � induces the
congruence given by s ∼ t if and only if s � t and t � s. If M is ordered, and s ∈ M , then
↑ s = {t ∈M | s ≤ t}. If M is a monoid, and � is a stable preorder, then M/� is the monoid
whose elements are the equivalence classes of the induced congruence, the multiplication is
that induced by the multiplication in M and where, for s, t ∈M with [s], [t] the corresponding
equivalence classes, we have [s] ≤ [t] if and only if s � t. Given a language L, the syntactic
preorder is the relation u ≤L v if and only if xuy ∈ L ⇒ xvy ∈ L for all x, y ∈ A∗. Let
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µ : A∗ → A∗/≤L be the canonical projection, then π is the syntactic morphism and A∗/≤L

the syntactic monoid of L. A language is regular if and only if the syntactic monoid is finite.
LetM and N be (possibly ordered) monoids. A relational morphism is a relation τ : M → N

(or mapping M → 2N ) which satisfies

(i) 1N ∈ τ(1M ),

(ii) for all s ∈M , τ(s) 6= ∅,

(iii) for all s, t ∈M , τ(s)τ(t) ⊆ τ(st).

If there is a relational morphism τ : M → N such that τ(s) ∩ τ(s′) 6= ∅ implies s = s′ we say
that M divides N . A division of ordered monoids is a division where we also assume t ≤ t′ for
some t ∈ τ(s), t′ ∈ τ(s′) implies s ≤ s′. A variety of monoids is a collection of monoids closed
under division and finite direct products. A collection of ordered monoids is a positive variety
if it is closed under finite direct products and division of ordered monoids.

For a relational morphism τ : M → N , a set S ⊆ M such that
⋂

s∈S τ(s) 6= ∅ is pointlike
with respect to τ . If t ∈

⋂

s∈S τ(s), then t is a witness of S being pointlike. If V is a variety
and S is pointlike for every relational morphism τ : M → N ∈ V, then S is pointlike with
respect to V. The set of all pointlikes in M with respect to τ is PLτ (M), and the set of all
pointlikes with respect to V is PLV(M).

A useful way to define varieties is through the use of ω-identities and ω-relations. An ω-term
is either x where x is taken from some (usually infinite) set of variables X, or tt′ or tω where
t and t′ are ω-terms. An ω-identity is given by t = t′ or t ≤ t′ where t and t′ are ω-terms.
Given a monoid M , an interpretation of ω-terms is any extension of a map χ : X → M for
which χ(tt′) = χ(t)χ(t′) and χ(tω) = χ(t)ωM . We say that a monoid M satisfy an ω-identity
t = t′ if χ(t) = χ(t′) for all interpretations χ. It similarly satisfies t ≤ t′ if χ(t) ≤ χ(t′) for
all interpretations. If R1, . . . , Rn are ω-identities or -relations, then JR1, . . . , RnK denotes the
collection of all monoids which satisfy all Ri. Some varieties that are of importance in this
text are

• DA = J(xzy)ω = (xzy)ωz(xzy)ωK.

• J = J(st)ωs(xy)ω = (st)ωy(xy)ωK, or equivalently all monoids whose J -classes are trivial.

• J1 = Jx2 = x, xy = yxK,

• J+ = J1 ≤ zK.

Let A be a collection of symbols, called an alphabet. We denote by A∗ the set of concatena-
tions of symbols in A. In other words, A∗ is the free monoid of A. An element u ∈ A∗ is a word
and a subset L ⊆ A∗ a language. We will denote the empty word by ε. A (scattered) subword
of u is a word v = a1 . . . an such that u = u1a1 . . . unanun+1 for some (possibly empty) words
ui. Let u = u1u2u3 for some (possibly empty) words u1, u2, u3. Then u1 is a prefix and u2 is
a factor of u.

If u = u1 . . . un where each ui is a word, then u1 . . . un is a factorization of u. This concept
extends to subsets of A∗; if U ⊆ A∗, a factorization of U is U1 . . . Un where each u ∈ U can be
factored as u = u1 . . . un in such a way that ui ∈ Ui. This definition does not coincide with
the monoid operation on subsets given above.1 To resolve this ambiguity, we always consider
concatenation to mean factorization when dealing with A∗, unless otherwise specified.

1Indeed, {aa, bb} can be factored as {a, b} {a, b}, but ab, ba ∈ {a, b} {a, b} if seen as a multiplication.
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For an alphabet A, let JA denote the monoid whose elements are subsets of A and whose
operation is the union operation. This monoid has a natural ordering defined by U ≤ V if
U ⊆ V for U, V ⊆ A. Let alphA : A∗ → JA be the extension of alphA(a) = {a} for each a ∈ A.
We will drop the subscript when A is clear from context. Given a surjective homomorphism
µ : A∗ →M , a morphism α : M → JA is called a content morphism if alphA = α ◦ µ.

Let τ be a relation, and let G = {(s, t) ∈M ×N | t ∈ τ(s)} be its graph. Then τ is a
relational morphism if and only if G is a submonoid of M × N and the projection on M is
surjective. Any relational morphism can be thought of as pulling the elements of M back to
some free monoid A∗ where A generates both M and N , and then pushing the words to their
corresponding elements in N . More formally, we have the following lemma, which follows easily
by choosing A to be a generating set of G.

Lemma 1. For any relational morphism, there exists A and µ : A∗ → M , ν : A∗ → N such
that µ is surjective and τ = ν ◦ µ−1, as in the following diagram:

A∗

M N.

µ
ν

τ

Since any such diagram also gives rise to a relational morphism, this means that the relational
morphisms between M and N are exactly given by diagrams of this form.

2.2 Logic

We will consider FO[<], first order logic using the following syntax:

ϕ ::= ⊤ | ⊥ | a(x) | x = y | x < y | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ.

Here a ∈ A for some fixed alphabet A, and ϕ ∈ FO[<]. We interpret formulae in FO[<] over
words as follows. If i, j ∈ N, then u, i, j � x < y if and only if i < j, and u, i � a(x) if and
only if u[i] = a. The logical connectives and existential quantifier are interpreted as usual. We
use the macro x ≤ y to mean x < y ∨ x = y and the macro ∀xϕ to mean ¬∃x¬ϕ. If ϕ is a
formula without free variables over the alphabet A, we define L(ϕ) = {u ∈ A∗ | u � ϕ}. If F

is a collection of formulae, we say that L ⊆ A∗ is definable in F if there exists ϕ ∈ F such
that L = L(ϕ).

In particular, we are interested in FO2[<], i.e. the fragment of FO[<] where we only allow
the use (and reuse) of two variable names. Thus

∃x : a(x) ∧ (∃y : y > x ∧ b(y) ∧ (∃x : x > y ∧ c(x)))

is allowed in FO2[<] whereas

∃x : a(x) ∧ (∃y : y > x ∧ b(y) ∧ (∃z : z > x ∧ y > z ∧ c(z)))

is not. It is well known that FO2[<] is a proper fragment of FO[<]. We will primarily be
interested in some fragments of FO2[<]. Consider the syntax

ϕ0 ::= ⊤ | ⊥ | a(x) | x = y | x < y | ¬ϕ0 | ϕ0 ∨ ϕ0 | ϕ0 ∧ ϕ0

ϕm ::= ϕm−1 | ¬ϕm−1 | ϕm ∨ ϕm | ϕm ∧ ϕm | ∃xϕm

The collection of formulae ϕm[<] is denoted by Σ2
m[<], the collection of negations of formulae

in Σ2
m[<] is Π2

m[<] and the Boolean closure of Σ2
m[<] is FO2

m[<]. In what follows, we drop the
reference to the predicate symbol <, and assume it to be understood from context.
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2.3 Ramsey Numbers

A graph is a pair G = (V,E) where V is a set of vertices and E ⊆
{

S ⊆ 2V | |S| = 2
}

is a
set of edges. An edge-coloring is a map c : E → C where C is some set of colors. A graph is
complete if E =

{

S ⊆ 2V | |S| = 2
}

, i.e. if there is an edge between any two elements. A set
F ⊆ E of edges is monochrome if c(e) = c(e′) for all e ∈ F . A triangle is a set of three distinct
edges e1, e2, e3 ∈ E where ei ∩ ej 6= ∅ for 1 ≤ i, j ≤ 3. The following theorem is a special case
of Ramsey’s Theorem [19].

Theorem 1. Let C be a finite set of colours. Then there exists a number R, called the Ramsey
number of C such that any complete graph G = (V,E) with R ≤ |V | contains a monochrome
triangle.

2.4 Hierarchies Inside DA

A variety of special importance for this article is DA. This monoid variety has a natural
correspondence to FO2 since a language is definable in the latter if and only if its syntactic
monoid is in DA.

We are interested in hierarchies of subvarieties of DA. One important such hierarchy is
the Trotter-Weil hierarchy. Its original motivation comes from an intimate relation with the
hierarchy of bands, but here we give a more explicit definition.

Definition 1. Let M be a monoid, and let s, t ∈M . Then

• s ∼K t if for all idempotents e ∈M , either ev, eu <J e or ev = eu,

• s ∼D t if for all idempotents f ∈M , either vf, uf <J f or vf = uf .

The join of these relations is ∼KD.

It is straight-forward to check that these relations are congruences (see e.g. [12]). Let R1 =
L1 = J1, and let M ∈ Rm if M/∼K ∈ Lm−1 and M ∈ Lm if M/∼D ∈ Rm−1. When defining
Rm and Lm for m ≥ 2, starting with J1 yields the same result as starting with J. For our
purposes, starting with J1 is more natural.

The varieties Rm and Lm are all contained inDA. Together with their joins and intersections
they make up the Trotter-Weil hierarchy shown in Figure 1 on page 13.

There is an intimate connection between the quantifier alternation hierarchy, also shown
in Figure 1, and the Trotter-Weil hierarchy. Indeed, it was shown by Weil and the second
author that the languages definable in FO2

m are exactly those whose syntactic monoid is in
Rm+1 ∩ Lm+1 [14]. Furthermore, combining the results in [13] and [8] gives the following
proposition.

Proposition 1. A language is definable in both Σ2
m and Π2

m if and only if its syntactic monoid
is in Rm ∨ Lm.

The corners of the quantifier alternation hierarchy, Σ2
m and Π2

m, also have algebraic char-
acterizations, given by Fleischer, Kufleitner and Lauser [8]. We will define these recognizing
varieties using the stable relation �KD introduced by the authors [10].

Definition 2. Let M be a monoid, and let s, t ∈M . We say that s �KD t if for all x, y ∈M ,
the following holds:
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(i) If x R xty, then x R xsy,

(ii) If xty L y, then xsy L y,

(iii) If x R xt and ty L y, then xsy ≤ xty.

If u ≤KD v and v ≤KD u, we say that u ≡KD v.2

Let Si1 = J+ = J1 ≤ zK and let M ∈ Sim if M/�KD ∈ Sim−1. For every m, the collection
Sim is a positive variety. A language is definable in Σ2

m if and only if its syntactic monoid is
in Sim. We say that an ordered monoid M is in Pim if and only if M with the order reversed,
is in Sim. It is clear that a language is definable in Π2

m if and only if its syntactic monoid is in
Pim.

The following property of DA is standard (see e.g. [6]), and is used throughout the article.

Lemma 2. Let M ∈ DA and suppose that M has a content morphism α. Let s, t ∈ M and
suppose that α(s) ≤ α(t), then sωtsω = sω.

3 Conelikes and the Covering Problem

In this section, we introduce the main problems of the article, the separation problem and
the covering problem. Given a variety V, the (asymmetric) separation problem is defined as
follows:

Given L,L′ ⊆ A∗, determine if there is a language K ∈ V such that L ⊆ K and
L′ ∩K = ∅.

If there exists such a K, we say that L is V-separable from L′. The symmetric separation
problem is to determine whether both L is V-separable from L′ and L′ is V-separable from L.
If V is a full variety, i.e. closed under complements, these two problems are equivalent (just
choose A∗ \K to separate L′ from L).

There is a strong connection between the (symmetric) separation and the problem of deciding
pointlikes [1]. In this section, we introduce the more general covering problem, together with a
generalization of pointlikes which works well with the asymmetric setting. This generalization,
which we call conelikes, is folklore. However, to the knowledge of the authors they have not
been made precise in the algebraic setting.3

Let K be a set of languages, and L a finite set of languages. Then K is separating for L if
for all K ∈K, there exists L′ ∈ L such that K ∩ L′ = ∅. We only consider situations when K

is a cover of some language L, i.e. such that L ⊆
⋃

K.

Definition 3. Let V be a (positive) variety. The covering problem for V is defined as follows:

Given L ⊆ A∗ and L ⊆ 2A
∗

where L is finite, determine if there is K ⊆ V which
covers L and is separating for L.

2The name �KD was originally inspired by the relation ∼KD since they share some properties. However, it
should be noted that the relation ≡KD is not the same as ∼KD. As a counter example, note the syntactic
monoid of a+b+cA∗da+b+ where the equivalence class of ab is ≡KD-related to all elements in the minimal
J -class, whereas it is not ∼K- or ∼D-related to anything.

3The imprints used by Place and Zeitoun in [18] yield is a corresponding object in the language setting
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If such a K exists, we say that (L,L) is V-coverable. For L = {L′}, this reduces to the
separation problem. Whenever V is a full variety, it is equivalent to answer the covering
problem for (L,L) and (A∗, {L} ∪ L) [18], and for regular languages this is in turn equivalent
to computing the V-pointlikes of a finite monoid recognizing all languages of L [1].

