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Abstract

We obtain tight thresholds for bond percolation on one-dimensional small-world graphs,
and apply such results to obtain tight thresholds for the Independent Cascade process and the
Reed-Frost process in such graphs.

These are the first fully rigorous results establishing a phase transition for bond percola-
tion and SIR epidemic processes in small-world graphs. Although one-dimensional small-world
graphs are an idealized and unrealistic network model, a number of realistic qualitative epidemi-
ological phenomena emerge from our analysis, including the epidemic spread through a sequence
of local outbreaks, the danger posed by random connections, and the effect of super-spreader
events.

Keywords: Random graphs, Percolation, Branching Processes, Epidemic models, Independent
Cascade, Small-World Graphs.

1 Introduction

Given a graph G = (V,E) and a bond percolation probability p, the bond percolation process is to
subsample a random graph Gp = (V,Ep) by independently choosing each edge of G to be included
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E89C20000620005)

1

ar
X

iv
:2

10
3.

16
39

8v
3 

 [
m

at
h.

PR
] 

 2
1 

M
ar

 2
02

2



in Ep with probability p and to be omitted with probability 1− p. We will call Gp the percolation
graph of G. The main questions that are studied about this process are whether Gp is likely to
contain a large connected component, and what are the typical distances of reachable nodes in Gp.

The study of percolation originates in mathematical physics, where it has often been studied
in the setting of infinite graphs, for example infinite lattices and infinite trees [20, 30, 33]. The
study of percolation on finite graphs is of interest in computer science, because of its relation, or
even equivalence, to a number of fundamental problems in network analysis [19, 13, 23, 1] and in
distributed and parallel computing [10, 18].

For example, the percolation process arises in the study of network reliability in the presence of
independent link failures [18, 21]; in this case one is typically interested in inverse problems, such as
designing networks that have a high probability of having a large connected component for a given
edge failure probability 1− p.

This paper is motivated by the equivalence of the percolation process with the Independent
Cascade process, which models the spread of information in networks [19, 13], and with the Reed-
Frost process of Susceptible-Infectious-Recovered (SIR) epidemic spreading [8, 32].

In a SIR epidemiological process, every person, at any given time, is in one of three possible
states: either susceptible (S) to the infection, or actively infectious and able to spread the infection
(I), or recovered (R) from the illness, and immune to it.

In a network SIR model, we represent people as nodes of a graph, and contacts between people as
edges, and we have a probability p that each contact between an infectious person and a susceptible
one transmits the infection. The Reed-Frost process, which is the simplest SIR network model,
proceeds through synchronous time steps, the infectious state lasts for only one time step, and the
graph does not change with time.

The Information Cascade process is meant to model information spreading in a social network,
but it is essentially equivalent to the Reed-Frost process.1

If we run the Reed-Frost process on a graph G = (V,E) with an initial set I0 and with a
probability p that each contact between an infectious and a susceptible person leads to transmission,
then the resulting is equivalent to percolation on the graph G with parameter p in the following
sense: the set of vertices reachable from I0 in the percolation graph Gp has the same distribution as
the set of nodes that are recovered at the end of the Reed-Frost process in G with I0 as the initial
set of infected nodes. Furthermore, the set of nodes infected in the first t steps (that is, the union
of infectious and recovered nodes at time t) has the same distribution as the set of nodes reachable
in the percolation graph Gp from I0 in at most t steps2.

Information Cascade and Reed-Frost processes on networks are able to capture a number of
features of real-world epidemics, such as the fact that people typically have a small set of close
contacts with whom they interact frequently, and more rare interactions with people outside this
group, that different groups of people have different social habits that lead to different patterns of
transmissions, that outbreaks start in a localized way and then spread out, and so on. Complex
models that capture all these features typically have a large number of tunable parameters, that
have to be carefully estimated, and have a behavior that defies rigorous analysis and that can be
studied only via simulations.

In this work we are interested in finding the simplest model, having few parameters and defining
a simple process, in which we could see the emergence of complex phenomena.

1The main difference is that Information Cascade allows the probability of “transmission” along an edge (u, v) to
be a quantity p(u,v), but this generalization would also make sense and be well defined in the Reed-Frost model and
in the percolation process. The case in which all the probabilities are equal is called the homogenous case.

2A detailed description of this equivalence is given in Appendix A.2.
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One-dimensional small-world graphs

We choose to analyze the Reed-Frost process on one-dimensional small-world graphs, which is a
fundamental generative model of networks in which there is a distinction between local connec-
tion (corresponding to close contacts such as family and coworkers) and long-range connections
(corresponding to occasional contacts such as being seated next to each other in a restaurant or a
train).

Small-world graphs are a class of probabilistic generative models for graphs introduced by Watts
and Strogatz [35], which are obtained by overlaying a low-dimensional lattice with additional random
edges. A one-dimensional small-world graph is a cycle overlayed with additional random edges. In
the original works of Watts and Strogatz a one-dimensional small-world network is obtained by
starting from a cycle, adding edges between any pair of nodes at distance at most k (one of the
parameters of the construction) along the cycle, then selecting a random subset of edges (the density
of this subset is another parameter of the construction) and re-routing them, where the operation
of re-routing an edge is to re-assign one of the endpoints of the edge to a random vertex.

Because of our interest in studying the most basic models, with the fewest number of parameters,
in which we can observe complex emergent behavior, we consider the following simplified generative
model which was introduced in [27] and often adopted in different network applications [15, 28, 31]:
the distribution of one-dimensional small-world graphs with parameter q on n vertices is just the
union of a cycle with n vertices with an Erdős-Rényi random graph Gn,q, in which edges are sampled
independently and each pair of nodes has probability q of being an edge.

We will focus on the sparse case in which q = c/n, with c constant, so that the overall graph
has average degree c + 2 and maximum degree that is, with high probability, O(log n/ log log n).
As we will see, we are able to determine, for every value of c, an exact threshold for the critical
probability of transmission and to establish that, above the threshold, the epidemic spreads with a
realistic pattern of a number of localized outbreaks that progressively become more numerous.

We are also interested in modeling, again with the simplest possible model and with the fewest
parameters, the phenomenon of superspreading, encountered both in practice and in simulations of
more complex models. This is the phenomenon by which the spread of an epidemic is disproportion-
ately affected by rare events in which an infectious person contacts a large number of susceptible
ones. To this end, we also consider a generative model of small-world 1-dimensional graphs ob-
tained as the union of a cycle with a random perfect matching. This generative model has several
statistical properties in common with the c = 1 instantiation of the above generative model: the
marginal distribution of each edge is the same, and edges are independent in one case and have low
correlation in the random matching model. The only difference is the degree distribution, which
is somewhat irregular (but with a rapidly decreasing exponential tail) in one case and essentially
3-regular in the second case. As we will see, we are able to determine an exact threshold for this
latter model as well, and it notably differs from the previous model.

Before proceeding with a statement of our results, we highlight for future reference the definitions
of our generative models.

Definition 1.1 (1-Dimensional Small-World Graphs - SWG(n, q)). For every n > 3 and 0 6
q 6 1, the distribution SWG(n, q) is sampled by generating a one-dimensional small-world graph
G = (V,E), where |V | = n, E = E1 ∪ E2, (V,E1) is a cycle, and E2 is the set of random edges,
called bridges, of an Erdős-Rényi random graph Gn,q.

Definition 1.2 (3-regular 1-Dimensional Small-World Graphs - 3-SWG(n)). For every even n > 4,
the distribution 3-SWG(n) is sampled by generating a one-dimensional small-world graph G =
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(V,E), where |V | = n, E = E1 ∪ E2, (V,E1) is a cycle, and E2 is the set of edges, called bridges,
of a uniformly chosen perfect matching on V .

In the definition of 3-SWG(n), we allow edges of the perfect matching to belong to E1. If
this happens, only edges in E2 − E1 are called bridges. The graphs sampled from 3-SWG(n) have
maximum degree 3, and every node has degree 3 or 2. On average, only O(1) nodes have degree 2.
This is why, with a slight abuse of terminology, we refer to these graphs as being “3-regular.”

2 Our Contribution

2.1 Tight thresholds for bond percolation

Our main results are to establish sharp thresholds for the critical percolation probability p in both
models. In particular, we are interested in fully rigorous analysis that hold in high concentration (i.e.,
with high probability), avoiding mean-field approximations or approximations that treat certain
correlated events as independent, which are common in the analysis of complex networks in the
physics literature. While such approximations are necessary when dealing with otherwise intractable
problems, they can fail to capture subtle differences between models. For example, for q = 1/n,
the marginal distributions of bridge edges are the same in the two models above, while correlations
between edges are non-existing in the SWG(n, q) model and very small in the 3-SWG(n) model.
Yet, though the two models have similar expected behaviors and are good approximations of each
other, our rigorous analysis shows that the two models exhibit notably different thresholds.