Example 1. Consider the variety J+ of languages whose syntactic monoid is in J+, and
let L = (ab)+, L1 = b(ab)∗, L2 = (ab)∗a. We note that in order to cover L, we need the
language A∗aA∗bA∗. However, this language also contains words from L1 and L2, showing
that (L, {L1, L2}) is not J

+-coverable.

Example 2. Suppose that L ∈ V can be written as a disjoint union of a finite number of sets
K ⊆ V. Suppose that K has at least two elements. Then K is separating for itself (this is the
case for all sets with magnitude greater than one), and thus (L,K) is V-coverable. However,
it is clear that L is not V-separable from any Li ∈ K.

We want to use algebraic methods to solve the covering problem. However, the covering
problem is relevant for positive varieties, whereas pointlikes do not take orders into account.
This motivates the following generalization of pointlikes.

Definition 4. Let M be a monoid, and let τ : M → N be a relational morphism. For s ∈M ,
S ⊆M , we say that (s, S) is conelike with respect to τ if there exists an element x ∈ τ(s) such
that S ⊆ τ−1(↑ x). We call x a witness of (s, S) being conelike. As with pointlikes we say that
a pair (s, S) is conelike with respect to a variety V if it is conelike for any τ : M → N ∈ V.
We denote by Coneτ (M) the conelikes of M with respect to τ , and by ConeV(M) the conelikes
of M with respect to V.

Note that if N is unordered, we can define an order u ≤ v if and only if u = v. In this case,
a pair (s, S) is conelike if and only if S is pointlike and s ∈ S. In particular, this means that
for non-positive varieties, calculating the pointlikes and the conelikes is the same problem.

The concept of pointlikes is in general not expressive enough to solve the covering problem.
However, it is still possible to define pointlikes for a variety of ordered monoids, and such
pointlikes are used throughout the article. Note that if S ⊆ M is pointlike with respect to
some variety of ordered monoids, then (s, S) is conelike for any s ∈ S.

For regular languages, which is what is considered in this contribution, the problem of finding
pointlikes is equivalent to the covering problem. We require the following two lemmas. The
first is standard when dealing with pointlikes (see e.g. [1]) and shows that when finding the
optimal conelikes, we need only consider relational morphisms through a fixed alphabet A.

Lemma 3. Let M be a monoid, and µ : A∗ →M a surjective morphism. Let V be a variety.
Then (s, S) ∈M ×2M is conelike with respect to V if and only if (s, S) is conelike with respect

to all τ : M
µ
←− A∗ ν

−→ N ∈ V where ν is a homomorphism.

Proof. It is clear that in order to be conelike with respect to V, it must in particular be conelike
with respect to the morphisms factoring through A∗. For the other direction, suppose (s, S) is
conelike with respect to all relational morphisms on the desired form, and let ρ : M → N ∈ V

be arbitrary. By Lemma 1 we can factor this as ρ : M
f
←− B∗ g

−→ N where f and g are
homomorphisms, and µ′ is surjective.

We define the homomorphism h : A∗ → B∗ as follows. For each a ∈ A, choose u ∈ B∗ such
that f(u) = µ(a) and extend this to a homomorphism. The composition ϕ−1 : g◦h◦h−1◦f−1 is
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a relational morphism and factors through A∗ in the desired way. Thus, there exists x ∈ N such
that x ∈ ϕ(s) and S ⊆ ϕ−1(↑ x). This in particular implies that x ∈ ρ(s) and S ⊆ ρ−1(↑ x),
showing that (s, S) is conelike with respect to ρ. Since ρ was arbitrary with co-domain in V,
the result follows.

The next lemma shows that for all varieties V and monoidsM , there is a relational morphism
τ : M → N ∈ V which is optimal for determining conelikes. Furthermore, this relational
morphism can also be assumed to factor through A∗.

Lemma 4. Let V be a variety, and let M be a finite monoid. Then there exists τ : MN ∈ Vµν
such that ConeV(M) = Coneτ (M). Furthermore, if µ : A∗ →M is a surjective homomorphism,

we can assume that τ can be written as τ : M
µ
←− A∗ ν

−→ N where µ and ν are homomorphisms
and µ is surjective.

Proof. Let τ1 : M → N1 be arbitrary. We will define a chain τ1, . . . , τn where Coneτi+1
(M) (

Coneτi(M), using the following procedure. If Coneτi(M) = ConeV(M), we set i = n and are
done. If not, there exists τ ′ : M → N ′ ∈ V such that Coneτi(M) 6⊆ Coneτ ′(M). We define
τi+1 : M → Ni × N ′ by τi+1(s) = {(t, t′)}t∈τi(s),t′∈τ ′(s). It is clear that this is a relational
morphism, and that (s, S) ∈ Coneτi+1

(M) if and only if (s, S) ∈ Coneτi(M) ∩ Coneτ ′(M). By
choice of τ ′, this shows that τi+1 has the desired properties. Since M is finite, this process
must eventually stop giving the desired result.

For the final part of the lemma, suppose that τn has the desired properties. Using the same
argument as in Lemma 3, we get a relational morphism τ : M

µ
←− A∗ ν

−→ N such that every
conelike with respect to τ is also conelike with respect to τn and thus also with respect to
V.

Proposition 2. Let L = {Li} be a finite collection of regular languages, and for each Li

let µi : A∗ → Mi be its syntactic monoid. Let µ : A∗ → M1 × · · · × Mn be defined by
µ(a) = (µ1(a), . . . , µn(a)) and let M = µ(A∗). Let V be a variety of monoids recognizing a
variety V of languages. Then the following are equivalent

(i) (L,L) is not V-coverable,

(ii) there exists a conelike (s, S) with respect to V such that L∩µ−1(s) 6= ∅ and for all L′ ∈ S
there exists s′ ∈ S such that L′ ∩ µ−1(s′) 6= ∅.

Proof. Let τ : M
µ
←− A∗ ν

−→ N be a relational morphism with N ∈ V chosen to have the
property in Lemma 4. Let

P =
{

(L, ν−1(↑ x)) | x ∈ ν(L)
}

.

It is clear that the set
⋃

x∈ν(L) ν
−1(↑ x) is a cover of L. If (L,L) is not V-coverable, then there

exists x ∈ ν(L) such that for all L′ ∈ L, we have L′ ∩ ν−1(x) 6= ∅. Choose s ∈ τ−1(x) ∩ µ(L)
arbitrary; such s exist since we only consider x in the image of L. Then (s, τ−1(↑ x)) is a
conelike with property (ii).

For the other direction, let K ⊆ V cover L and be separating for L and let ν : A∗ → N
recognize all Ki ∈ K. Let τ : M

µ
←− A∗ ν

−→ N be the natural relational morphism. For
contradiction, assume that there is a conelike with property (ii). Then we find u ∈ L and
vi ∈ Li for each Li ∈ U , such that (µ(u), {µ(vi)}i) is conelike with respect to τ . In particular,
we can assume the u and vi to be the representatives for which ν(vi) ∈↑ ν(u). Now, ↑ ν(u)
intersects every language in L, and thus K is not separating for L.
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Example 3. Let us return to our example with the languages (ab)+, b(ab)∗ and (ab)∗a. These
are all recognized by the syntactic monoid of (ab)+. The above proposition tells us that
(ab, {b, a}) is conelike, where we identify the languages with representatives of their equiva-
lence classes. In particular, an optimal relational morphism is the natural morphism into the
syntactic monoid of A∗aA∗bA∗.

Before leaving the topic of conelikes, we introduce a common tool for determining pointlikes
and solving the covering problem (see e.g. [18]). The idea is to construct sets of subsets of M
which have closure properties analogous to those of pointlikes and conelikes.

Definition 5. Given a monoid M , a subset of 2M is closed if it contains the singletons and
is closed under multiplication and subsets. Similarly, a set C ⊆M × 2M is closed if it has the
following closure properties:

• (s, {s}) ∈ C for all elements s ∈M ,

• (s, S), (t, T ) ∈ C implies (st, ST ) ∈ C,

• (s, S) ∈ C implies (s, S′) ∈ C for all subsets S′ ⊆ S.

In Sections 6 to 10, we introduce computable closed sets for all varieties of interest and show
that these sets coincide with the pointlikes and conelikes.

4 A Framework for Ranker Comparisons

One of the main techniques in this paper is ranker comparisons. This concept has close
connections to fragments of FO2, a connection we explore in Section 5 (see. [24, 16]). In this
section, we introduce a general framework and give sufficient conditions for instances of this
framework to define a monoid.

Definition 6. Let A be some alphabet. A ranker over A is a nonempty word over {Xa,Ya}a∈A,
which can be interpreted as a partial function from A∗ to N. The interpretation is defined
inductively as follows:

• Xa(u) = inf {n ∈ N | u[n] = a} if the infimum is finite, and undefined otherwise,

• Ya(u) = sup {n ∈ N | u[n] = a} if the supremum is finite, and undefined otherwise,

• rXa(u) = inf {n ∈ N | n > r(u), u[n] = a} if r(u) is defined and the infimum is finite, and
undefined otherwise,

• rYa(u) = sup {n ∈ N | n < r(u), u[n] = a} if r(u) is defined and the supremum is finite,
and undefined otherwise.

Note that we read rankers from left to right (as opposed to function composition). Thus
XaYb(bab) = 1, whereas YbXa(bab) is undefined. If p = a1 · · · an, we define Xp = Xa1 · · ·Xan

and Yp = Ya1 · · ·Yan for compactness.
We define the following collections of rankers:

RX
1 = {Xa}

+
a∈A , RY

1 = {Ya}
+
a∈A , RX

m+1 = {Xa}
∗
a∈ARY

m, RY
m+1 = {Ya}

∗
a∈ARX

m,

10



Here the juxtaposition on the left denotes concatenation. We furthermore define Rm = RX
m ∪

RY
m, and R =

⋃

mRm. Note that these sets depend on the alphabet A although this dependence
is not written out explicitly. We will always assume that the alphabet is clear from context.
Given a ranker r, the alternation depth of r is the smallest m such that r ∈ Rm. The depth of
r is the length of r as a word.

Since rankers are N-valued functions, there is a natural way of comparing them given a
speficied word u. In other words, given u ∈ A∗ and rankers r, s, we are interested in whether
r(u) ≤ s(u) and r(u) < s(u) hold. The following definition introduces a general framework,
inspired by the comparisons of Weis and Immerman [24] and Lauser [16].

Definition 7. Let A be some alphabet, and let C ⊆ R × R be some set of pairs of rankers
over A. We define [C ] =

⋃

(r,s)∈C
{r, s}, i.e. the set of rankers that occurs on some position in

some pair of C . We say that u ≤C v if:

(i) The same set of rankers in [C ] are defined on u and v,

(ii) For each (r, s) ∈ R such that r and s are defined on u and v, we have r(u) ≤ s(u) ⇒
r(v) ≤ s(v), and r(u) < s(u)⇒ r(v) < s(v).

If u ≤C v and v ≤C u, we say that u ≡C v.

For rankers r,s, and words u, v ∈ A∗ we have r(u) ≤ s(u) ⇒ r(v) ≤ s(v) if and only if
s(v) < r(v) ⇒ s(u) < r(u). In particular, this means that if C is symmetric, i.e. (r, s) ∈
C ⇔ (s, r) ∈ C , then ≤C and ≡C are equivalent relations. Note that for a certain choice of
symmetric C we get the relation introduced in [24]. We say that a language L is definable by
C if L is an ideal under the relation ≤C . Furthermore, we say that a language is an C -set if
it is a subset of such an ideal.

For a language A and some sets of rankers C ⊆ R × R, we want to consider the monoid
A∗/≤C , which is a well defined monoid only when ≤C is stable. For general C , this is not the
case. However, Proposition 3 provides a large class of sets for which it does hold.4

Proposition 3. Let R be some collection of rankers and let C ⊆ R × R be closed under
subwords, i.e. be such that (r, s) ∈ C implies (r′, s′) ∈ C for any subwords r′ of r and s′ of s.
Then the preorder ≤C is stable.

Proof. By symmetry, it is enough to show that u ≤C v implies xu ≤C xv. Suppose r ∈ [C ] is
defined on xu. Without loss of generality, we assume that r starts with an X-modality.

We will factor r = s1t1 . . . sntn in the following way; let s1 be the longest (possibly empty)
prefix of r which is defined on x, and factor r = s1r

′. Next, let t1 be the longest prefix of r′

which is defined on u, and continue this process. Since ti is defined on u, it is also defined
on v, and since no longer factor is defined on u, no longer factor is defined on v. Thus, the
factorization of r would be the same if taken with respect to xv, and in particular, r is defined
on xv.

Suppose next that r(xu) < r′(xu). We factor r = s1t1 . . . sktk and r′ = s′1t
′
1 . . . s

′
ℓt
′
ℓ as before

where we allow s1,s
′
1, tk and t′ℓ to be empty. By the above argument, the ti and t′j are also

the longest factors being defined also on v. Suppose that tk is empty, but t′ℓ is not. Then

4As an example on when it does not hold, consider the singleton {(Xaa,Yaa)}. We note that neither Xaa nor
Yaa are defined on ε nor on a. Thus ε ≤C a. However, a 6≤C aa. The following proposition gives a condition
on C which implies that ≤C is stable.
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r(xv) ≤ |x| < |x| + 1 ≤ r′(xv). Note that we can not have tk nonempty while t′ℓ is empty
since this would contradict r(xu) < r′(xu). Finally, if tk and t′ℓ are both nonempty. Then
tk(u) < t′ℓ(u), and we get r(xv) = |x| + tk(v) < |x| + t′ℓ(v) = r′(xv). The case when both tk
and t′ℓ are empty is handled similarly. Thus, we get r(xv) < r′(xv). The case dealing with the
non-strict order is analogous.