As for the the SWG(n, q) model, we show the following threshold behaviour of the bond-
percolation process.

Theorem 2.1 (Percolation on the SWG(n, q) model). Let V be a set of n vertices and p > 0 be
a bond percolation probability. For any constant c > 0, sample a graph G = (V,E1 ∪ E2) from the
SWG(n, c/n) distribution, and consider the percolation graph Gp. For any constant ε > 0:

1. If p >
√
c2+6c+1−c−1

2c + ε, w.h.p.3 a subset of nodes of size Ωε(n) exists that induces a subgraph
of Gp having diameter Oε(log n);

2. If p <
√
c2+6c+1−c−1

2c − ε, w.h.p. all the connected components of Gp have size Oε(log n).

Some remarks are in order. In the theorem above, probabilities are taken both over the ran-
domness in the generation of the graph G and over the randomness of the percolation process. We
highlight the sharp result on the SWG(n, c/n) model for the case c = 1: similarly to the regular
3-SWG(n) model, each node here has one bridge edge in average, and the obtained critical value
for the percolation probability p turns out to be

√
2 − 1. An analysis of the critical value for the

3-SWG(n) model is given by the next two results, while a detailed comparison of the two models is
provided in Subsection 2.2, after Theorem 2.2.

Theorem 2.2 (Percolation on the 3-SWG(n) model). Let V be a set of n vertices and p > 0 be
a bond percolation probability. Sample a graph G = (V,E1 ∪ E2) from the 3-SWG(n) distribution,
and consider the percolation graph Gp. For any constant ε > 0:

1. If p > 1/2 + ε, w.h.p. a subset of nodes of size Ωε(n) exists that induces a connected subgraph
(i.e. a giant connected component) of Gp;

3As usual, we say that an event En occurs with high probability if Pr (En) > 1− (1/n)Ω(1).
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2. If p < 1/2− ε, w.h.p. all the connected components of Gp have size Oε(log n).

Also in the above theorem, the probabilities are taken over the randomness of G and over the
randomness of the percolation process process. The second claim is a special case of the following
more general result of ours.

Theorem 2.3 (Percolation on bounded-degree graphs). Let G = (V,E) be a graph of maximum
degree d, ε > 0 be an arbitrary positive number, p < (1−ε)/(d−1) be a bond percolation probability,
and I0 be a subset of V . Consider the percolation graph Gp. Then, w.h.p., all the connected
components of Gp have size Oε(log n).

An overall view of our analysis, leading to all the theorems above, is provided in Section 3, while
in the next subsection, we describe the main consequences of our analysis for the Independent-
Cascade protocol on the considered small-world models.

2.2 Applications to epidemic processes

As remarked in Section 1, bond percolation with percolation probability p is equivalent to the Reed-
Frost process (for short, RF process) with transmission probability p. Informally speaking, the nodes
at hop-distance t in the percolation graph Gp, from any fixed source subset, are distributed exactly
as those that will be informed (and activated) at time t, according to the RF process4.

In this setting, our analysis and results, we described in Subsection 2.1, have the following
important consequences.

Theorem 2.4 (The RF process on the SWG(n, q) model). Let V be a set of n vertices, I0 ⊆ V
be a set of source nodes, and p > 0 a constant probability. For any constant c > 0, sample a graph
G = (V,E1 ∪ E2) from the SWG(n, c/n) distribution, and run the RF process with transmission
probability p over G from I0. For every ε > 0, we have the following:

1. If p >
√
c2+6c+1−c−1

2c +ε, with probability Ωε(1) a subset of Ωε(n) nodes will be infectious within
time Oε(log n), even if |I0| = 1. Moreover, if |I0| > βε log n for a sufficiently large constant
βε (that depends only on ε), then the above event occurs w.h.p.;

2. If p <
√
c2+6c+1−c−1

2c − ε, w.h.p. the process will stop within Oε(log n) time steps, and the
number of recovered nodes at the end of the process will be Oε(|I0| log n).

As for the 3-SWG(n) model, we get the following results for the Reed-Frost process.

Theorem 2.5 (The RF process on the 3-SWG(n) model). Let V be a set of n vertices, I0 ⊆ V be
a set of source nodes, and p > 0 be a bond percolation probability. Sample a graph G = (V,E1 ∪E2)
from the 3-SWG(n) distribution, and run the RF protocol with transmission-probability p over G
from I0. For every ε > 0, we have the following:

1. If p > 1/2 + ε, with probability Ωε(1), a subset of Ωε(n) nodes will be infectious within time
Oε(n), even if |I0| = 1. Moreover, if |I0| > βε log n for a sufficiently large constant βε (that
depends on ε but not on n), then the above event occurs w.h.p.;

2. If p <
√
c2+6c+1−c−1

2c − ε, then, w.h.p., the process will stop within Oε(log n) time steps, and
the number of recovered nodes at the end of the process will be Oε(|I0| log n).

4We remind that a detailed description of this equivalence is given in Appendix A.2.
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We notice that the first claim of each of the above two theorems, concerning the multi-source
case, i.e. the case |I0| > β log n), are not direct consequences of (the corresponding first claims of)
Theorems 2.1 and 2.2: although each element of I0 has constant probability of belonging to the
“giant component” of the graph Gp, these events are not independent, and so it is not immediate
that, when |I0| is of the order of log n, at least an element of I0 belongs to the giant component
with high probability. Such claims instead are non-trivial consequences of our technical analysis.

On the other hand, the second claims of the above two theorems are simple consequences of
the corresponding claims of Theorems 2.1 and 2.2. As for general bounded-degree graphs, from
Theorem 2.3, we can recover an upper bound on the critical value of p for the RF process equivalent
to that of Claim 2 of Theorem 2.3 (we omit here the formal statement).

From a topological point of view, because of a mix of local and random edges, epidemic spreading
in the above models proceeds as a sequence of outbreaks, a process that is made explicit in our
rigorous analysis, where we see the emergence of two qualitative phenomena that are present in
real-world epidemic spreading.

One is that the presence of long-distance random connections has a stronger effect on epidemic
spreading than local connections, that, in epidemic scenarios, might motivate lockdown measures
that shut down long-distance connections. This can be seen, quantitatively, in the fact that the
critical probability in a cycle is p = 1, corresponding to a critical basic reproduction number5 R0

equal to 2. On the other hand, the presence of random matching edges or random Gn,c/n edges in
the setting c = 1 defines networks in which the critical R0 is, respectively, 1.5 and 3·(

√
2−1) ≈ 1.24,

meaning that notably fewer local infections can lead to large-scale contagion on a global scale.
The other phenomenon is that the irregular networks of the SWG(n, c/n) model in the case

c = 1 show a significantly lower critical probability, i.e.
√

2 − 1 ≈ .41, than the critical value .5 of
the nearly regular networks of the 3-SWG(n) model, though they have the same number of edges
(up to lower order terms) and very similar distributions. As a further evidence of this phenomenon,
we remark the scenario yielded by the random irregular networks sampled from the SWG(n, c/n)
distribution with c even smaller than 1: for instance, the setting c = .7, though yielding a much
sparser topology than the 3-SWG(n) networks, has a critical probability which is still smaller than
.5. Moreover, this significant difference between the SWG(n, c/n) model and the regular 3-SWG(n)
one holds even for more dense regimes. In detail, Theorem 2.3 implies that the almost-regular
version of SWG in which c independent random matchings are added to the ring of n nodes has
a critical probability at least 1/(c + 1). Then, simple calculus shows that the critical probability
given by Theorem 2.4 for the SWG(n, c/n) model is smaller than 1/(c + 1), for any choice of the
density parameter c.

The most significant difference between the two distributions above is the presence of a small
number of high-degree vertices in SWG(n, c/n), suggesting that even a small number of “super-
spreader” nodes can have major global consequences.

2.3 Extensions of our results for epidemic models

Non-homogenous transmission probability. While keeping our focus on the rigorous analysis of
simplified models that still capture important emergent phenomena, we remark that our techniques
allow extentions of our results to a natural non-homogenous bond-percolation process on small-world
graphs, in which local edges percolate with probability p1, while bridges percolates with probability
p2: our analysis in fact keeps the role of the two type of connections above well separated from each

5The quantity R0 in a SIR process is the expected number of people that an infectious person transmits the
infection to, if all the contacts of that person are susceptible. In the percolation view of the process, it is the average
degree of the percolation graph Gp.
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other. We are inspired, for instance, by epidemic scenarios in which the chances for any node to get
infected/informed by a local tie are significantly higher than those from sporadic, long ties.

In this non-homogeneous setting, for the SWG(n, q) model with q = c/n for some absolute
constant c > 0, we can prove that, w.h.p., the Independent-Cascade protocol reaches Ω(n) nodes
within O(log n) time6 iff the following condition on the three parameters of the process is satisfied

p1 + c · p1p2 + c · p2 > 1 .

Some remarks are in order. In the case c = 1, the formula above shows a perfect symmetry in the
role of the two bond probabilities p1 and p2. In a graph sampled from SWG(n, 1/n), however, the
overall number of local ties (i.e. ring edges) is n, while the number of bridges is highly concentrated
on n/2 (it is w.h.p. 6 n/2 +

√
n log n). This means that a public-health intervention aimed at

reducing transmission has to suppress twice as much local transmissions in order to obtain the same
effect of reducing by a certain amount the number of long-range transmissions. If we consider the
case c = 2, in which the number of bridges is about equal to the number of local edges, we see that
the impact of a change in p2 weighs roughly twice as much as a corresponding change p1.

So, even in the fairly unrealistic one-dimensional small-world model, it is possible to recover
analytical evidences for the effectiveness of public-health measures that block or limit long-range
mobility and super-events (such as football matches, international concerts, etc.). The generalization
to non-homogenous tramsmission probabilities is provided in Appendix F.
Longer node activity and incubation. Natural generalizations of the setting considered in this
work include models in which i) the interval of time during which a node is active (i.e., the activity
period) follows some (possibly node-dependent) distribution and/or ii) once infected, a node only
becomes active after an incubation period, whose duration again follows some distribution. While
the introduction of activity periods following general distributions may considerably complicate
the analysis, our approach rather straightforwardly extends to two interesting cases, in which the
incubation period of each node is a random variable (as long as incubation periods are independent)
and/or the activity period of a node consists of k consecutive units of time, with k a fixed constant.
This generalized model with random, node-dependent incubation periods corresponds to a discrete,
synchronous version of the SEIR model,7 which was recently considered as a model of the COVID-19
outbreak in Wuhan [24]. These extensions are formalized and discussed in Appendix F.

Roadmap

Section 3 gives an overall description of the main ideas and technical results behind our analysis
of bond-percolation in one-dimensional small-world graphs. While the most-related, important
previous contributions have been already mentioned in the previous sections, further related work
is summarized in Section 4 which concludes the body of the paper.

The appendix of the paper is organized as follows. Appendix A introduces all preliminaries
we use in the full proofs of our results. In Appendix B, we consider the SWG(n, q) model when
the percolation probability p is over the critical value and give the full proofs of the first claims
of Theorems 2.1 and 2.4. The case under the probability threshold for the SWG(n, q) model is
analyzed in Appendix C, where the second claims of Theorems 2.1 and 2.4 are proved. The analysis
proving the first claims of Theorems 2.2 and 2.5 for the 3-SWG(n) model is provided in Appendix
D, while Appendix E is devoted to the proof of Theorem 2.3 that easily implies the second claims

6The formal statement is similar to that for the homogeneous case in Theorem 2.4 and is given in Appendix F.
7With respect to SIR, for each node we have a fourth, Exposed state, corresponding to the incubation period of a

node.
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of Theorems 2.2 and 2.5. Finally, Appendix F describes the generalizations of our analysis to the
setting where a different transmission probability can be assigned to the two types of edges (i.e.
ring edges and bridges) and the case of longer node activity and incubation.

3 Overview of Our Analysis

A standard technique in bond percolation, applied for example to percolation in infinite trees and
in random graphs, is to analyze the process of running a BFS in the percolation graph, delaying
decisions about the percolation of edges from a node w to unvisited vertices until the time w is taken
out of the BFS queue. In random graphs and infinite trees, the distribution of unvisited neighbors
of w in the percolation graph remains simple, even conditioned on previous history, and one can
model the size of the BFS queue as a Galton-Watson process (see Definition A.7), thus reducing
the percolation analysis to standard results about branching processes. Basically, if the number of
vertices that we add at each step to the queue is less than one on average, the visit will reach on
average a constant number of vertices and if it is more than one and the graph is infinite the visit
will reach on average an infinite number of vertices.

3.1 Analysis of bond percolation in the SWG(n, q) model

In this section, we describe the key ingredients of our analysis of the SWG(n, q) model proving
Theorems 2.1 and 2.4, whose detailed and rigorous proofs can be found in Appendix B (for the case
in which p is above the critical threshold) and in Appendix C (for the case in which p is below the
critical threshold).

It would be very difficult to analyze a BFS exploration of the percolation graph to study perco-
lation in the small-world model SWG(n, q), since the distribution of unvisited neighbors of a vertex
w in the percolation graph is highly dependent on the previous history of the BFS (in particular, it
matters whether none, one, or both of the neighbors of w along the cycle are already visited).

Instead, and this is one of the technical innovations of our work, we define a modified BFS visit
whose process is more tractable to analyze.

The main idea of our modified BFS is that in one step we do the following: after we pull a node
w from the queue, we first look at the neighbors x of w that are reachable through bridge edges
in the percolation graphs; then, for each “bridge neighbor” x of w, we visit the “local cluster” of x,
that is, we explore the vertices reachable from x along paths that only consist of edges of the cycle
that are in the percolation graph (we indicate the local cluster of x with LC(x)); finally, we add to
the queue all non-visited vertices in the local clusters of the bridge neighbors of w. These steps are
exemplified in Fig. 1.

The point of doing things this way is that if we delay decisions about the random choice of the
bridge edges and the random choices of the percolation, then we have a good understanding of the
following two key random variables:

• the number of bridge neighbors x of w along percolated bridge edges, which are, on average
pqn′ if the graph comes from SWG(n, q), p is the percolation probability, and n′ is the number
of unvisited vertices at that point in time;

• the size of the “local cluster” of each such vertex x, that is of the vertices reachable from x
along percolated cycle edges, which has expectation

E [LC(x)] =
1 + p

1− p
. (1)
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Figure 1: The figure shows an example in which the visit first proceeds from a node w extracted from the queue to
a new node x over a bridge of the percolation graph and then reaches further nodes, starting from x and proceeding
along ring edges of the percolation graph. In terms of the RF protocol, this corresponds to the information (virus)
first being transmitted from an infectious node w to a susceptible one x over a bridge edge and then propagating
locally using ring edges. Note that in this case, i) we have a single bridge leaving w (in general, there might be
multiple ones) and ii) the information freely propagates locally from node x, informing susceptible nodes `1, `2, `3.
The edges are directed in the direction of information spread.

Intuitively, we would hope to argue that in our modified visit of a graph sampled from SWG(n, q)
to which we apply percolation with probability p, the following happens in one step: we remove one
node from the queue, and we add on average

N = pqn′ · 1 + p

1− p
(2)

new nodes. As long as n′ = n− o(n) we can approximate n′ with n, and when the number n− n′
of visited vertices is Ω(n). This way, we would have modeled the size of the queue with a Galton-
Watson process and we would be done. The threshold behavior would occur at a p such that
pqn · (1 + p)/(1− p) = 1. A smaller value of p would imply that we remove one node at every step
and, on average, add less than one node to the queue, leading the process to die out quickly. A
larger value of p would imply that we remove one node at every step and, on average, add more
than one node to the queue, leading the process to blow up until we reach Ω(n) vertices.

We are indeed able to prove this threshold behavior, at least for q = c/n for constant c. However,
we encounter significant difficulty in making this idea rigorous: if we simply proceeded as described
above, we would be double-counting vertices, because in general, the “local cluster” of a node added
to the queue at a certain point may collide with the local cluster of another node added at a later
point. This may be fine as long as we are trying to upper bound the number of reachable vertices,
but it is definitely a problem if we are trying to establish a lower bound.

To remedy this difficulty, we truncate the exploration of each local cluster at a properly chosen
constant size L (we denote as LCL(x) the truncated local cluster of a node x). In our visit, we
consider only unvisited neighbors x of w that are sufficiently far along the cycle from all previously
visited vertices so that there is always “enough space” to grow a truncated local cluster around x
without hitting already visited vertices. In more detail, we introduce the notion of “free node” used
in the algorithm and its analysis.