If C furthermore is finite, then A∗/≤C is a finite monoid. This monoid can be constructed
explicitly; given representatives u and v for some elements, one can check which ranker com-
parisons uv satisfy.

We also mention the two following lemmas which are trivial and have been written down
without a proof.

Lemma 5. Let r = r′Xp and s be rankers. If r(u) and s(u) are defined, then

r(u) ≤ s(u)⇔ r′(u) ≤ sYp(u) r(u) < s(u)⇔ r′(u) < sYp(u)

s(u) ≤ r(u)⇔ sYp(u) ≤ r′(u) s(u) < r(u)⇔ sYp(u) < r′(u).

where in the second line the implications only holds if sYp(u) is defined. In the first line, sYp(u)
being defined is also implied. Symmetrically, if r(u) = r′Yu(u), and r(u) and s(u) are defined,
then

r(u) ≤ s(u)⇔ r′(u) ≤ sXp(u) r(u) < s(u)⇔ r′(u) < sXp(u)

s(u) ≤ r(u)⇔ sXp(u) ≤ r′(u) s(u) < r(u)⇔ sXp(u) < r′(u).

where this time definedness is only implied in the second line.

Lemma 6. Let u = xavby where u, v, x, y ∈ A∗, a, b ∈ A. If there are rankers r, s such that
r(u) = |xa|, s(u) = |xavb|, then a ranker t starting with an X-modality is defined on v if and
only if rt is defined on u and r(u) < rt′(u) < s(u) for all prefixes t′ of t. Symmetrically,
if t starts with a Y-modality, then t is defined on v if and only if st is defined on u and
r(u) < st′(u) < s(u) for all prefixes t′ of t.

5 The Ranker Comparison Hierarchy

Rankers and ranker comparisons have a long tradition in the study of fragments of FO2. Indeed,
rankers were first introduced by Schwentick, Thérien and Vollmer as a characterization of FO2

itself [21]. Ranker comparisons were used by Weis and Immerman to give a characterization of
the languages definable in FO2

m [24]; this was later expanded to the full alternation hierarchy
in the PhD thesis of Lauser [16]. A ranker characterization of the corners of the Trotter-Weil
hierarchy is also known, using so called condensed rankers [15].

In this section, we place these results into our general framework. In particular, we rephrase
the characterization of the Trotter-Weil corners in terms of ranker comparisons. This leads
to a natural hierarchy containing both the Trotter-Weil and quantifier alternation hierarchies:
the ranker comparison hierarchy, shown in Figure 1.

The levels of the ranker comparison hierarchy are built using the following collections of
ranker comparisons. We note that they are finite and closed under subwords, and thus define
finite monoids by Proposition 3. For m ≥ 1:

XXm,n =
{

(r, s) ∈ RX
m ×RX

m | |r|, |s| ≤ n
}

, YYm,n =
{

(r, s) ∈ RY
m ×RY

m | |r|, |s| ≤ n
}
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Rm ∩ Lm

LmRm

Rm ∨ Lm

Rm+1 ∩ Lm+1

Lm+1Rm+1

XYm−1YXm−1

YXm−1 ∪XYm−1

XXm−1YYm−1

XXm−1 ∪YYm−1

YXmXYm

XYm ∪YXm

XXmYYm

Σ2
m−1 Π2

m−1

FO2
m−1

Σ2
m ∩Π2

m

Σ2
m Π2

m

FO2
m

Figure 1: The Ranker Comparison Hierarchy surrounded by the Trotter-Weil hierarchy
(left) and the Quantifier Alternation Hierarchy (right)

and for m ≥ 2:

XYm,n =
{

(r, s) ∈ RX
m ×RY

m | |r|, |s| ≤ n
}

, YXm,n =
{

(r, s) ∈ RY
m ×RX

m | |r|, |s| ≤ n
}

.

We also consider unions of these sets. We will use the notation ≤XY
m,n instead of ≤XYm,n and

similarly for the other sets. Note that we have u ≤XY
m,n v if and only if v ≤YX

m,n u and v ≤XY∪YX
m,n u

if and only if both v ≤XY
m,n u and v ≤YX

m,n u.5 We also give the following names for the induced
monoids.

Definition 8. We define

NXX
m,n = A∗/≤XX

m,n NYY
m,n = A∗/≤YY

m,n NXX∪YY
m,n = A∗/≤XX∪YY

m,n

NXY
m,n = A∗/≤XY

m,n NYX
m,n = A∗/≤YX

m,n NXY∪YX
m,n = A∗/≤XY∪YX

m,n .

The fragment FO2
1,n is characterized by existence of subwords. Since our framework require

the same subwords up to a certain length to be present in both words of interest (condition (i)
in Definition 7), this means that our framework can not properly handle this case. Therefore,
we make the following special definition.

Definition 9. Let A be some alphabet, we say that u ≤XY
1,n v if any ranker in RX

1,2n ∪ RY
1,2n

which is defined on u is also defined on v. Equivalently, u ≤XY
1,n v if every subword of length 2n

which exists in u also exists in v. We say that u ≤YX
1,n v if v ≤XY

1,n u and u ≤XY∪YX
1,n v if u ≡XY

1,n v.

A language is definable by XY1,n (resp. YX1,n or XY1,n ∪ YX1,n) if it is an ideal under the
relation ≤XY

1,n (resp. ≤YX
1,n or ≤YX∪YX

1,n ). This does, however, not mean that we can interpret

5Note that although the relation ≤XY∪YX
m,n is similar to the relation introduced by Weis and Immerman [24],

there is a slight different regarding the variable n. The length of rankers allowed by Weis and Immerman
is made to ensure correspondence with the depth of formulae in FO2. The results of this article does not
consider depths of FO2 formulae, and thus this difference is not important here.
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XY1,n as a set of rankers and definability in the sense of Definition 7. We also define NXY
1,n and

NYX
1,n to be the monoids induced by the respective (stable) preorders. This special definition

ensures that we can define all levels of the quantifier alternation hierarchy using consistent
terminology. Furthermore, it makes the following lemma true for all m.

Lemma 7. Let m ≥ 2 and let u, u′ ∈ A∗ such that

u = xavby ≤YX
m,n x′av′by′ = u′

where x, v, y, x′, v′, y′ ∈ A∗ and a, b ∈ A. If there exists rankers Xp, Yq with |p|, |q| ≤ k < n such
that Xp(u) = |xavb|, Xp(u

′) = |x′av′b|, Yq(u) = |xa| and Yq(u
′) = |x′a|, then v ≤XY

m−1,n−k v′.

Similarly, if u ≤XY
m,n u′, then v ≤YX

m−1,n−k v′.

In other words, the implication of true ranker comparisons carries over from u and u′ to v
and v′ at the cost of one quantifier alternation and the depth needed to reach the positions a
and b.

Proof. We start by considering the case m ≥ 3, since m = 2 needs to be treated specifically.
Let (r, s) ∈ XYm−1,n−k.

We first assume that one of the rankers, say r, is defined on v and show that this implies
that it is also defined on v′. Suppose r starts with an X-modality, and let r′ be an arbitrary
prefix of r. We have Yqr

′(u) < Xp(u) which implies Yqr
′(u′) < Xp(u

′) since (Yqr
′,Xp) ∈ YXm,n.

We also need to show Yq(u
′) < Yqr

′(u′), however, since the alternation depth of r′ is possibly
m− 1, the comparison (Yq,Yqr

′) might not be in YXm,n. Suppose r′ ends with a Y-modality,
say r′ = r′′Yt, where again r′′ has a strictly smaller alternation depth. Then

Yp(u) ≤ Yqr
′′Yt(u) ⇒ YpXt(u) ≤ Yqr

′′(u) By Lemma 5

⇒ YpXt(u
′) ≤ Yqr

′′(u′) since u ≤YX
m,n u′

⇒ Yp(u
′) ≤ Yqr

′′Yt(u
′) By Lemma 5

where in the second implication, we rely on the fact that r′′ has alternation depth at most
m− 2, and thus Yqr

′′ has alternation depth at most m− 1. If r′ ends with an X-modality, we
get the same chain of equivalences. Thus we have Yq(u

′) < Yqr
′(u′) < Xp(u) for all prefixes of

r, which by Lemma 6 implies that r is defined on v′. The case when r starts with a Y-modality
is symmetric.

Assume next that r is defined on v′, and let r′ be an arbitrary prefix. We will use induction
on the alternation depth of r′ to show that every such prefix is defined on r. We consider the
case when r′ = r′′Xt where r′′ is either empty or has strictly smaller alternation depth. We
also assume r starts with an X-modality. The other cases are similar.

By induction r′′ is either empty or defined on v, and it thus suffices to show Yqr
′′Xt(u) <

Xp(u). Suppose this is not the case, then

Xp(u) ≤ Yqr
′′Xt(u) ⇒ XpYt(u) ≤ Yqr

′′(u) By Lemma 5

⇒ XpYt(u
′) ≤ Yqr

′′(u′) since u ≤YX
m,n u′

⇒ Xp(u
′) ≤ Yqr

′′Xt(u
′) By Lemma 5

where in the second implication, we both rely on the fact that m ≥ 3 and the alternation
depth of r′′ is at most m − 2. This contradicts r′ being defind on v′. Thus, we must have
Yqr

′(u) < Xp(u) which means r′ is defined on v.
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Finally, suppose that r(u) ≤ s(u). We suppose r starts with an X-modality and s with a
Y-modality. Then Yqr(u) ≤ Xps(u) holds, giving Yqr(u

′) ≤ Xps(u
′). Since r and s are defined

on v′, this implies r(v′) ≤ s(v′). The other cases are similar, using the fact that if r starts with
a Y-modality, or s with an X-modality, then their alternation depths are at most m− 2.

We finally turn to the case m = 2, and let XsXt ∈ RX
1,2(n−k) with |s|, |t| ≤ n − k. Clearly,

XsXt being defined on a word w is equivalent to Xs and Yt̄ being defined and Xs(w) < Yt̄(w)
holding. Suppose that Xs(v) < Yt̄(v), then since u ≤YX

2,n u′, we have

YqXs(u) < XpYt̄(u)⇒ YqXs(u
′) < XpYt̄(u

′). (1)

In particular, YqXs′(u) < Xp for all prefixes s′ of s. Hence Xs is defined on u′ and analogously,
so is Yt. Thus (1) in particular implies Xs(v

′) < Yt(v
′) which implies that XsXt is defined on

u. By a symmetrical argument, the same holds for rankers in RY
1,2n.

This lemma also has a counterpart for the XX and YY-levels. Note that in this case, we lose
depth but no alternation depth when considering factors.

Lemma 8. Let m ≥ 2 and let u, u′ ∈ A∗ such that

u = xavby ≡XX
m,n x′av′by′ = u′

If there exists rankers Xp, Xq with |p|, |q| ≤ k < n such that Xp(u) = |xa|, Xp(u
′) = |x′a|,

Xq(u) = |xavb| and Xq(u
′) = |x′av′b|, then v ≡XX

m,n−k v′. We also allow xa and x′a (resp. by
and by′) to be empty, in which case we interpret Xp (resp. Xq) to be the empty word, |p| = 0
(resp. |q| = 0) and |Xp(u)| = |Xp(v)| = 0 (resp. |Xp(u)| = |u|+ 1, |Xq(v)| = |v|+ 1).

Proof. By symmetry, it is enough to show that a ranker defined on v is also defined on v′ and
if r(v) ≤ s(v), then r(v′) ≤ s(v′).

Suppose r ∈ [XXm,n−k] starts with an X-modality. If r is defined on v, then if follows from
Lemma 6 that Xpr is defined on u and Xp(u) < Xpr

′(u) < Xq(u) for all nonempty prefixes of
r. Since u ≡XX

m,n u′, we get that Xpr is defined on u′ and Xp(u
′) < Xpr

′(u′) < Xq(u
′). Again by

Lemma 6, it follows that r is defined on v′. If r starts with a Y-modality, we make the same
argument using Xqr

′ instead of Xpr
′.

Let (r, s) ∈ XXm,n−k where both r and s are defined on v (and hence on v′) such that
r(v) ≤ s(v). Suppose both rankers start with X-modalities. Then

r(v) < s(v) ⇒ Xpr(u) < Xps(u)

⇒ Xpr(u
′) < Xps(u

′) Since u ≡XX
m,n u′

⇒ r(v′) < s(v′)

The other cases are similar.

We now restate the known correspondences between rankers and the quantifier alternation
hierarchy in our framework. The following characterization of the FO2

m levels is due to Weis
and Immerman ((i) and (ii) [24]) and Kufleitner and Weil ((i) and (iii) [14]).

Proposition 4. Given a language L, the following are equivalent:

(i) L is definable in FO2
m,
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(ii) L is definable by XYm,n ∪YXm,n for some n,

(iii) the syntactic morphism of L is in Rm+1 ∩ Lm+1.

Similarly, we have the following characterization of the Σ2
m levels, due to Fleischer et al.

((i) and (iii) [8]) and Lauser ((i) and (ii) [16, Thm. 11.3]). One easily gets the symmetric
characterization of the Π2

m-levels.