Definition 3.1 (free node). Let GSW = (V,E1 ∪ E2) be a small-world graph and let L ∈ N. We
say that a node x ∈ V is free for a subset of nodes X ⊆ V if x is at distance at least L + 1 from
any node in X in the subgraph (V,E1) induced by the edges of the ring.
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Thanks to the above definition, we can now formalize our modified BFS.

Algorithm 1 Sequential L-visit
Input: A small-world graph GSW = (V,ESW); a subgraph H of GSW; a set of initiators I0 ⊆ V ; a set of
deleted nodes D0 ⊆ V .
1: Q = I0
2: R = ∅
3: D = D0

4: while Q 6= ∅ do
5: w = dequeue(Q)
6: R = R ∪ {w}
7: for each bridge neighbor x of w in H do
8: if x is free for D ∪R ∪Q in GSW then
9: for each node y in the L-truncated local cluster LCL(x) do
10: enqueue(y,Q)

To sum up, the L-truncation negligibly affects the average size of local clusters, the restriction
to a subset of unvisited vertices negligibly affects the distribution of unvisited neighbors, and the
analysis carries through with the same parameters and without the “collision of local clusters”
problem.

In more detail, thanks to the arguments we described above, from (1) and (2), we can prove
that, if p is above the critical threshold

√
c2 + 6c+ 1− c− 1

2c
,

then, with probability Ω(1), the connected components of Gp containing the initiator subset have
overall size Ω(n). In terms of our BFS visit in Algorithm 1, we in fact derive the following result8

(see Subsection B.1 in the Appendix for its full proof).

Lemma 3.2. Let V be a set of n nodes, s ∈ V an initiator node and D0 ⊆ V \ {s} a set of deleted
nodes such that |D0| 6 log4 n. For every ε > 0 and c > 0, and for every probability p such that

√
c2 + 6c+ 1− c− 1

2c
+ ε 6 p 6 1 ,

there are positive parameters L, k, t0, ε′, and γ, that depend only on c and ε, such that the following
holds. Sample a graph G = (V,E) according to the SWG(n, c/n) distribution and let Gp be the
percolation graph of G with percolation probability p. Run the Sequential L-visit procedure in
Algorithm 1 on input (G,Gp, s,D0): if n is sufficiently large, for every t larger than t0, at the end
of the t-th iteration of the while loop we have

Pr
(
|R ∪Q| > n/k OR |Q| > ε′t

)
> γ ,

where the probability is over both the randomness of the choice of G from SWG(n, c/n) and over
the choice of the percolation graph Gp.

The truncation is such that our modified BFS does not discover all vertices reachable from I0
in the percolation graph, but only a subset. However, this is sufficient to prove lower bounds to the
number of reachable vertices when p is above the threshold. Proving upper bounds, when p is under

8We state the result for the case |I0| = 1.
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the threshold (i.e., the second claims of Theorems 2.1 and 2.4) is easier because, as mentioned, we
can allow double-counting of reachable vertices.

The above line of reasoning is our key idea, when p is above the threshold, to get Ωε(1) confidence
probability for: (i) the existence of a linear-size, induced connected subgraph in Gp (i.e., a “weaker”
version of Claim 1 of Theorem 2.1), and (ii) the existence of a large epidemic outbreak, starting
from an arbitrary source subset I0 (i.e., Claim 1 of Theorem 2.4). A full description of this analysis
is provided in Appendix B, where we also describe the further technical steps to achieve high-
probability for event (i), and also event (ii) when the size of the source subset is |I0| = Ω(log n) (see
Subsection B.3).

Bounding the number of hops: parallelization of the BFS visit. To get bounds on the
number of the BFS levels, we study the BFS-visit in Algorithm 1 only up to the point where there
are Ω(log n) nodes in the queue (this first phase is not needed if I0 already has size Ω(log n)), and
then we study a “parallel ” visit in which we add at once all nodes reachable through an L-truncated
local cluster and through the bridges from the nodes currently in the queue, skipping those that
would create problems with our invariants: to this aim, we need a stronger version of the notion of
free node (see Definition B.2 in Subsection B.2).

Here we can argue that, as long as the number of visited vertices is o(n), the number of nodes
in the queue grows by a constant factor in each iteration, and so we reach Ω(n) nodes in O(log n)
number of iterations that corresponds to O(log n) distance from the source subset in the percolation
graph Gp.

A technical issue that we need to address in the analysis of our parallel visit is that the random
variables that count the contribution of each L-truncated local cluster, added during one iteration of
the visit, are not mutually independent. To prove concentration results for this exponential growth,
we thus need to show that such a mutual correlation satisfies a certain local property and then
apply suitable bounds for partly-dependent random variables [17] (see Theorem A.17 in Subsection
A.5 in the Appendix). All details of this part can be found in Subsection B.2 in the Appendix.

3.2 Further challenges in regular small-world graphs

In this section, we describe the main differences of the analysis of the 3-SWG(n) model with respect
to the analysis of the SWG(n, q) one. The following arguments give a high-level overview of the
proofs of Theorems 2.2 and 2.5. The detailed proofs can be found in Appendix D (for the case p
above the threshold) and in Appendix E (for the case p below the threshold).

The 3-SWG(n) model, in which bridge edges form a random matching, introduces additional
dependencies on the past history, compared to the analysis of the SWG(n, q) model. We deal with
this difficulty by disallowing additional unvisited vertices to be reached in the visit. When we take
a node w out of the queue in the 3-SWG(n) model there can be at most one unvisited neighbor x
of w reachable through a bridge edge in the percolation graph. If such a neighbor x exists, and it is
not one of the disallowed unvisited vertices, we find, as before, the truncated local cluster of x and
add the nodes of the local cluster of x to the queue, except for x itself. The reason for discarding
x is that we have already observed the unique bridge neighbor of x (namely, w) so, if we added x
to the queue, there would be no randomness left to apply the deferred decision principle when we
later remove x from the queue.

This means that, while in one step of our visit on SWG(n, q) with activation probability p we
take out one node from the queue and add in expectation a number of nodes described by (2), in
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3-SWG(n) we take out one node and add in expectation

N ′ = p ·
(

1 + p

1− p
− 1

)
nodes. This is the reason why the SWG(n, q) model with q = 1/n and the 3-SWG(n) model have
notably different thresholds, even though they are superficially very similar.

The above argument allows us to prove Claims 1 and 2 of Theorem 2.2. Currently, we are not
able to analyze the parallel visit in the 3-SWG(n) model, because of the correlations between the
edges, although we are able to analyse the sequential visit up to Ω(n) nodes. This is why in our
theorems we do not have an exponential growth of the BFS levels for the 3-SWG(n) model.

As for Claim 3 of Theorem 2.2, as remarked in Section 2, it is a direct consequence of the more
general bounds given by Theorem 2.3: Given any graph G = (V,E) of maximum degree d and a
percolation probability p < (1 − ε)/(d − 1), the number of nodes connected to any given source
subset I0 in Gp is Oε(|I0| log n), w.h.p.

The proof of the above result (see Appendix E for the details) again relies on a suitable BFS
visit of the percolation graph Gp which is similar to that in Figure 1 in the previous subsection: We
start with a queue Q containing only the source node and at each iteration of a while loop (that
terminates when the queue is empty) we extract a node from the queue and we add to the queue
all its neighbors in the percolation graph. Informally speaking, every time the BFS adds a node
to the queue, it is observing a Bernoulli random variable with parameter p < (1 − ε)/(d − 1) (the
percolation probability of each visited edge). Since the input graph has maximum degree d, if the
procedure runs for t iterations of the while loop then t nodes are extracted from the queue and
in expectation p (t · (d− 1) + 1) are added to the queue. Chernoff’s bound then implies that the
probability that a queue starting from a single source node is not yet empty after t iterations of the
while loop is exp(−Θ(ε2t)). Hence, the size of the connected component containing the source node
is O(log n), w.h.p. Finally, the fact that all components are of size O(log n) follows from a union
bound.

4 Related Work

The fully-mixed SIR model [32] is the simplest SIR epidemiological model, and it treats the number
of people in each of the three possible states as continuous quantities that evolve in time in accor-
dance with certain differential equations. In this setup, the evolution of the process is governed by
the expected number R0 of people that each infectious person would infect, if all the contacts of that
person were susceptible. If R0 < 1, the process quickly ends, reaching a state with zero infectious
people and a small number of recovered ones. If R0 > 1, the process goes through an initial phase in
which the number of infectious people grows exponentially with time, until the number of recovered
people becomes a 1− 1/R0 fraction of the population (the herd immunity threshold); the number of
infectious people decreases after that, and eventually the process ends with a constant fraction of
the population in the recovered state.

If we consider the Reed-Frost process on a graph G that is a clique on n vertices, then the
percolation graph Gp is an Erdős-Rényi random graph with edge probability sampled from Gn,p.
Classical results from the analysis of random graphs give us that if pn < 1 − ε then, with high
probability, all the connected components of the graph have size Oε(log n), and so the set of vertices
that is reachable from I0 has cardinality at most Oε(|I0| · log n) and if pn > 1 + ε then there is a
connected component of cardinality Ωε(n), and, except with probability exponentially small in I0,
at least one vertex of I0 belongs to the giant component and is able to reach Ωε(n) vertices. The
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parameter R0 of the fully mixed continuous model corresponds to the average degree of Gp, which
is pn if Gp is distributed as Gn,p, so we see that the fully mixed continuous model agrees with the
Reed-Frost process on a clique.

A number of techniques have been developed to study percolation in graphs other than the
clique, and there is a vast body of work devoted to the study of models of bond percolation and
epidemic spreading, as surveyed in [32, 36]. Below, we review analytical studies of such processes
on finite graphs. As far as we know, our results are the first rigorous ones to establish threshold
phenomena in small-world graphs for the bond-percolation process (and, thus, for the Reed-Frost
process).

There has been some previous work on studying sufficient conditions for the RF process to reach
a sublinear number of vertices.

In [11], for a symmetric, connected graph G = (V,E), Draief et al. prove a general lower bound
on the critical point for the IC process in terms of spectral properties. Further versions of such
bounds for special cases have been subsequently derived in [14, 22]. Specifically, if one lets P be the
matrix such that P (u, v) = p(u, v) is the percolation probability of the edge {u, v}, and P (u, v) = 0
if {u, v} 6∈ E, and if one call λ the largest eigenvalue of P , then λ < 1− ε implies that for a random
start vertex s we have that the expected number of vertices to which s spreads the infection is oε(n).

In the RF process, in which all probabilities are the same, P = p · A, where A is the adjacency
matrix of G, and so the condition is asking for p < (1− ε)/λmax (A).

This condition is typically not tight, and it is never tight in the “small-worlds” graphs we consider:

• In the 3-SWG(n) model, the largest eigenvalue of the adjacency matrix is 3 − o(1), but the
critical probability is 1/2 and not 1/3;

• In the SWG(n, 1/n) model of a cycle plus Erdős-Rényi edges, the largest eigenvalue of the
adjacency matrix is typically Ω(

√
log n/ log logn) because we expect to see vertices of degree

Ω(log n/ log log n) and the largest eigenvalue of the adjacency matrix of a graph is at least the
square root of its maximal degree. The spectral bound would only tell us that the infection
dies out if p = O(

√
log logn/ log n), which goes to zero with n. A better way to use the

spectral approach is to model the randomness of the small-world graph and the randomness
of the percolation together; in this case, we have matrix P (u, v) such that P (u, v) = p for edges
of the cycle and P (u, v) = p/n for the other edges. This matrix has the largest eigenvalue
3p − o(1), so the spectral method would give a probability of 1/3, while we can locate the
threshold at

√
2− 1 ≈ .41.

In any family of d-regular graphs, the largest eigenvalue of the adjacency matrix is d, and so the
spectral bound gives that the critical threshold is at least 1/d; our Theorem 2.3 shows the stronger
bound that the critical threshold is at least 1/(d− 1).

We are not aware of previous rigorous results that provide sufficient conditions for the IC process
to reach Ω(n) nodes (either on average or with high probability) in general graphs, or for the equiv-
alent question of proving that the percolation graph of a given graph has a connected component
with Ω(n) vertices.

As discussed in the previous section, our analysis proceeds by analyzing a BFS-like visit of
the percolation graph. This is also how large components in the percolation of infinite trees and
random graphs have been studied before. However, this idea requires considerable elaboration to
work in our setting, given the mix of fixed edges and random edges in the small-world model and
the complicated dependencies on the past history that one has to control in the analysis of the visit.

A fundamental and rigorous study of bond percolation in random graphs has been proposed
by Bollobás et al. in [6]. They establish a coupling between the bond percolation process and
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a suitably defined branching process. In the general class of inhomogenous Erdős-Rényi random
graphs, they derived the critical point (threshold) of the phase transition and the size of the giant
component above the transition. The class of inhomogeneous random graphs to which their analysis
applies includes generative models that have been studied in the complex network literature. For
instance, a version of the Dubin’s model [12] can be expressed in this way, and so can the mean-field
scale-free model [4], which is, in turn, related to the Barabási–Albert model [3], having the same
individual edge probabilities, but with edges present independently. Finally, we observe that the
popular CHKNS model introduced by Callaway et al. [7] can be analyzed using an edge-independent
version of this model. Indeed, they consider a random graph-formation process where, after adding
each node, a Poisson number of edges is added to the graph, again choosing the endpoints of these
edges uniformly at random. For all such important classes of random graph models, they show
tight bounds for the critical points and the relative size of the giant component beyond the phase
transition.

In our setting, if we sample a graph from SWG(n, q) and then consider the percolation graph
Gp, the distribution of Gp is that of an inhomogenous Erdős-Rényi graph in which the cycle edges
have probability p and the remaining edges have probability pq (the 3-SWG(n) model, however,
cannot be expressed as an inhomogenous Erdős-Rényi graph).

Unfortunately, if we try to apply the results of [6] to the inhomogeneous random graph equivalent
to percolation with parameter p in the SWG(n, q) model, we do not obtain tractable conditions on
the critical value p for which the corresponding graph has a large connected component of small
diameter, which is the kind of result that we are interested in proving.

Bond percolation and the IC process on the class of 1-dimensional small-world networks (that
is, graphs obtained as the union of a cycle and of randomly chosen edges) have been studied in [27]:
using numerical approximations on the moment generating function, non-rigorous bounds on the
critical threshold have been derived while analytical results are given neither for the expected size
of the number of informed nodes above the transition phase of the process nor for its completion
time. Further non-rigorous results on the critical points of several classes of complex networks have
been derived in [23, 14] (for good surveys see [32, 36]).

In [16, 5, 26], different versions of the bond percolation process has been studied in small-world
structures formed by a d-dimensional grid augmented by random edges that follow a power-law
distribution: a bridge between points x and y is selected with probability ∼ 1/dist(x, y)α, where
dist(x, y) is the grid distance between x and y and α is a fixed power-law parameter. Besides other
aspects, each version is characterized by: (1) whether the grid is infinite or finite, and (2) whether
the grid edges (local ties) do percolate with probability p or not. Research in this setting has focused
on the emergence of a large connected component and on its diameter as functions of the parameters
d and α, while, to the best of our knowledge, no rigorous threshold bounds are known for the bond
percolation probability p.

In the computer science community, to the best of our knowledge, Kempe et al. [19] were the
first to investigate the IC process from an optimization perspective, in the context of viral marketing
and opinion diffusion. In particular, they introduced the Influence Maximization problem, where
the goal is to find a source subset of k nodes of an underlying graph to inform at time t = 0, so as
to maximize the expected number of informed nodes at the end of the IC process. They prove this
is an NP -hard problem and show a polynomial time algorithm achieving constant approximation.
Further approximation results on a version of Influence Maximization in which the completion time
of the process is considered can be found in [9, 25].
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A Preliminaries

A.1 Formal definitions

In this subsection of the Appendix, we give the rigorous definition of the bond percolation process.
Given a symmetric graph G = (V,E), we define |V | = n and, for any node v ∈ V , we denote

N(v) as its neighborhood in G and d(v) = |N(v)| as its degree. The distance dG(S, v) from the set
S to the node v is the length of the shortest path among all paths from any node in S to v in G, if
no such path exists dG(S, v) = +∞, if v ∈ S, dG(S, v) = 0. Since we will only consider symmetric
graph, the term “symmetric” will be omitted. Given a graph G = (V,E), for any subset S ⊆ V and
node v ∈ V , and for any integer i 6 n−1, we let N (i)

G (S) be the subset of nodes that are at distance
i from S, i.e. N (i)

G (S) = {v ∈ V | dG(S, v) = i}. Moreover, the set of nodes that are within finite
distance from S, i.e. that are reachable from S, will be denoted as N∗G(S).

We consider the following bond percolation process on any fixed graph G (this process is also
known in network theory as Live-arc graph model with Independent arc selection - see also [8]).