Proposition 5. Given a language L, the following are equivalent:

(i) L is definable in Σ2
m,

(ii) L is definable by XYm,n for odd m and YXm,n for even m for some n,6

(iii) the syntactic monoid of L is in Sim.

Proof. We only need to show that the ranker comparisons defined by Lauser is equivalent to
ours up to the depth of the rankers. Recall Definition 11.2 in [16], defining ≤R

m,n as follows. If

m = 0 or n = 0, then u ≤R
m,n v for all u, v ∈ A∗. Otherwise, u ≤R

m,n v if v ≤R
m−1,n u and:7

(i) for r ∈ Rm such that |r| ≤ n, if r(v) is defined then r(u) is defined,

(ii) if r ∈ RX
m, s ∈ RX

m−1 such that |r| ≤ n, |s| ≤ n − 1, then if m is odd, then r(v) ≤ s(v)
implies r(u) ≤ s(u) and r(v) < s(v) implies r(u) < s(u) and if m is even, then r(v) ≥ s(v)
then r(u) ≥ s(u) and if r(v) > s(v), then r(u) > s(u),

(iii) if r ∈ RY
m, s ∈ RY

m−1 such that |r| ≤ n, |s| ≤ n − 1, then if m is odd, then r(v) ≥ s(v)
implies r(u) ≥ s(u) and r(v) > s(v) implies r(u) > s(u) and if m is even, then r(v) ≤ s(v)
then r(u) ≤ s(u) and if r(v) < s(v), then r(u) < s(u),

(iv) if r ∈ RY
m, s ∈ RY

m such that |r| + |s| < 2n, then if m is odd, then r(v) ≤ s(v) implies
r(u) ≤ s(u) and r(v) < s(v) implies r(u) < s(u) and if m is even, then r(v) ≥ s(v) then
r(u) ≥ s(u) and if r(v) > s(v), then r(u) > s(u).

We claim that for m ≥ 2, we can without loss of generality strengthen (i) to read

(i’) for r ∈ Rm such that |r| ≤ n, we have r(v) defined if and only if r(u) is defined,

in which case the result is obvious.
Without loss of generality, assume that r = r′XpYq where r′ has alternation depth m− 2 or

is empty. Since u ≤R
m,n v implies v ≤R

m−1,n u by definition, we have that r′Xp and Xq are both
defined on v. If r(v) is not defined, we must have r′Xp(v) < Xq(v) which implies r′(v) < XqYp(v)
(or if r′ is empty, it implies that XqYp(v) is defined). It follows that r′(u) < XqYp(u) which
contradicts r(u) being defined.

The corners of the Trotter-Weil hierarchy has a ranker characterization in terms of condensed
rankers [15]. We reformulate this result in terms of ranker comparisons. The ranker comparison
characterization of the join levels then follow directly. We also use Proposition 1 to relate the
join levels to the intersection levels of the quantifier alternation hierarchy.

6The relation in [16] has only one-sided inclusion of definedness of rankers with the maximum number of
alternations for all m as an explicit assumption. However, for m ≥ 2, two sided inclusion follow implicitly.

7Note that the direction of ≤R
m,n is reversed compared to Definition 7. In the former, if u ≤C v, then

r(u) ≤ s(u) implies r(v) ≤ s(v) for r, s ∈ [C ], while if u ≤R
m,n v, then r(v) ≤ s(v) implies r(u) ≤ s(u) for the

relevant r and s.
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Proposition 6. Let m ≥ 1. Then L is definable by XXm,n (resp. YYm,n) for some n if and
only if its syntactic monoid M is in Rm+1 (resp. Lm+1). Furthermore, the following are
equivalent:

(i) L is definable by XXm,n ∪YYm,n for some n,

(ii) the syntactic monoid of L is in Rm+1 ∨ Lm+1,

(iii) the syntactic monoid of L is in Pim ∩ Sim,

(iv) L is definable in Σ2
m and in Π2

m.

Proof. Let µ : A∗ →M be the syntactic morphism of L. We use induction on m. We consider
the case Rm+1 with Lm+1 being symmetric. Suppose first that L is definable by XXm,n, and
M is its syntactic monoid. Since M is a quotient of NXX

m,n, it is enough to show NXX
m,n ∈ Rm+1.

Let ν : A∗ → NXX
m,n and let π : NXX

m,n → NXX
m,n/∼K be the natural projection. Let u, v ∈ A∗ be

such that u ≡YY
m−1,n v if m ≥ 2, or alph(u) = alph(v) for m = 1. We show that µ(u) ∼K µ(v).

Let e be idempotent such that e J eµ(u). Then there exists ê ∈ µ−1(e) with alph(u) =
alph(v) ⊆ alph(ê). Since e is idempotent, we have ê2n ∈ µ−1(e). We want to show ê2nu ≡XX

m,n

ê2nv.
We consider rankers r and s. Suppose first that both start with an X-modality. In particular,

for m = 1 this is the only possibility. We note that by the length of ên and the alphabetic
conditions, r and s are defined on ê2nu if and only if they are defined on ên. The same holds
for ê2nv. In particular, they are defined on ê2nu if and only if ê2nv. Furthermore,

r(ê2nu) ≤ s(ê2nv)⇔ r(ên) ≤ s(ên)⇔ r(ê2nv) ≤ s(ê2nv)

and analogously for the strict relation.
Next, suppose r and s are rankers which start with a Y-modality. Then (r, s) ∈ YYm−1,n.

Since u ≡YY
m−1,n v it follows by stability that ê2nu ≡YY

m−1,n ê2nv. In particular, the same such
rankers are defined on u and v.

Finally, suppose r starts with an X-modality, and s starts with a Y-modality. It again follows
from the length of ên and the alphabetic conditions that r(ê2nu) < s(ê2nu) if and only if both
are defined on ê2nu and similarly for ê2nv. For the same reason, none of the words can satisfy
r ≤ s if r starts with a Y-modality and s starts with an X-modality.

Since this covers all possible cases, we get ê2nu ≡XX
m,n ê2nv. This implies eν(u) = eν(v) and

since e was arbitrary such that e J eν(u), it follows that ν(u) ∼K ν(v). For m = 1, this
implies that π ◦ ν factors through JA and for for m ≥ 2 that π ◦ ν factors through NYY

m−1,n. In

either case, NXX
m,n/∼K∈ Lm (for m = 1 since JA ∈ L1 and for m ≥ 2 since NYY

m,n ∈ Lm+1 by

induction). Thus NXX
m,n ∈ Rm+1.

For the other direction, suppose π : M → M/∼K∈ Lm is the canonical projection. We will
use induction to show that u ≡XX

m,m|M |+1 v implies µ(u) = µ(v). Suppose that u ≡XX
m,m|M |+1 v

and let u = u0a1u1 · · · anun be the R-factorization of u. We factor v = v0a1v1 · · · anvn where
ai /∈ vi−1. Such a factorization exists since u ≡XX

m,m|M |+1 v. Furthermore, we have

b ∈ alph(ui)⇔ Xa1...ai(u) < Xa1...aib(u) < Xa1...aiai+1
(u)

⇔ Xa1...ai(v) < Xa1...aib(v) < Xa1...aiai+1
(v)

⇔ b ∈ alph(vi).
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Thus, alph(ui) = alph(vi) for all i (the argument for i = 0 and i = n is similar, but uses
definedness and one comparison instead of two comparisons). Furthermore, for m ≥ 2, Lemma
8 shows that ui ≡

XX
m,(m−1)|M |+1 vi which in particular implies ui ≡

YY
m−1,(m−1)|M |+1 vi. By

induction, this implies µ(ui) ∼K µ(vi) for all m. Let xi be such that µ(u0a1 . . . aiuixi) =
µ(u0a1 . . . ai). We get

µ(u0a1u1 . . . anun) = µ(v0a1u1 . . . an(unxn)
ωun)

= µ(u0a1u1 . . . an(unxn)
ωvn)

= µ(u0a1u1 . . . anvn)

...

= µ(v0a1v1 . . . anvn).

Thus µ factors through NXX
m,n+|M | which gives the desired result.

We now turn to the join levels. The language L has its syntactic monoid in Rm+1 ∨Lm+1 if
it is a divisor of some M1× · · · ×Mn where Mi ∈ Rm+1 ∪Lm+1. In particular, the language is
recognized by some µ : A∗ →M1 × · · · ×Mn. Let µi = πi ◦ µ where πi is the projection on the
ith monoid. Let u = (u1, . . . , un) ∈M1× · · · ×Mn. By the previous part, µ−1

i (ui) is defineable
by XXm,n ∪ YYm,n for some n. Since µ−1(u) =

⋂

i µ
−1
i (ui), so is µ−1(u). Since it is the union

of such sets, it follows that L is definable by XXm,n ∪YYm,n.
For the other direction, suppose L is definable in XXm,n ∪ YYm,n. Then L is a Boolean

combination of languages Li definable in XXm or YYm. Let µi : A
∗ → Mi be the syntactic

morphism of Li, and define µ : A∗ → M1 × · · · ×Mn by µ(u) = (µ1(u), . . . , µn(u)). It is clear
that L is the preimage of a union of elements in M1×· · ·×Mn, and it follows that the syntactic
monoid of L is in Rm+1 ∨ Lm+1.

Finally, the equivalence between (iv) and (ii) is Proposition 1 and the equivalence between
(iii) and (iv) is an obvious consequence of Proposition 5.

Taken together, these three propositions gives us a new way of considering the Trotter-Weil
hierarchy and the quantifier alternation hierarchy together, as a ranker comparison hierarchy;
see Figure 1.

6 Saturations for Fragments of FO2

In this section, we present computable closed sets for all levels of the Trotter-Weil and quantifier
alternation hierarchies, in other words for all levels of the ranker comparison hierarchy. We
also state our main results: that these sets agree with the corresponding sets of pointlikes. The
proof thereof is the subject of the subsequent sections.

The sets presented below relies on the monoids having content morphisms (intuitively on
the monoid elements having a fixed alphabet). This is not true for all monoids; consider for
example M = {1, a} with aa = 1. However, it is always possible to alphabetize a monoid by
explicitly distinguishing elements with different alphabets. If M is a monoid with a generating
set A, then the submonoid of M × JA generated by (a, {a})a∈A has a content morphism. It
also has a surjective morphism onto M . The following Lemma shows that this is enough to
deduce the pointlikes of M .8

8A variant of the Lemma can be found in [2].
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Lemma 9. Let M,M ′ be finite monoids and suppose that there is a surjective morphism
π : M ′ → M . Then P ⊆ M (resp. (s, S) ∈ M × 2M ) is pointlike (resp. conelike) with respect
to a variety V if and only if there exists a pointlike P ′ ⊆M ′ (resp. conelike (s′, S′) ∈M ′×2M

′

)
with respect to V such that P ⊆ π(P ′) (resp. S ⊆ π(S′), s = π(s′)).

Proof. We give the proof for pointlikes; the proof for conelikes is analogous. Let τ : M → N ∈
V be a relational morphism. Then τ ′ = τ ◦π−1 is also a relational morphism. If P ′ is pointlike
with respect to V, then in particular it is pointlike with respect to τ ′. It follows that π(P ′)
and thus P must be pointlike with respect to τ . Since τ was arbitrary, this is true for V.

For the other direction, let P ⊆M and let P1, . . . , Pn be the collection of all subsets of M ′

satisfying P ⊆ π(Pi). If Pi is not pointlike with respect to V, then there exists τi : M
′ → Ni ∈

V such that Pi is not pointlike with respect to τi. Suppose that no Pi is pointlike. We define
τ : M ′ → N1 × · · · ×Nn by

τ(s) = {(x1, . . . , xn) | xi ∈ τi(s)} .

It is straightforward to check that τ is a relational morphism. We let τ ′ : τ ◦π−1. For contradic-
tion, suppose that P is pointlike with respect toV, then in particular P is pointlike with respect
to τ ′. Thus, there exists (x1, . . . , xn) such that P ⊆ τ ′−1(x1, . . . , xn). Let U = τ−1(x1, . . . , xn).
It is clear that P ⊆ π(U), and thus U = Pi for some i. Since (x1, . . . , xi, . . . , xn) ∈ τ(s) for all
s ∈ Pi, we must have xi ∈ τi(s) for all s ∈ Pi, a contradiction.

We now introduce the relevant closed sets. Note that for our purposes, R1 = L1 = J1. We
first give the sets for the corners of the Trotter-Weil hierarchy. These are important building
blocks for the other sets.

Definition 10. Let M be a monoid with a content morphism α. We define:

• SatJ1
(M) = SatR1

(M) = SatL1
(M) = {S ⊆M | α(s) = α(t) for all s, t ∈ S},

• for m ≥ 2, SatRm(M) is the smallest closed set of M such that if Z ∈ SatLm−1
(M),

U ∈ SatRm(M), α(Z) ≤ α(U) and U is idempotent in 2M , then UZ ∈ SatRm(M)

• for m ≥ 2, SatLm(M) is the smallest closed set of M such that if Z ∈ SatRm−1
(M),

V ∈ SatLm(M), α(Z) ≤ α(V ) and V is idempotent in 2M , then ZV ∈ SatLm(M)

The definition inductively ensures that for any W in any of the introduced sets, we have
α(w) = α(w′) for all w,w′ ∈ W . Thus, α(W ) is a well defined element of JA, making the
comparisons α(Z) ≤ α(U) and α(Z) ≤ α(V ) meaningful.

The other closed sets build on so-called RLm-factors. If one think of the elements of a monoid
as the languages they represent, one can think of RLm-factors as collections of languages which
can not be distinguished from any side using rankers of alternation depth at most m, while
containing words of arbitrary length.

Definition 11. Let M be a monoid with a content morphism α. Let S,E ∈ SatRm(M),
T, F ∈ SatLm(M) with α(S), α(T ) ≤ α(E) = α(F ) and E, F idempotent in 2M . Let W be
such that α(w) ≤ α(E) for all w ∈W . Then SEWFT is an RLm-factor.

Since SatRm(M) and SatLm(M) can be constructed for each m, the RLm-factors can also be
effectively constructed. Note that the alphabet of an RLm-factor is well defined. Using these
factors, we construct the following sets.
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Definition 12. Let M be a monoid. Then

• ConeSatSi1(M) is the smallest closed set for which (1, S) ∈M for all S ⊆M .

• ConeSatPi1
(M) is the smallest closed set for which (s, {1, s}) ∈M for all s ∈M .

Suppose further that M has a content morphism α, then for m ≥ 2:

• SatJ(M), is the smallest closed set such that

XEY ∈ SatJ(M)

for all X,Y,E ∈ 2M where E is idempotent, α(s) = α(t) for all s, t ∈ E, and α(w) ⊆ α(E)
for all w ∈ X ∪ Y .

• SatRm+1∩Lm+1
(M) is the smallest closed set which for all n contain the product

U1V1U2 . . . Vn−1Un

where every Ui is an RLm-factor while Vi ∈ SatRm∩Lm(M) (or Vi ∈ SatJ(M) for m = 2),
and α(v′i) ≤ α(Ui), α(Ui+1) for all v

′
i ∈ Vi,

• SatRm∨Lm(M) is the smallest closed set which for all n contain the product

U1V1U2 . . . Vn−1Un

where every Ui is an RLm-factor while Vi ∈ SatRm−1∨Lm−1
(M) (or Vi ∈ 2M for m = 2),

and α(v′i) ≤ α(Ui), α(Ui+1) for all v
′
i ∈ Vi,

• ConeSatSim(M) is the smallest closed set which for all n contain the product

(u1, U1)(v1, V1)(u2, U2) . . . (vn−1, Vn−1)(un, Un)

where for all i, we have ui ∈ Ui and Ui is anRLm-factor while (vi, Vi) ∈ ConeSatSim−1
(M),

and α(v′i) ≤ α(Ui), α(Ui+1) for all v
′
i ∈ Vi,

• ConeSatPim(M) is the smallest closed set which for all n contain the product

(u1, U1)(v1, V1)(u2, U2) . . . (vn−1, Vn−1)(un, Un)

where for all i, we have ui ∈ Ui and Ui is anRLm-factor while (vi, Vi) ∈ ConeSatPim−1
(M),

and α(v′i) ≤ α(Ui), α(Ui+1) for all v
′
i ∈ Vi,

We now state our main theorem. Apart from giving the pointlikes of the different levels, it
also provides separators. These are monoids with relational morphisms which are optimal in V

for separating the elements of M . In other words, the relational morphisms τ satisfy PLτ (M) =
PLV(M). The theorem states only the monoids explicitly; the relational morphisms are the
natural relational morphisms, obtained by mapping every element in M to their preimage in
A∗ and projecting onto the relevant monoids.

Theorem 2. Let M be a finite monoid, and let n = ⌈R/2⌉− 1 where R is the Ramsey number
of M . Then
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(i) ConeSi1(M) = ConeSatSi1(M) with separator NXY
1,n ,

(ii) ConePi1
(M) = ConeSatPi1

(M) with separator NYX
1,n ,

Furthermore, suppose M has a content morphism α : M → JA, and let n = (m+ |A|)(R − 1)
and n′ = (m− 1 + 3|A|)(R − 1) + |A| where R is the Ramsey number of 2M .

(iii) PLJ1
(M) = SatJ1

(M) with the separator JA,

(iv) PLRm(M) = SatRm(M) with the separator NXX
m,n,

(v) PLLm(M) = SatLm(M) with the separator NYY
m,n,

(vi) PLJ(M) = SatJ(M) with separator NXY∪YX
1,|A|R+R−1,

9

(vii) PLRm+1∩Lm+1
(M) = SatRm+1∩Lm+1

(M) with separator NXX∪YY
m,n′ ,

(viii) PLRm∨Lm(M) = SatRm∨Lm(M) with separator NXX∪YY
m,n′ ,

(ix) ConeSim(M) = ConeSatSim(M) with separator NXY
m,n′ for odd m and NYX

m,n′ for even m,

(x) ConePim(M) = ConeSatPim(M) with separator NYX
m,n′ for odd m and NXY

m,n′ for even m,

The following is an immediate corollary, given Proposition 2.

Corollary 1. The covering problem has a solution for all language varieties associated with
the levels of the quantifier alternation hierarchy. In particular, this implies solutions to the
separation problems for all of these varieties.

Example 4. Let M be the syntactic monoid of (ab)+; see Figure 2a. Note that this monoid
does not have a content morphism since (e.g.) a and aba maps to the same element in M .
Thus, we instead consider the alphabetized monoid M ′ = M × J{a,b} shown in Figure 2b.

In Example 3, we note that (ab, {aba, bab}) is conelike with respect to J+ = Si1. To see
that this follows from Theorem 2, we show that (ab, {aba, bab}) ∈ ConeSatSi1(M

′). Indeed,
we have (1, {1, a}), (1, {1, b}) ∈ ConeSatSi1(M

′) and thus by closure under multiplication we
get (1, {1, b})(ab, {ab})(1, {1, a}) = (ab, {ab, bab, aba, ba}) ∈ ConeSat1(M

′). It follows that
(ab, {bab, aba}) ∈ ConeSat1(M

′) by closure under subsets in the second entry.
Next, we consider the pointlikes with respect to R2 and L2, which in particular helps us

to calculate the RLm-factors. We have {aba, ab, ba, bab, aab} ∈ SatJ1
(M ′) and, for example,

{ab} ∈ SatR1
(M ′). Thus {ab} {aba, ab, ba, bab, aab} = {aba, ab, aab} ∈ SatR1

(M ′). Similarly,
we get {ba, bab, aab} ∈ SatR1

(M ′). The intuition here is that R2 can distinguish the possible
beginnings of words in the respective languages, but no other details. Analogously, L2 can
distinguish the possible endings, and we get {ab, bab, aab} , {aba, ba, aab} ∈ SatL1

(M ′).
Following this intuition, one can consider the RL1-factors to be the sets where we can

distinguish both the beginning and the end. Indeed, calculating the RL1-factors yields (apart
from the singletons) the sets {aba, aab} , {ab, aab} , {ba, aab} and {bab, aab}. A straightforward
calculation shows that the RLm factors are exactly the RL1-factors independent of m.

9See. [2]. We reprove it in order to get a separator defined using rankers.
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Figure 2

Since the products in Definition 12 are also valid for n = 1, theseRLm-factors are themselves
pointlike for all levels above R2 ∨ L2. Furthermore, we note that

{aba, aab}M ′ {ab, aab} = {ab, aab}

and similarly for the other combinations. Thus the RLm-factors are the only pointlikes for all
levels above Rm ∨ Lm.

Using Lemma 9, we see that there is a surjective morphism π : M ′ → M such that
(e.g.) {aba, aab} ⊆M ′ maps to {a, aab} ⊆M . Thus for each level above R2∨L2, the pointlikes
of M are the singletons and {a, aa}, {ab, aa}, {b, aa} and {ba, aa}.

7 The Cases Si1 and Pi1

The closed sets for Si1 and Pi1 do not rely on alphabetic properties, and the proof that they
coincide with the pointlikes uses techniques different from the other levels. Thus we devote
this section to these instances. The inclusions of the sets in the conelikes are trivial.

Lemma 10. Let M be a monoid. We have ConeSatSi1(M) ⊆ ConeSi1(M).

Proof. It is clear that the closure properties for closed sets also hold for conelikes. Thus we
only need to show that (1, S) is conelike for any S ⊆ M . This follows since ↑ 1 = N for any
N ∈ J+.

Lemma 11. Let M be a monoid. We have ConeSatPi1
(M) ⊆ ConePi1

(M).

Proof. Analogously to the previous proof, we need only show that (s, {s, 1}) is conelike for all
s. For every N ∈ Pi1, and every x ∈ N we have 1 ∈↑ x. Thus {1, s} ⊆ τ−1(↑ x) for each
x ∈ τ(s) giving the desired result.

For the other direction, the idea is to find minimal representatives for each element in the
monoid, and use knowledge about these to separate the languages. We call these representatives
minors.
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Definition 13. Let µ : A∗ → M be a morphism. Given u ∈ A∗, we say that v ∈ A∗ is a
µ-minor of u if v is a subword of u, µ(u) = µ(v) and v does not have any strict subwords
w such that µ(w) = µ(v). In other words, v is a subword of u minimal with respect to the
subword relation such that µ(v) = µ(u).

Lemma 12. Let µ : A∗ → M be a morphism, and suppose that the Ramsey number of M is
R. If v is a µ-minor (of some u), then |v| ≤ R− 2.

Proof. We argue by contradiction. Suppose v = v1 · · · vn is a µ-minor where n ≥ R − 1 and
each vi is nonempty. Let G = (V,E) be the complete graph with V = {1, · · · , n+ 1}. The
word v induces an M -coloring of G by setting c({i, i′}) = µ(vi · · · vi′−1). By Theorem 1, there
is a monocrome triangle. Say for instance that µ(vj · · · vk−1) = µ(vk · · · vℓ−1) = µ(vj · · · vℓ−1).
We have

µ(v) = µ(v1) . . . µ(vn)

= µ(v1) . . . µ(vj−1)µ(vj . . . vℓ−1)µ(vℓ) . . . µ(vn)

= µ(v1) . . . µ(vj−1)µ(vj . . . vk−1)µ(vℓ) . . . µ(vn)

= µ(v′)

where v′ = v1 · · · vk−1vℓ · · · vn. Since v
′ is a strict subword of v, we get the desired contradiction.

Lemma 13. Let M be a monoid with generating set A, and let n = ⌈R/2⌉ − 1 where R is

the Ramsey number of M . If τ : M
µ
←− A∗ ν

−→ NXY
1,n is the natural relational morphism, then

Coneτ (M) ⊆ ConeSatSi1(M).

Proof. Let x ∈ NXY
1,n and suppose that u ∈ ν−1(x). Let ũ = a1 . . . ak be a µ-minor of u. Since

|ũ| ≤ R−2 and ũ is a subword of u, we must have that ũ is a subword of v for any v ∈ ν−1(↑ x).
Thus we can factor ν−1(↑ x) = U0a1U1 · · · akUk. We have

(µ(u), µ(ν−1(↑ x))) = (µ(ũ), µ(U0a1U1 . . . akUk))

= (1, µ(U0))(µ(a1), {µ(a1)})(1, µ(U1)) · · · (µ(ak) {µ(ak)}) (1, µ(Uk))

∈ ConeSatSi1(M)

giving the desired result.

Lemma 14. Let M be a monoid with generating set A, and let n = ⌈R/2⌉ − 1 where R is

the Ramsey number of M . If τ : M
µ
←− A∗ ν

−→ NYX
1,n is the natural relational morphism, then

Coneτ (M) ⊆ ConeSatPi1
(M).

Proof. Note that NYX
1,n is NXY

1,n with the order reversed. In other words, if u, v ∈ A∗, then
ν(u) ≤ ν(v) if and only if every subword of length 2⌈R/2⌉ − 2 in v is also in u.

Let s = µ(u) where u = a1 . . . an for some ai ∈ A∗. Then

(µ(a1), {1, µ(a1)}) . . . (µ(an), {1, µ(an)}) = (s, S) ∈ ConeSatPi1
(M)

where
S = {t ∈M | t = µ(v), v is a subword of u} .

We claim that every conelike with respect to τ is contained in such a pair. Indeed, let x = ν(u),
and let w ∈ ν−1(↑ x). Let w̃ be a µ-minor of w. Since w̃ is a subword of v it is also a subword
of u and thus µ(w) = µ(w̃) ∈ S. Since u was arbitrary, the result follows.
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8 From Saturations to Conelikes

In this section, we prove that all sets in the sets of subsets in Theorem 2 are pointlikes and
conelikes respectively. The characterization of the pointlikes for J1 follows immediately using
Lemma 3. Because it is trivial, we show both directions directly.

Proof of Theorem 2 (iii). The set of pointlikes contains the singletons and is closed under

multiplication and subsets. Let τ : M
µ
←− A∗ ν

−→ N where A is the alphabet corresponding to
the content morphism of M . By Lemma 3, we need only consider relational morphisms of this
form. Furthermore, we can assume that N has a content morphism β : N → JA. Indeed, we

can if necessary consider τ ′ : M
µ
←− A∗ ν′

−→ N × JA where ν ′(a) = (ν(u), alph(u)) for all u ∈ A∗.
It is clear that if S ⊆M is pointlike with respect to τ ′, it is also pointlike with respect to τ .

Let S ∈ SatJ1
(M). Since α(s) = α(t) for all s, t ∈ S, we have β(x) = β(y) for all x ∈ τ(s),

y ∈ τ(t). In other words, x and y are generated by the same elements in A∗. In J1, this
implies that they are indeed the same, and thus S is pointlike with respect to τ . For the other
direction, we note the trivial inclusions PLJ1

(M) ⊆ PLα(M) = SatJ1
(M).