Definition A.1 (The Bond Percolation process). Given a graph G = (V,E), and given, for every
edge e ∈ E, a percolation probability p(e) ∈ [0, 1], the bond percolation process consists to remove
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each edge e ∈ E, independently, with probability 1− p(e). The random subgraph, called the percola-
tion graph Gp = (V,Ep), is defined by the edges that are not removed (i.e. they are activated), i.e.,
Ep = {e ∈ E : edge e is not removed}. Given an initial subset A0 ⊆ V of active nodes, for every
integer t 6 n−1, we define the random subset At of t-active nodes as the subset of nodes that are at
distance t from A0 in the percolation graph Gp = (V,Ep), i.e., At = N t

Gp
(A0). Finally, the subset

of all active nodes from A0 is the subset N∗Gp(A0).

A.2 The equivalence between the IC model and the Live-Arc model

In this paper, we consider the following synchronous, discrete-time epidemic protocol working over
any graph G (see [13, 32]).

Definition A.2 (IC and RF protocols). Given a graph G = (V,E), an assignment of transmis-
sion probabilities {p(e)}e∈E to the edges of G, and a non-empty set I0 ⊆ V of initially infectious9

nodes (that will also be called initiators or sources since they have the information/virus since the
very beginning), the Independent Cascade (for short, IC) protocol defines the stochastic process
{St, It, Rt}t>0 on G, where St, It, Rt are three sets of vertices, respectively called susceptible, infec-
tious, and recovered, which form a partition of V and that are defined as follows.

• At time t = 0 we have R0 = ∅ and S0 = V − I0.

• At time t > 1:

– Rt = Rt−1 ∪ It−1, that is, the nodes that were infected at the previous step become
recovered.

– Independently for each edge e = {u, v} such that u ∈ It−1 and v ∈ St−1, with probability
p(e) the event that “u transmits the infection (i.e. a copy of the source message) to v at
time t” takes place. The set It is the set of all vertices v ∈ St−1 such that for at least one
neighbor u ∈ It−1 the event that u transmits the infection to v takes place as described
above.

– St = St−1 − It

The process stabilizes when It = ∅.
The Reed-Frost SIR protocol (for short, RF Protocol) is the special case of the IC protocol in which
all transmission probabilities are the same.

By the above definition, since each node can be in the infective state only for one step, we
observe that the stopping time τ = min{t > 0 : It = ∅} is upper bounded with probability 1 by the
diameter of G.

In [19], given any fixed graph G = (V,E), the IC protocol is shown to be equivalent to the bond
percolation process.

If we consider the set It of nodes that are infectious at time t in a graph G = (V,E) according to
the IC protocol with transmission probabilities {p(e)}e∈E and with initiator set I0, we see that such
a set has precisely the same distribution as the set of nodes at distance t from I0 in the percolation
graph Gp generated by the bond percolation process with probabilities {p(e)}e∈E (see Definition
A.1). Furthermore, the set of recovered nodes Rt is distributed precisely like the set of nodes at
distance < t from I0 in Gp.

We formalize this equivalence by quoting a theorem from [8].
9we use here the term infectious for two reasons: to emphasize that the node is both informed and active and,

moreover, to be consistent with the literature in mathematical epidemiology.
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Theorem A.3 (Bond percolation and IC processes are equivalent, [19]). Consider the bond perco-
lation process and the IC protocol on the same graph G = (V,E) and let I0 = A0 = V0, where V0
is any fixed subset of V , and with transmission probabilities and percolation probabilities equal to
{p(e)}e∈E.

Then, for every integer t > 1 and for every subsets V1, . . . , Vt−1 ⊆ V , the events {I0 =
V0, . . . , It−1 = Vt−1} and {A0 = V0, . . . , At−1 = Vt−1} have either both zero probability or non-
zero probability, and, in the latter case, the distribution of the infectious set It, conditional to the
event {I0 = V0, . . . , It−1 = Vt−1}, is the same to that of the t-active set At, conditional to the event
{A0 = V0, . . . , At−1 = Vt−1}.

The strong equivalence shown in the previous theorem is obtained by applying the principle of
deferred decision on the percolation/infection events that take place on every edge since they are
mutually independent. This result can be exploited to analyze different aspects and issues of the
IC (and, thus, the RF) protocol. We here summarize such aspects in an informal way, while, in the
next sections, we show rigorous claims along our analysis.

As a first immediate consequence of Theorem A.3, we have that, starting from any source subset
I0, to bound the size of the final set Rτ of the nodes informed by I0, we can look at the size of the
union of the connected components in Gp that include all nodes of I0, i.e., we can bound the size
of N∗Gp(I0).

A further remark is that in the bond percolation process there is no time, and we can analyze
the connected component of the percolation graph in any order and according to any visit process.
Furthermore, if we want a lower bound to the number of nodes reachable from I0 in the percolation
graph, we can choose to focus only on vertices reachable through a subset of all possible paths, and,
in particular, we can restrict ourselves to paths that are easier to analyze. In our analysis we will
only consider paths that alternate between using a bounded number of local edges and one bridge
edge.

A.3 Local clusters on the ring

Given a one-dimensional small world graph G = (V,E = E1 ∪ E2) where (V,E1) is a cycle, a
probability p, and a vertex v ∈ V , we call the local cluster LC(v) the set of nodes that are reachable
from v using only local edges (that is, edges of E1) that are in the percolation graph Gp of G.

Fact A.4. If G = (V,E) is a one-dimensional small-world graph and p is a percolation probability,
for every w ∈ V , E [|LC(w)|] 6 1+p

1−p , and this bound becomes tight as the ring size tends to ∞.

For technical reasons that will become clear later, when we explore the percolation graph Gp to
estimate the size of its connected components, we do not want to follow too many consecutive local
edges. To analyze the effect of this choice, it will be useful to have a notion of L-truncated local
clusters, that we formalize below.

Definition A.5 (L-truncated local cluster). Let G = (V,E = E1∪E2) be a one-dimensional small-
world graph, where (V,E1) is a cycle, and the edges of E1 are called “local edges”. Let L a positive
integer distance parameter, and p be a percolation probability.

The L-truncated local cluster of v ∈ V is the set of vertices reachable from v in the percolation
graph Gp using at most L activated local edges.

The next fact provides the expected size of an L-truncated local cluster.
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Fact A.6. If G = (V,E) is a one-dimensional small-world graph and p is a percolation probability,
for each node v ∈ V , the size LCL(v) of its L-truncated local cluster LCL(v) satisfies the following

E
[
|LCL(v)|

]
=

1 + p

1− p
− 2pL+1

1− p
. (3)

Proof. For any positive integer L and any node v ∈ V , we define the random variable RNL(v) as
the subset of nodes such that: they are located at the right of v at ring distance less than L; they
will be infected by v according to the SIR process considering only the ring edges (here, we exclude
v from this set). So, we have

Pr
(
|RNL(v)| = i

)
=


pi(1− p) if i < L

pL if i = L

0 otherwise.

We observe that |RNL(v)| is a well-known geometric random variable10 with a “cutoff” and it
easily holds that

L∑
i=0

Pr
(
|RNL(v)| = i

)
= (1− p)

L−1∑
i=0

pi + pL = (1− p)1− pL

1− p
+ pL = 1 .

For any positive integer L and any node v ∈ V , we also define the “left-side” random variable LNL(v)
indicating the nodes in the ring that are located at the left of v that are infected by v according to
the local cluster with cut-off process. Clearly, |LNL(v)| has the same distribution of |RNL(v)|. So,
we can define LCL(v) as the overall set of the local cluster of a node v with cutoff L including the
node v itself, i.e.,

|LCL(v)| = |RNL(v)|+ |LNL(v)|+ 1 .

So, since LNL(v) and RNL(v) have the same distribution of probability,

E
[
LCL(v)

]
= E

[
LNL(v) + RNL(v) + 1

]
= 2E

[
RNL(v)

]
+ 1 = 2(1− p)

L−1∑
i=1

ipi + 2LpL + 1

= 2
(L− 1)pL+1 − LpL + p

(1− p)
+ 2LpL + 1

=
p+ 1

1− p
+ 2

(L− 1)pL+1 − LpL+1

1− p
=
p+ 1

1− p
− 2pL+1

1− p
.

A.4 Galton-Watson branching processes

Our analyses of the bond percolation process will make use of a reduction to the analyses of appro-
priately defined branching processes.