Next, we consider our final special case, that of J. The idea here is that inside J, any two
idempotents with the same alphabet are the same element. Furthermore, any element which
has an idempotent as factor is itself idempotent.

Lemma 15. Let M be a monoid with a content morphism α : M → JA. Then SatJ(M) ⊆
PLJ(M).

Proof. We use induction over the construction of sets in SatJ(M). Similar to the proof of
Lemma 16, all we need to show is that XEY ∈ PLJ(M) where X, Y and E has the properties
in the definition of SatJ(M).

Let τ : M
µ
←− A∗ ν

−→ N ∈ J be a relational morphism. As in the proof of Theorem 2 (iii), we
can assume that there is a content morphism β : N → JA. Let R be the Ramsey number of N
and consider u ∈ E. Since E is idempotent, there exists a factorisation u = u1 . . . uR−1 where
ui ∈ E. In particular, α(ui) = α(u) for each i. Choose vi ∈ τ(ui). By an argument similar to
that in Lemma 12, there exists a factor e = vi . . . vj which is idempotent. We have

(v1 . . . vi−1evj+1 . . . vR)(v1 . . . vi−1evj+1 . . . vR) = v1 . . . vi−1evj+1 . . . vR

by Lemma 2. Thus e′ = v1 . . . vi−1evj+1 . . . vR ∈ τ(u) is also idempotent.
Let u′ ∈ E, and let f ∈ τ(u′) be an idempotent obtained as above. Let x ∈ X, y ∈ Y

with x̂ ∈ µ−1(x), ŷ ∈ µ−1(y). Again by Lemma 2, we get ν(x̂)fe′fν(ŷ) = ν(x̂)fν(ŷ) and
e′ν(x̂)fν(ŷ)e′ = e′ showing that ν(x̂)fν(ŷ) J e′ which implies ν(x̂)fν(ŷ) = e′ by J -triviality.
Since x, u′ and y were arbitrary in their respective sets, we get XEY ⊆ τ−1(e′) showing that
XEY is pointlike.

We continue with the inductive cases. The varieties Rm and Lm are handled first since the
subsequent cases depend on these results.

Lemma 16. Let M be a monoid with a content morphism α : M → JA, and let m ≥ 2. Then
SatRm(M) ⊆ PLRm(M) and SatLm(M) ⊆ PLLm(M).
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Proof. We will proceed by induction over m and by structural induction over the construction
of sets in SatRm(M) and SatLm(M). We only show the result for SatRm(M); the result for
SatLm(M) follows by symmetry. Since pointlikes are closed under subsets and multiplication,
all we need to show is that if U ∈ SatRm(M) is idempotent and pointlike with respect to Rm,
Z ∈ SatLm−1

(M) is pointlike with respect to Lm−1 and α(Z) ≤ α(U) then UZ is pointlike
with respect to Rm

Let τ : M
µ
←− A∗ ν

−→ N ∈ Rm be a relational morphism, and suppose that β : N → JA is a
content morphism. As by the previous proofs, this is all relational morphisms which we need
to consider.

By structural induction, we have x ∈ N witnessing that U is pointlike. Since U is idempotent,
have τ−1(xωN ) ⊇ (τ−1(x))ωN ⊇ UωN = U and thus we can assume that the witness x is
idempotent.

By induction over m, we have an equivalence class Y over ∼K such that Z ⊆ τ−1(Y ). Let
s ∈ U , t ∈ τ−1(y) where y ∈ Y . We have β(y) = α(t) ≤ α(s) = β(x). By Lemma 2, we have
xyx = x and since yi ∼K y for all yi ∈ Y it follows that xyi = xy for all such yi. Hence UZ is
pointlike with xy as a witness.

For the other levels, we recall that the introduced closed sets build on RLm factors. Our
first step is to show that these are pointlike with respect to Rm+1 ∩Lm+1 which in particular
implies that they are pointlike with respect to Sim, Pim and Rm ∨ Lm.

Lemma 17. Let M be a monoid with a content morphism α : M → JA, and let U = XEWFY
be an RLm-factor of M . Then U ∈ PLRm+1∩Lm+1

(M) with an idempotent witness.

Proof. Let τ : M
µ
←− A∗ ν

−→ N ∈ Rm+1 ∩Lm+1 be a relational morphism and suppose β : N →
JA is a content morphism. Since N ∈ Lm+1 and E ∈ SatRm(M), there exists D ⊆ N such
that D is a conjugacy class over ∼D and E ⊆ τ−1(D). We let

X =
{

x = x1 · · · xn | n ≥ 1, xi ∈ D,x2 = x
}

.

Note thatX is also a conjugacy class over ∼D. Indeed, if x, xi ∈ X, then xnωN ∼D (x1 · · · xn)
ωN

by stability. Let s ∈ τ−1(D). We have s = s1 · · · sn where n is arbitrary and si ∈ E. Using a
Ramsey argument similar to that of Lemma 12, we get an idempotent factor s′ = sj · · · sk of
s. Since si ∈ E and E is idempotent, it follows that s′ ∈ E. Thus there exist x ∈ τ(s′) ∩D.
We get xωN ∈ τ(s′)ωN ⊆ τ(s′). Furthermore, let xi ∈ τ(si). Since β(xi) = β(xωN ), it follows
from Lemma 2 that

x1 · · · xj−1x
ωNxk+1 · · · xnx1 · · · xj−1x

ωNxk+1 · · · xn = x1 · · · xj−1x
ωNxk+1 · · · xn

Thus x1 · · · xj−1x
ωNxk+1 · · · xn ∈ τ(s) is idempotent. Since s was arbitrary, we have E ⊆

τ−1(X). We also get a conjugacy class P over ∼D such that S ⊆ τ−1(P ).
Similarly, we get a conjugacy class Y over ∼K such that Y contains only idempotents and

such that F ⊆ τ−1(Y ), and we get a conjugacy class Q over ∼K such that T ⊆ τ−1(Q).
Finally, let Z = τ(W ). Let x, x′ ∈ X, y, y′ ∈ Y , p, p′ ∈ P , s, s′ ∈ Q and z, z′ ∈ Z. Since
β(p), β(q), β(z) ≤ β(x) = β(y) we get

pxzyq = pxyxzyq = pxyq = pxy′q′ = p′x′y′q′ = p′x′z′y′q′

where we used Lemma 2 and the fact that x ∼D x′, y ∼K y′, p ∼D p′ and q ∼K q′ Since these
choices were arbitrary, we get that PXZY Q contains a single element, showing that SEWFT
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is pointlike with the unique element of PXZYQ as witness. Furthermore, again by Lemma 2,
pxzyqpxzyq = pxzyq, so the witness is idempotent.

We are now ready to prove inclusion of the introduced closed sets in the pointlikes/conelikes.
We give the Lemma only for Sim; analogous lemmas for the other levels follows analogously.

Lemma 18. Let M be a monoid with a content morphism α : M → JA and let m ≥ 2. Then
ConeSatSim(M) ⊆ ConeSim(M).

Proof. Let τ : M
µ
←− A∗ ν

−→ N ∈ Sim be a relational morphism and let β : N → JA be a content
morphism. We need to show that

(u1, U1)(v1, V1)(u2, U2) . . . (vn−1, Vn−1)(un, Un) ∈ Coneτ (M)

where Ui is an RLm-factor, ui ∈ Ui, (vi, Vi) ∈ ConeSatSim−1
(M) and α(vi) ≤ α(Ui), α(Ui+1)

for all vi ∈ Vi. We proceed by induction on m.
Since N ∈ Sim, it follows in particular that N with the order removed is in Rm+1 ∩ Lm+1.

Thus Lemma 17 shows that for all 1 ≤ i ≤ n, there exists ei such that Ui ⊆ τ−1(ei). By
induction, we have that for all 1 ≤ i ≤ n − 1 there exists an element zi ∈ τ(vi) and a set
Zi ⊂ N such that Vi ⊆ τ−1(Zi) and zi �KD z′i for all z

′
i ∈ Zi.

Let x′ ∈ U1V1U2 . . . Vn−1Un, and let z′i ∈ Zi such that x′ ∈ τ−1(e1z
′
1e2 . . . en−1z

′
n−1en). Since

β(z′i) ≤ β(ei), β(ei+1) it follows from Lemma 2 that eiz
′
iei = ei and ei+1z

′
iei+1 = ei+1. It

follows from the definition of �KD that

e1z1e2z2 . . . zn−1en ≤ e1z
′
1e2z2 . . . zn−1en

≤ e1z
′
1e2z

′
2 . . . zn−1en

...

≤ e1z
′
1e2z

′
2 . . . z

′
n−1en.

Since x′ was arbitrary, this shows that U1V1 . . . Un−1Vn−1Un is conelike with the witness
e1z1e2z2 . . . zn−1en.

9 On the Structure of Comparison Definable Sets

In this section, we explore some structural properties of particular sets defined by ranker
comparisons. We will consider RR1,n = XY2,n ∩YX2,n = {(r, s) ∈ R1 ×R1 | |r|, |s| ≤ n}, i.e. all
comparisons where the rankers has alternation depth 1 and length n. The properties of these
sets are used in subsequent sections to show that some XYm,n or YXm,n-sets are in the relevant
closed set. We also consider a special case which does not contain RR1,n, namely XY1,n∪YX1,n.

We will show how these languages consist of certain long factors, intuitively factors which
are long enough so that the relevant rankers can not see the whole factor. We use the following
notation: If u = a1 . . . an and 1 ≤ i ≤ j ≤ n, then u[i] = ai, and u[i, j) = ai . . . aj−1. Note in
particular that u[i, i) is the empty factor.

Definition 14. Let u ∈ A∗. We say that a factor u[i, j) is n-long if every word v ∈ alph(u[i, j))∗

such that |v| ≤ n is a subword of u[i, j). Note in particular that this definition vacuously implies
that empty factors u[i, i) are n-long. Given a word u, we call a factor u[i, j) maximal n-long
if it is n-long and for every n-long u[i′, j′) such that i′ ≤ i ≤ j ≤ j′ we have i′ = i and j′ = j.
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In other words, an n-long factor is maximal if it is not properly contained in any other n-long
factor.

Definition 15. Let u ∈ A∗. We define

Rn(u) = {0} ∪ {i ∈ N | u[j, i) is a maximal n-long factor for some j}

Note that since the factor u[j, i) does not contain the position i, the set Ru(u) consists of the
positions just after some maximal n-long factor. Symmetrically, we define

Ln(u) = {|u|+ 1} ∪ {i ∈ N | u[i+ 1, j) is a maximal n-long factor for some j} .

Note that the maximality of u[j, i) implies that u[i] /∈ alph(u[j, i)) in the definition of Rn(u)
and symmetrically u[i] /∈ alph(u[i + 1, j)) in the definition of Ln(u). For n = 1, any factor is
long, and thus Rn(u) = Ln(u) = {0, |u|+ 1}. In this case, the following results are trivial, and
in order to avoid dealing explicitly with it, we always assume n ≥ 2.

We want to show that in between each pair of positions in Rn(u), there is a position in Ln(u)
(possibly coinciding with one of the positions in Rn(u)) and vice versa. First, we prove the
following Lemma.

Lemma 19. Suppose {i, i + 1, . . . , j − 1, j} ∩ Rn(u) > 1, then u[i+ 1, j + 1) is not n-long.

Proof. For every n-long factor, we can consider the maximal n-long factor containing it. Thus,
we lose no generality in proving the statement only for maximal n-long factors. Assume
k, ℓ ∈ Rn(u) with i ≤ k < ℓ ≤ j and assume u[i + 1, j + 1) is maximal n-long. We have a
maximal n-long u[ℓ′, ℓ]. Since ℓ < j + 1, we must have ℓ′ < i + 1; otherwise u[ℓ′, ℓ] would be
properly contained in u[i+1, j +1) and thus could not be maximal n-long. In particular, this
leads to a contradiction if i = 0, since ℓ′ < 1 is impossible.

If i ≥ 1, then there exists a maximal n-long u[k′, k]. In particular, k′ < ℓ′. Since u[k] ∈
alph(u[ℓ′, ℓ]) \ alph(u[k′, k]) we must have alph(u[k + 1, ℓ]) = alph(u[ℓ′, ℓ]), since the subword
u[k]q with q ∈ alph(u[ℓ′, ℓ])n−1 must exist in u[ℓ′, ℓ]. Thus alph(u[ℓ′, ℓ]) ⊆ alph(u[i + 1, j + 1)).
Since these factors intersect and are maximally n-long, they must coincide which contradicts
ℓ ≤ j.

The above Lemma says that even if maximal n-long factors are not necessarily disjoint (note
e.g. (ab)na(ac)n), no n-long factor can cover more than one Rn-marker.10 This gives us the
following Lemma.

Lemma 20. Let i, j ∈ Rn(u) with i < j. Then there exists k ∈ Ln(u) such that i < k ≤ j.
Symmetrically, if i, j ∈ Ln(u) with i < j, then there exists k ∈ Rn(u) with i ≤ k < j.

Proof. Let a[k + 1, ℓ] be a maximal n-long factor containing a[j + 1, j + 1). By definition,
k ≤ j and by Lemma 19, we must have i < k, giving the desired result. The other direction is
symmetrical.

We will now turn to the factorizations of RR1,n-sets. We start with factorizing a single word
into the desired form.