Definition A.7 (Galton-Watson Branching Process). Let W be a non-negative integer random
variable, and let {Wt,i}t>1,i>1 be an infinite sequence of independent identically distributed copies

10in our setting, the variable may assume value 0.
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of W . The Galton-Watson branching process generated by the random variable W is the process
{Xt}t>0 defined by X0 = 1 and by the recursion

Xt =

Xt−1∑
i=1

Wt,i

All properties of the process {Xt}t>0 are captured by the process {Bt}t>0 defined by the recursion

Bt =


1, t = 0;
Bt−1 +Wt − 1, t > 0 and Bt−1 > 0;
0, t > 0 and Bt−1 = 0.

where W1, . . . ,Wt, . . . are an infinite sequence of independent and identically distributed copies of
W . In the following, when we refer to the Galton-Watson process generated by W we will always
refer to {Bt}t>0.

We define σ = min{t > 0 : Bt = 0} (if no such t exists we set σ = +∞) and notice that, for
T < σ, we have BT =

∑T
t=1Wt − T .

Galton-Watson processes are characterized by the following important threshold behavior.

Theorem A.8 ([2], Section 10.4). Let {Bt}t>0 be a Galton-Watson process with integer random
variable W . Then:

1. For every constant ε > 0, if E [W ] < 1− ε, the process dies out (σ < +∞) with probability 1;

2. For every constant ε > 0, if E [W ] > 1 + ε, the process diverges, i.e., a constant c > 0 exists
such that Pr (σ = +∞) > c.

When the expectation of W is over the threshold, the above theorem implies that, with proba-
bility c > 0, for every time t we have Bt > 0. The next lemma shows that, if the variance of W is
bounded then, with constant positive probability, the value of Bt is not only positive, but it is at
least Ω(t).

Lemma A.9. Let ε be any positive constant, and consider a Galton-Watson process {Bt}t>0 with a
non-negative integer random variableW with E [W ] > 1+ε and with finite variance, i.e., Var(W ) 6
U for some positive constant U . Then there is a constant c′ that depends only on ε and a constant
t0 that depends only on ε and U such that, for every t > t0, Pr (Bt > (εt)/2) > c′.

Proof. By definition of Galton-Watson process, if W1, . . . ,Wt are mutually independent copies of
W ,

Pr

(
Bt <

εt

2

)
= Pr

(
Bt = 0 ∨

t∑
i=1

Wi < t+
εt

2

)
6 Pr (Bt = 0) + Pr

(
t∑
i=1

Wi < t+
εt

2

)
,

where the second inequality follows by a simple union bound. From Theorem A.8, there is a constant
c = c(ε) such that

Pr (Bt = 0) 6 1− c .

From Chebyshev’s inequality (Theorem A.18),

Pr

(
t∑
i=1

Wi < t+
tε

2

)
6

4U

ε2t
6
c

2
,
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where the second inequality holds if t > 8U
ε2c

. The lemma then follows setting c′ = c/2 and t0 =
8U/ε2c.

Lemma A.10. Let ε be any positive constant, and consider a Galton-Watson process {Bt}t>0 with
a non-negative integer random variable W such that 0 6 W 6 M and E [W ] > 1 + ε. Then, for
any γ > 4M2/ε2 and for any t0 > 1, we have

Pr (Bn+t0 > 0 | Bt0 > γ log n) > 1− 1

n
.

Proof. Let ε′ = ε/2. For any ` > 0 and any i > 1, consider the event

A = {Bi+t0 > (1 + ε′)` | Bi−1+t0 > `}.

If we consider ` generic i.i.d. copies of the random variable W , W1, . . . ,W` we have that

Pr (A) > Pr

(∑̀
i=1

Wi > (1 + ε′)`

)
> 1− e−

ε2

2M2 , (4)

where the last inequality follows from the Hoeffding bound.
We notice that, if we define the events

Ai = {Bi+t0 > (1 + ε′)iγ log n | Bi−1+t0 > (1 + ε′)i−1γ log n},

then, for the chain rule, we will have

Pr (Bn+t0 > 0 | Bt0 > γ log n) >
n∏
i=1

Pr (Ai) . (5)

For (4), we have

Pr (Ai) > 1− e−
ε2

2M2 γ logn > 1− 1

n2
, (6)

where the last inequality follows since γ > 4M2/ε2. So, for (6) and (5),

Pr (Bn+t0 > 0 | Bt0 > γ log n) >

(
1− 1

n2

)n
> 1− 1

n
.

A.5 Further mathematical tools

Definition A.11 (Stochastic dominance). Let X, Y be two real-valued random variables. Then, Y
is said to stochastically dominates X (X 4 Y ) if, for every x ∈ R, Pr (X > x) 6 Pr (Y > x).

Definition A.12 (Coupling). Let X1 and X2 be two random variables that are defined on the
probability spaces (Ω1, F1, P1) and (Ω2, F2, P2), respectively. Then a coupling between X1 and X2 is
formed by: i) a probability space (Ω, F, P ), and ii) a vector random variable W = (Y1, Y2) defined
over this space such that: the marginal distribution of Y1 equals the distribution of X1, while the
marginal distribution of Y2 equals that of X2.
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Devising a coupling is often an effective way to show stochastic dominance, as formally stated
below.

Lemma A.13. A random variable X1 is dominated by a random variable X2 if and only if there
exists a coupling (Y1, Y2) between X1 and X2 such that Pr (Y1 6 Y2) = 1.

Lemma A.14 (Wald’s equation, [34]). Let {Xn}n∈N be an infinite sequence of real-valued, mutually
independent, and identically distributed random variables. Let N be a non-negative integer-value
random variable that is independent of the sequence {Xn}n∈N. Suppose that N and Xn have finite
expectations. Then,

E [X1 + · · ·+XN ] = E [N ] ·E [X1] .

Theorem A.15 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables with Xi

strictly bounded in [ai, bi] for every i ∈ {1, . . . , n}, where −∞ < ai 6 bi < +∞. Let S =
∑n

i=1Xi.
Then,

Pr (|S −E [S] | > t) 6 2 exp

(
−2t2∑n

i=1(bi − ai)2

)
.

Definition A.16 (Dependency graph). Let {Yα}α∈A be a sequence of random variables. A depen-
dency graph for {Yα}α∈A is a graph Γ with vertex set A such that if B ⊆ A and α ∈ A is not
connected by an edge to any vertex in B, then Yα is independent of {Yβ}β∈B.

The sum of a set of random variables, with mutual correlations that can be described by a
dependency graph, enjoys of the following concentration result.

Theorem A.17 ([17]). Suppose that X is a random variable such that X =
∑

α∈A Yα, where, for
every α ∈ A, Yα ∼ Be(p), for some fixed p ∈ (0, 1). Let N = |A|. Then, for every t > 0,

Pr (X 6 E [X]− t) 6 exp− 8t2

25∆1(Γ)Np
,

where Γ is the dependency graph of {Yα}α∈A, ∆(Γ) is the maximum degree of Γ, and ∆1(Γ) =
∆(Γ) + 1.

Theorem A.18 (Chebyshev’s inequality). Let X be a real-valued random variable with bounded
expectation and variance. Then, for every real a > 0,

Pr (|X −E [X] | > a) 6
Var [X]

a2
.

B The SWG(n, q) Model above the Threshold

In this section, we will prove Claim 1 of Theorem 2.4 and Claim 1 of Theorem 2.1, respectively
in Subsection B.3 and B.4. Before proceeding with the proofs of the theorems, we introduce two
preliminary lemmas. In particular, in the Subsection B.1 we present the proof of the Lemma 3.2
(already introduced in Section 3.1) while in Subsection 3.1 we state and prove a further preliminary
lemma.

In all this section, we will indicate with V a set of n nodes, with G = (V,E) a graph sampled
according the SWG(n, c/n) distribution, and with Gp the percolation graph of G with percolation
probability p.
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B.1 Proof of Lemma 3.2

This section provides the full proof of Lemma 3.2 we state in Section 3.1 to sketch our general
analysis.

For t = 1, 2, . . . , let Qt be the set of nodes in the queue Q at the end of the t-th iteration of the
while loop in Algorithm 1 and let Zt be the number of nodes added to the queue Q during the t-th
iteration. Notice that |Q0| = 1 and

|Qt| =
{

0 if |Qt−1| = 0
|Qt−1|+ Zt − 1 otherwise

We next show that, as long as the overall number of visited nodes is below a suitable constant
fraction of n, the sequence {|Qt|}t stochastically dominates a diverging Galton-Watson branching
process (Definition A.7).