10In fact, it says something slightly stronger. Even if we include the position just before an n-long factor, this
set of positions can not cover more than one Rn-marker.
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Lemma 21. Given u ∈ A∗ and n ≥ 1, there is a factorization

u = u1b1v1a1 . . . uk−1bk−1vk−1ak−1uk, (2)

where vi can be empty, ai and bi can coincide, such that for all i

(i) ui is n-long,

(ii) alph(vi) ( alph(uibi) ∩ alph(aiui+1),

(iii) ai is reachable by a ranker Xpi and bi by a ranker Yqi where |pi|, |qi| ≤ (n+1)|A\alph(vi)|,

(iv) either the markers ai and bi coincide or ai ∈ alph(ui+1), bi ∈ alph(ui).

Proof. By Lemma 20, we can choose ai to mark the positions from Rn+2(u) and bi to mark the
positions from Ln+2(u), and get a factorization with the markers ai and bi interlaced, or possibly
coinciding, as in (2). We want to show that conditions (i - iv) hold for this factorization.

Let i be fixed. Since ui contains no position in Rn+2(u) or Ln+2(u), it is contained in some
maximal (n + 2)-long factor, say wi. By the definition of Rn+2(u) and Ln+2(u), the marker
bi−1 must be directly to the left of wi, and the marker ai need to be directly to the right of
wi. In other words, we have one of the following cases:

(a) wi = ui, if bi−1 coincides with ai−1 or i = 1 and bi coincides with ai or i = k,

(b) wi = uibivi, if bi−1 and ai−1 coincide or i = 1 while ai and bi do not coincide,

(c) wi = vi−1ai−1ui, if bi and ai coincide or i = k while ai+1 and bi+1 does not coincide,

(d) wi = vi−1ai−1uibivi otherwise.

We will show properties (i),(ii) and (iv) for case (d). The others are handled similarly.
Since 1 < i, we have that wi−1 exist. Since it is maximal (n + 2)-long, we must have ai−1 /∈
alph(wi−1) ⊇ alph(vi−1). In particular, it follows from the fact that wi is (n + 2)-long that
uibivi is (n+1)-long with alph(wi) = alph(uibivi). Applying the same argument from the right,
shows that ui is n-long with alph(ui) = alph(wi). This shows (i) and (iv). Furthermore, the
fact that bi /∈ alph(wi+1) ⊇ alph(vi) shows condition (ii).

Thus, all that is left is to show condition (iii). By symmetry, we only show that ai is
reachable by a ranker Xpi with |pi| ≤ (n+1)|A \ alph(vi)|. We will use induction on the size of
the alphabet.

If A = {a} then either u = u1 or u = am where m ≤ n + 1. In the former case, there are
no markers ai, and thus nothing to show. In the latter case, we note that every position is
both an ai and a bi marker. Thus, every vi is empty. If ai is the ℓthposition of u, then Xaℓ is a
ranker of the desired length.

Let |A| ≥ 2 and let c mark the rightmost position which is not to the right of ai and which
is reachable by a ranker Xp where |p| ≤ n + 1. Let aj be the leftmost marker occurring after
or at c, let s be the factor of u up to the marker c and let t be the factor between c and aj.
We define u′ = taj . . . uibivi.

Note that ai /∈ alph(wi), bi /∈ alph(wi+1). If these markers do not coincide, then ai ∈
alph(wi+1) and bi ∈ alph(wi), showing that alph(vi) ≤ |A| − 2. Furthermore, if ai and bi do
coincide, then vi is empty. Since |A| ≥ 2, we have |A\alph(vi)| ≥ 2 in both cases. In particular,
if ai /∈ alph(u′), then the ranker Xpai has the desired properties.
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Next, let us assume that ai ∈ alph(u′). In order to use induction, we need to show that
alph(u′) ( alph(u). Since ai ∈ alph(u′) and ai /∈ alph(wi), the factor u′ must begin before the
factor wi. In particular, this means that scu′ is not (n+ 2)-long (since wi is maximally n+ 2-
long). Thus, there exists r ∈ A∗, d ∈ A with |r| ≤ n + 1 such that Xr(u) ≤ |scu

′| and either
|scu′| < Xrd(u) or Xrd is undefined on u. By the definition of p, we have, Xr(u) ≤ Xp(u) = |sc|.
Thus, d /∈ alph(u′).

Since wi is contained in u, it must be maximal (n + 2)-long in u′. Since ai /∈ alph(wi),
the word wi is maximally (n + 2)-long also in u′ai. It follows that ai marks a position in
Rn+2(u

′ai). By induction, there exists Xp′ where |p
′| ≤ (n + 1)|alph(u′) \ alph(vi)| such that

Xp′(u
′ai) = |u

′ai|. Thus the ranker Xpp′ has the desired properties.

Thus, we can obtain a factorization with some desired properties for each word u. The
following proposition shows that these factorizations can be combined to give a factorization
of a RRm,(n+1)|A|+n-set.

Lemma 22. Let n ∈ N and let U ∈ A∗ be a RRm,(n+1)|A|+n-set. Then it is possible to find a
factorization

U = U1b1V1a1 . . . Uk−1bk−1Vk−1ak−1Uk, (3)

where

(i) Each Ui is n-long

(ii) alph(Vi) ( alph(Uibi) ∩ alph(aiUi+1),

(iii) For each u ∈ U , the position marked by ai is reachable by Xpi and the position marked by
bi is reachable by Yqi where |pi|, |qi| ≤ (n+ 1)|A \ alph(Vi)|,

(iv) For each i, either the markers ai and bi coincide, or ai ∈ alph(Ui+1), bi ∈ alph(Ui).

Proof. Suppose u ∈ U and factor it as Lemma 21. We note that Yqi(u) ≤ Xpi(u) < Yqi+1
(u)

which implies that the same must be true on u′. In particular, this gives the factorization

u′ = u′1b1v
′
1a1 . . . u

′
k−1bk−1v

′
k−1ak−1u

′
k

We combine these factorizations for all u′ ∈ U to get a factorization of the form in (3). This
factorization satisfies (iii) by definition.

Let 1 ≤ i ≤ k − 1 and let r ∈ alph(ui)
∗ with |r| ≤ n. Since every ui in the factorization of u

is n-long, we have that Xpi−1r(u) < Yqi(u) (if i = 1 we set pi−1 = ε). Thus the same is true for
u′. Furthermore, if a /∈ alph(ui), then either Xpi−1a is not defined on u or Yqi(u) ≤ Xpi−1a(u).
Again, the same is true on u′. It follows that alph(ui) = alph(u′i) and u′i is n-long. For i = k,
we consider the rankers Xpk and Yr and get the same result. Hence the factorization satisfies
(i).

Next, let 1 ≤ i < k − 1. We have that ai and bi coincide on u if and only if Xpi(u) ≤ Yqi(u)
and Yqi(u) ≤ Xpi(u). Thus, this is true on u if and only if it is true on u′. If ai and bi does
not coincide, we get ai ∈ alph(ui+1) = alph(Ui+1) and bi ∈ alph(ui) = alph(Ui) by Lemma 21.
Thus the factorization satisfy (iv).

If ai and bi does not coincide and c ∈ alph(v′i) ⊆ alph(u′ibiv
′
i), then Xpic(u

′) < Xpi+1
(u′)

which is also satisfied on u. Thus c ∈ alph(uibivi), and by property (ii) of Lemma 21, we
get c ∈ alph(ui) = alph(Ui). Symmetrically, we get that if c ∈ alph(v′i) ⊆ alph(v′iaiu

′
i+1), then

c ∈ alph(Ui+1). This shows (ii).
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We also provide the following factorization which deals with the XY1,n ∪YX1,n-case.

Lemma 23. Given an alphabet A and integer n, and an XY1,(n+1)|A|+n ∪ YX1,(n+1)|A|+n-set
U , it is possible to find a factorization

U = U1λ1U2 . . . λk−1UkλkUk+1

where λi ∈ A ∪ {ε} i.e. the λi are either letters or empty, and where each Ui is n-long.

Proof. Choose u ∈ U and factor it according to Lemma 21. Let Xpi and Yqi be the rankers
from the Lemma, and let u′ ∈ U . We factor

u′ = u′1b1v
′
1a1 . . . u

′
k−1bk−1v

′
k−1ak−1u

′
k

where ai marks the position of Xpi and bi marks the position of Yqi. For each i we have words
pi and qi+1 such that ai marks the last letter of the first occurrence of pi and bi+1 marks the
first letter of the last occurrence of qi. We set p0 = ε and qk = ε.

For 1 ≤ i < k − 1, suppose pi = p′iai and qi = biq
′
i. We have that ai and bi coincide if and

only if they are the same letter, p′iaiq
′
i is a subword of u and p′ibiaiq

′
i is not a subword of u. In

particular, ai and bi coincide on u′ if and only if they coincide on u.
Let 1 ≤ i ≤ k and let r ∈ alph(ui)

∗ with |r| ≤ n. Since every ui in the factorisation of u is
n-long, we have that pi−1rqi is a subword of u. Thus the same is true for u′. Furthermore,
if a /∈ alph(ui), then pi−1aqi is not a subword of u and hence neither of u′. It follows that
alph(ui) = alph(u′i) and u′i is n-long.

Suppose that ai and bi does not coincide. We factor aiv
′
ibi = siti where si is the longest factor

such that alph(si) ⊆ alph(ui). Let c be the first letter of ti, and let d ∈ alph(ui) \ alph(ui+1).
By the alphabetic requirements, we have that pi−1cdqi can not be a subword of u, and thus
neither of u′. Hence alph(ti) ⊆ alph(ui+1).

If ai and bi do coincide, we put λi = ai, and si = ti = ε. This way, we get a factor ti−1u
′
isi

from each u′ ∈ U and each i. Setting Ui to be the union of these factors gives us a factorisation
of the desired form.

10 From Conelikes to Saturations

We now have everything we need to show that we can find monoids in the relevant vari-
eties whose pointlikes/conelikes coincide with the introduced closed sets. Since the point-
likes/conelikes with respect to the variety is contained in the pointlikes/conelikes with respect
to any particular monoid in the variety, this gives our desired result.

We start with the variety J, where the result is obtained by two lemmas. First, we show that
anything (R − 1)-long is in SatJ(M). The result then follows trivially using the factorization
in Lemma 23.

Lemma 24. Let µ : A∗ →M be a homomorphism, and let R be the Ramsey number of M . If
U is (R− 1)-long, then µ(U) ∈ SatJ(M).

Proof. Let u ∈ U . Since u is (R − 1)-long, we can factor u = u1 . . . uR−1 where alph(ui) =
alph(U). By an argument similar to that of Lemma 12, we find a factor ui . . . uj which is idem-
potent. Setting e = ui . . . uj , we get a factorisation u = xey. Combining these factorisations
for all u ∈ U , we get U = XEY satisfying the alphabetic properties.

Let ω be the idempotent power of 2M . Since every element in E is idempotent, we have
XEY ⊆ XEωY , where Eω is clearly idempotent.
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Lemma 25. Let M be a monoid and let R be the Ramsey number of M . Let τ : M
µ
←− A∗ ν

−→
NXY∪YX

1,n ∈ J with n = |A|R +R− 1. Then PLτ (M) ⊆ SatJ(M).

Proof. Let s ∈ NXY∪YX
1,n . We want to show that µ(ν−1(s)) ∈ SatJ(M). To this end, we factor

ν−1(s) = U1λ1 . . . Uk−1λk−1Uk

according to Lemma 23 for R − 1. We recall that each ai is either a single letter or empty.
Thus, by closure under multiplication, it is enough to show that each Ui ∈ SatJ(M). Since
each Ui is (R− 1)-long, this follows from Lemma 24.

For the varieties Rm, Lm and for the RLm-sets, the idea is to choose the depth of the rankers
long enough so that we can pump in the monoid 2M . It turns out that instead of asking for
idempotents in 2M , a weaker condition is sufficient: being subidempotent.

Definition 16. Let M be a monoid. A set U ⊆M is subidempotent if U ⊆ U2.

We note that every subidempotent is, by definition, a subset of U θ where θ = ω2M is the
idempotent power of 2M . Since pointlikes and conelikes are closed under subsets, this means
that any mention of idempotent in Definition 10 and 11 can be substituted with subidempotent
without changing the result. Furthermore, subidempotents are easily obtained by long enough
factorizations.

Lemma 26. Let M be a monoid, and let R be the Ramsey number of the set 2M . Let U ⊆ A∗

have the factorization U = U1 . . . Un, with n ≥ R− 1. Then there exists 1 ≤ i, j ≤ n such that
µ(UiUi+1 . . . Uj−1Uj) is subidempotent.

Proof. The empty set is subidempotent, and thus the statement is true for the degenerate case
U = ∅. We assume U 6= ∅ which implies Ui 6= ∅ for all i.

Let G = (V,E) be the complete graph with vertices V = {1, . . . , n+ 1}. The map µ in-
duces an edge-coloring c of size 2|M | on G by c({i, j}) = µ(Ui . . . Uj−1). By Theorem 1,
there exists a monochrome triangle. In other words, there exists i, j, k with the prop-
erty that µ(Ui . . . Uj−1) = µ(Uj . . . Uj−1) = µ(Ui . . . Uk−1). Let us call this set S. Since
S = µ(Ui . . . Uk−1) ⊆ µ(Ui . . . Uj−1)µ(Uj . . . Uk−1) = S2 it follows that S is subidempotent.

We now prove the desired result for Rm and Lm. By obtaining a long enough factorization,
we find an idempotent using the above Lemma. Everything before the idempotent is handled
using Lemma 8 and induction on the alphabet, whereas everything after is handled using the
same lemma and induction on m.

Lemma 27. Let M be a monoid with a content morphism α : M → JA. Let m ≥ 1, and let
τ : M

µ
←− A∗ ν

−→ NXX
m,n be the natural relational morphism where n = (m+|A|)(R−1) depends on

the Ramsey number R of 2M . Then PLτ (M) ⊆ SatRm+1
(M). Dually, if τ ′ : M ←− A∗ −→ NYY

m,n,
then PLτ ′(M) ⊆ SatLm+1

(M).

Proof. By symmetry, we need only show the result for NXX
m,n. We show that if U is an XXm,n-

set, then µ(U) ∈ SatRm−1
(M). In particular, this shows that µ(ν−1(s)) ∈ SatRm+1

(M) for all
s ∈ NXX

m,n, which is the desired result. We use induction over (m, |A|) ordered alphabetically.
First, we show that we can factor U into one of the following forms

U = U1a1U2a2 · · ·UkakUk+1

U = U1a1U2a2 · · ·U(R−1)a(R−1)V

subject to the conditions
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(i) k < (R− 1)

(ii) alph(Ui) ( alph(Uiai) = A for all i (if U does not contain all letters in A, then k = 0).

Indeed, suppose we already factored U = U1a1 · · ·UiaiW such that i < (R − 1) and condition
(ii) holds. In particular, ai is reachable by the ranker Xa1...ai on all v ∈ U . If i = R − 1, we
choose V = W and if alph(W ) ( A, we choose Uk+1 = W . In both these cases, we are done.
Thus, we suppose that alph(W ) = A and that i < (R− 1).

For some u ∈ U , choose the letter ai+1 such that Xa1...aib(u) ≤ Xa1...aiai+1
(u) for all b ∈ A. It

is clear that this choice is unique and since U is an XXm,n-set, it is independent of the choice
of u. We factor U = Ua1 · · ·UiaiUi+1ai+1W

′ where ai+1 marks the first occurrence of ai+1

after the position marked by ai. By choice of ai+1, we have alph(Ui+1) = A \ {ai+1} and so
this factorization satisfies (ii) and is thus a factorization of the desired form.

Since ai is reachable by the ranker Xa1...ai , which in particular has depth at most R −
1, it follows from Lemma 8 that Ui is an XXm,n′-set where n′ = (m + A − 1)(R − 1) =
(m + |alph(Ui)|)(R − 1). Let Mi be the submonoid of M generated by alph(Ui). Since the
Ramsey number of 2Mi is at most R, it follows from induction on the size of the alphabet that
µ(Ui) ∈ SatRm+1

(Mi) ⊆ SatRm+1
(M). Since closed sets are closed under multiplication, we

get µ(Uiai · · ·Ujaj) ∈ SatRm+1
(M) for every factor Uiai . . . Ujaj of U . In particular, this gives

µ(U) ∈ SatRm+1
(M) when the factorization is of the first form.

For the second form of the factorization, we know by Lemma 26 that there exists Uiai · · ·Ujaj
such that µ(Uiai · · ·Ujaj) is subidempotent. By the argument above, it follows that we have
µ(U1a1 . . . Ui−1ai−1), µ(Uiai . . . Ujaj) ∈ SatRm+1

(M). Let E = µ(Uiai · · ·Ujaj)
θ where θ = ω2M

is the idempotent power of 2M . By subidempotency, we have Uiai · · ·Ujaj ⊆ E.
Suppose m ≥ 2. Since aj is reachable by a ranker Xpi of length at most R− 1, it follows by

Lemma 8 that Uj+1aj+1 . . . U(R−1)a(R−1)V is a XXm,n′′-set where n′′ = (m− 1 + |A|)(R − 1).
This in particular implies that it is a YYm−1,n′′-set. If m = 1, we can use definedness of rankers
Xa1...aib for b ∈ A to conclude that Uj+1aj+1 · · ·U(R−1)a(R−1)V has a well defined alphabet.
Thus in both cases µ(Uj+1aj+1 . . . URaRV ) ∈ SatLm(M) (in the former case by induction, and
in the latter by definition). We get

µ(U) ⊆ µ(U1a1 . . . Uiai)µ(Uiai . . . Ujaj)µ(Uj+1aj+1 . . . U(R−1)a(R−1)V )

⊆ µ(U1a1 . . . Uiai)Eµ(Uj+1aj+1 . . . U(R−1)a(R−1)V ) ∈ SatRm(M)

which is the desired result.

Proof of Theorem 2 (iv) and (v). We prove the result for (iv). The result for (v) is symmetric.
From Lemma 16 it follows that SatRm(M) ⊆ PLRm(M) and from Lemma 27 it follows that
PLτ (M) ⊆ SatRm(M). By Proposition 6, we have NXX

m,n ∈ Rm+1 and thus PLRm(M) ⊆
PLτ (M). In particular, PLRm(M) = PLτ (M) = SatRm(M) which gives the desired result.

To prove what is left of Theorem 2, we start by showing that every long enough XXm−1,n ∪
YYm−1,n-set maps to an RLm-factor. The idea is analogous to the Rm and Lm cases.

Lemma 28. Let µ : A∗ → M be a surjective morphism, and suppose that M has a content
morphism. Let R be the Ramsey number of 2M , let m ≥ 2 and let n = (m− 1 + |A|)(R − 1).
If U ⊆ A∗ is 2(R − 1)-long and a XXm−1,n ∪ YYm−1,n-set, then µ(U) ⊆ V where V is an
RLm-factor.
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Proof. Since U is 2(R − 1)-long, we can factor

U = S1a1 . . . SR−1aR−1Zb1T1 . . . bR−1TR−1

where alph(Si), alph(Ti) ( alph(Siai) = alph(biTi) = alph(U). Since each ai is reachable by a
ranker Xa1...ai of depth at most R−1, it follows from Lemma 8 that every Si is an XXm−1,n′-set
where n′ = (m+ |A| − 2)(R− 1) = (m− 1+ |alph(Si)|)(R− 1). It follows from Lemma 27 that
µ(Si) ∈ SatRm(M). In particular, this implies that any product of Si and aj is in SatRm(M).
We get the symmetric result for products of Ti and bj; they are in SatLm(M).

By Lemma 26, there exists Sjaj . . . Skak such that µ(Sjaj . . . Skak) is subidempotent. We
set S = µ(S1a1 . . . Sj−1aj−1) and note that S ∈ SatRm(M) by the argument above. Let
E = µ(Siai . . . Si′ai′)

θ where θ = ω2M is the idempotent power of 2M . Since µ(Siai . . . Si′ai′) ∈
SatRm(M) and closed sets are closed under multiplication, we get E ∈ SatRm(M). By
subidempotency, it follows that µ(Siai . . . Si′ai′) ⊆ E. Symmetrically, we find j′, k′ such
that µ(bj′Tj′ . . . bk′−1Tk′−1) ⊆ F where F ∈ SatLm(M) is idempotent and such that T =
µ(bk′Tk′ . . . bR−1TR−1) ∈ SatLm(M). Finally, we set W = Sk+1 . . . SRaRZb1T1 . . . Tj′−1. It
follows that U ⊆ SEWFT where SEWFT = V is an RLm-factor.

The desired result now follows using the factorizations obtained in Lemma 22. We give the
result for the monoids NXY

m,n, but the proof generalizes directly to the other cases.

Lemma 29. Let M be a monoid with a content morphism α : M → JA. Let m ≥ 2 and
let τ : M

µ
←− A∗ ν

−→ NXY
m,n where n = (m − 1 + 3|A|)(R − 1) + |A| depends on the Ramsey

number R of 2M . If m is odd, then Coneτ (M) ⊆ ConeSatSim(M) and if m is even, then
Coneτ (M) ⊆ ConeSatPim(M).

Proof. Let U ⊆ A∗ and u ∈ U be such that u ≤XY
m,n u′ for all u′ ∈ U (in other words, U is a

XYm,n-set with minimal element u). We will prove (µ(u), µ(U)) ∈ ConeSatSim(M) for odd m,
and (µ(u), µ(U)) ∈ ConeSatPim(M) for even m. Given x ∈ N , we can choose u ∈ ν−1(x) such
that ν−1(↑ x) is a XYm,n-set with minimal element u, and thus this implies the desired result.
We will use induction over (m, |A|) ordered alphabetically. We consider the cases when m is
odd, with the even cases handled symmetrically.

Let m ≥ 2. We apply Lemma 22 with 2(R − 1) to obtain a factorization

U = U1b1V1a1 . . . Uk−1bk−1Vk−1ak−1Uk

with the properties specified in the theorem. In particular, this gives a factorization

u = u1b1v1a1 . . . uk−1bk−1vk−1ak−1uk.

Every position marked by ai or bi in every u′ can be reached by a ranker of depth at most
(2(R − 1) + 1)|A \ alph(Vi)|. Since

(m− 1 + |A|)(R − 1) = (m− 1 + 3|A|)(R − 1) + |A| − (2(R − 1) + 1)|A|

it follows that every Ui is an XXm−1,(m−1+|A|)(R−1) ∪YYm−1,(m−1+|A|)(R−1)-set. By Lemma 28
we get an RLm-set Si such that µ(Ui) ⊆ Si.

Let Ai = alph(Vi) ( Ai, let Mi = µ(A∗
i ) and let µi : Ai → Mi be the restriction of µ. For

m ≥ 3, we define

ni = (m− 2 + 3|Ai|)(Ri − 1) + |Ai|

≤ (m− 1 + 3|A|)(R − 1) + |A| − 2(R − 1)|A \ Ai|,

33



where Ri is the Ramsey number of 2Mi and for m = 2, we define

ni = ⌈R
′
i/2⌉ − 1

≤ (m− 1 + 3|A|)(R − 1) + |A| − 2(R − 1)|A \ Ai|,

where R′
i is the Ramsey number of Mi. We note that every Vi is a XYm−1,ni

∪ YXm−1,ni
-set

by Lemma 7. If |A| = 0, then (µ(vi), µ(Vi)) = (ε, {ε}) which is in any closed set. Otherwise,
induction on |A| gives (ti, Ti) ∈ ConeSatSim−1

(Mi) ⊆ ConeSatSim−1
(M) such that µ(vi) = ti,

µ(Vi) ⊆ Ti. We define

W = S1µ(b1)T1µ(a1) . . . Sk−1µ(bk−1)Tk−1µ(ak−1)Sk,

w = s1µ(b1)t1µ(a1) . . . sk−1µ(bk−1)tk−1µ(ak−1)sk.

Suppose aj and bj conincide, and aℓ and bℓ coincide but that ai and bi does not coincide for
any j < i < ℓ. We claim that

(µ(ujbj), Sjµ(bj))(tj , Tj) · · · (tℓ−1, Tℓ−1)(µ(aℓ−1uℓ), µ(aℓ−1)Uℓ)

is of the form required for ConeSatSim(M) (we can use the same argument for j = 1 and
ℓ = k). Indeed, since ai−1, bi ∈ α(Si) = alph(Ui) and Si is an RLm factor, it follows that
Sjµ(bj), µ(ai−1)Siµ(bi) and µ(aℓ−1)Sℓ are RLm-factors. Since alph(v′i) ⊆ alph(Ui)∩ alph(Ui+1)
for all v′i ∈ Vi, this gives a factorization of the desired form.

Since (w,W ) is a product of such factors and pairs (µ(ai), {µ(ai)}), it follows that (w,W ) ∈
ConeSatSim(M). Since µ(u) = w µ(U) ⊆ W and closed sets are closed under subsets, this
implies the desired result.

Proof of Theorem 2 (vii), (viii), (ix) and (x). We prove the result for (ix); the other results
are analogous.

From Lemma 18 it follows that ConeSatSim(M) ⊆ ConeSim(M) and from Lemma 29 it follows
that PLτ (M) ⊆ SatRm(M) for m odd. We get a similar result for m even. In particular,
PLRm(M) = PLτ (M) = SatRm(M) which gives the desired result.

11 Conclusion and Outlook

We considered conelikes, an algebraic counterpart to the covering problem. In particular,
solving the conelike problem yields solutions to the separation problem for positive varieties.
For full varieties, this problem coincides with the pointlike problem. We provided solutions
to the conelike (resp. pointlike) problem for all levels of the Trotter-Weil and the quantifier
alternation hierarchy (Theorem 2). This was done by providing computable subsets of M×2M

(resp. 2M ) and showing that these coincided with the conelikes (resp. pointlikes).
Furthermore, we considered comparisons of rankers. We showed that any set of ranker

comparisons closed under subwords gives rise to a stable preorder, and thus a monoid. The
quantifier alternation hierarchy has previously been given a characterization in terms of ranker
comparisons. We extended this to a characterization using ranker comparisons for the corners
of the Trotter-Weil hierarchy. Apart from giving a unifying picture of the two hierarchies as a
ranker comparison hierarchy (Figure 1), this also served as a tool for the result on pointlikes.
Having a unified formalism made moving up in the hierarchy much more uniform. We also
used ranker comparisons to find separators for the conelike problem, i.e. relational morphisms
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such that a set is conelike with respect to that relational morphism if and only if it is conelike
with respect to the variety.

Given a separator, one can try all possible quotients in order to find an optimal separator,
i.e., the smallest monoid acting as a separator. However, the monoids provided here are
doubly exponential in the size of M (exponential in the size n of the rankers which in turn is
exponential in M), making such an approach computationally hardly feasable. Thus, in future
work, it would be interesting to get a better understanding of optimal separators.
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