Let k > 1 be a constant and let τ = inf{t ∈ N : |Qt| + t > n/k} be the random variable
indicating the first time the size of the queue plus the number nodes in R exceeds n/k. Consider
any iteration t < τ of the while loop with Q 6= ∅, let |Q ∪R| 6 n/k be the number of nodes in the
queue or in the set R at the beginning of the while loop, and let A be the set of nodes at distance
larger than L from any node in D ∪Q ∪R in the ring (V,E1), i.e.,

A = {v ∈ V | d(V,E1)(D ∪Q ∪R, v) > L+ 1} .

Observe that there are at most 2L(n/k+ log4 n) 6 4L(n/k) nodes at distance smaller than or equal
to L from a node in D ∪Q ∪R in (V,E1), so |A| > n(1− 4L/k).

Let w be the node dequeued at the t-th iteration of the while loop and let x1, . . . , x|A| be the
nodes in A. For every i = 1, . . . , |A|, let Xi be the random variable counting the number on nodes
added to the queue “through” node xi during the current iteration of the while loop at line 4 of
Algorithm 1. Observe that Xi is either zero (if xi is not a bridge neighbor of w in the percolation
graph, or if xi is a bridge neighbor of w but it is not free at its turn in line 8) or it is equal to the
size of the truncated local cluster centered at xi. Moreover, Zt >

∑|A|
i=1Xi.

Now observe that the edge {w, xi} exists in the percolation graph Gp with probability pc/n,
independently of the other edges: we can use the principle of deferred decisions here, since the
existence or not of each such edge was never observed before w was extracted from the queue.
Moreover, since each node in A has at most 4L other nodes of A at ring distance less than 2L, the
probability that xi is a bridge neighbor of w in Ep and it is free for the subset Q∪R in GSW at its
iteration in the for loop at line 7 of Algorithm 1 is at least pc/n(1 − pc/n)4L, i.e. the probability
that xi is a bridge neighbor for w in Ep and all the nodes in A at ring distance at most 2L from xi
are not. From (3) it follows that

E [Xi] > pc/n(1− pc/n)4LE
[
|LCL(xi)|

]
= pc/n(1− pc/n)4L

(
1 + p− 2pL+1

1− p

)
.

Thus, the expected number of new nodes added to the queue in an iteration of the while loop is

E [Zt | |Qt−1| > 0, τ > t] > n(1− 4L/k)(pc/n)(1− pc/n)4L
(

1 + p− 2pL+1

1− p

)
> pc(1− 4L/k)(1− 4Lpc/n)

1 + p− 2pL+1

1− p

=
pc(1 + p)

(1− p)
(
1−O(pL)−O(L/k)−O(L/n)

)
.
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The critical value pc(1 + p)/(1 − p) = 1 is achieved for p =
√
c2+6c+1−c−1

2c . So, for every choice
of ε ∈ (0, 1 −

√
c2+6c+1−c−1

2c ), if p =
√
c2+6c+1−c−1

2c + ε we can choose sufficiently large constants L
and k such that, whenever n is large enough, E [Zt | |Qt−1| > 0, t < τ ] > 1 + ε′, with ε′ > 0.

At each while iteration of Algorithm 1, the node w extracted from Q has at most Bin(n, pc/n)
bridge neighbors in Ep. Since each free node is also a bridge neighbor in Ep for the node w extracted
from the queue, we further have

Var [Zt | |Qt−1| > 0, τ > t] 6 E
[
Z2
t | |Qt−1| > 0, τ > t

]
6 (2L)2E

[
Bin(n, pc/n)2

]
6 4L2.

Hence, we can define a Galton-Watson branching process {Bt}t according to Definition A.7 as
follows:
- If at the beginning of the t-th iteration of the while loop it holds that |Q ∪ R| 6 n/k then we
consider an arbitrary set Â such that each node in Â is at distance larger than L from any node in
Q ∪ R, and the size of Â is exactly dn(1 − 4L/k)e. In this setting, we define Wt as the number of
new nodes in Â added to the queue Q during the t-th iteration of the while loop.
- Otherwise (i.e., if at the t-th iteration the size |Q∪R| > n/k) then consider two arbitrary disjoint
sets of nodes Q̂ and R̂ with |Q̂ ∪ R̂| 6 n/k and an arbitrary set Â such that each node in Â is at
distance larger than L from any node in Q̂ ∪ R̂ and the size of Â is exactly dn(1− 4L/k)e. In this
setting, we define Wt as the number of new nodes in Â that would be added to the queue if at the
beginning of the t-th iteration of the while loop it was Q = Q̂ and R = R̂.

Notice that {Wt}t is a sequence of i.i.d. random variables with E [Wt] > 1 (thus, according to
Theorem A.8, {Bt}t is a diverging branching process) and finite variance. Observe also that the
pair (Bt, Qt) is a coupling between the two considered processes (see Definition A.12 in Subsection
A.5) such that, with probability 1, at each round t either |Qt ∪Rt| > n/k or it holds that Zt >Wt.
Thanks to Lemma A.13, we thus get that, at each round t,

Pr
(
|Rt ∪Qt| > n/k OR |Qt| > ε′t

)
> Pr

(
Bt > ε′t

)
.

The lemma then follows by applying Lemma A.9 in Subsection A.4.
Remark. The lemma above implies that the nodes visited by the end of the sequential L-visit in
Algorithm 1 reaches size at least n/k, with probability at least γ. This result thus shows a linear
lower bound on the size of the connected component of the source s in Gp.

B.2 Parallelization of the sequential BFS visit

In this section, we strenghten the analysis of the visit in the graph Gp, when the percolation
probability p is over the threshold.

Our goal here is to prove that, if we explore the connected components of log n nodes taken
arbitrarily in the graph, then this process leads us, w.h.p., to the visit of a linear fraction of the
nodes in the percolated graph, within Θ(log n) number of hops.

We follow an approach that proceeds along the general lines of Subsection B.1, albeit with
important differences and some technical challenges. We begin by introducing Algorithm 2 below,
which is partly “parallel” extension of the sequential BFS visit described by Algorithm 1. We
assume Algorithm 2 is run on an input (G,Gp, I0, D0), where I0 is an arbitrary subset of initiators
and D0 ⊆ V \ I0 is a set of deleted nodes.

In the remainder of this section, Qt and Rt respectively denote the subsets Q and R at the end
of the t-iteration of the while loop in line 10. Consistently with the notation used in Section B, we
also let St = V \ (Rt ∪Qt).
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Algorithm 2 parallelL-visit
Input: A small-world graph GSW = (V,ESW) and a subgraph H of GSW; a set of initiators I0 ⊆ V ; a set of
deleted nodes D0 ⊆ V \ I0.
1: Q = I0
2: R = ∅
3: D = D0

4: while Q 6= ∅ do
5: A = R ∪Q ∪D . This is the overall set of nodes visited so far
6: X = bridge-neighors(Q) . Set of bridge-neighbors in H of nodes in Q
7: Q′ = Q
8: Q = ∅
9: while Q′ 6= ∅ do
10: w = dequeue(Q′)
11: R = R ∪ w
12: for each x ∈ X do
13: if x is free for (X,A) then . We are using Definition B.2
14: for each node y in the L-truncated local cluster LCL(x) do
15: enqueue(y,Q)

Lemma B.1. Let V be a set of n nodes, I0 ⊆ V a set of initiators and D0 ⊆ V \ I0 a set of deleted
nodes such that |D0| 6 log4 n. For every ε > 0, c > 0 and for every contagion probability p such
that √

c2 + 6c+ 1− c− 1

2c
+ ε 6 p 6 1,

there are positive parameters L, k, β, δ that depend only on c and ε such that the following holds.
Sample a graph G = (V,E) according to the SWG(n, c/n) distribution, and let Gp be the percolation
graph of G with parameter p. Run the parallelL-visit in Algorithm 2 on input (G,Gp, I0, D0):
in every iteration t > 1 of the while loop at line 4 in Algorithm 2, for every integer i > β log n and
r > 0 such that i+ r 6 n/k:

Pr (|Qt| > (1 + δ)i | |Qt−1| = i, |Rt−1| = r) > 1− 1

n2
. (7)

In what follows, we introduce some definitions and lemmas preliminary to the proof of the above
lemma.

We first need to slightly revisit the notion of free node given by Definition 3.1 for the Sequential
L-visit, adapting it to the second phase of Algorithm 2 .

Definition B.2 (free nodes). Consider X,A ⊂ V . A node x ∈ X is free for the pair (X,A) if the
following holds:

1. x is at distance on the ring E1 at least L+ 1 from every node in A;

2. x is at distance on the ring E1 at least 2L+ 1 from every other node in X.

If Qt−1 is the queue Q at the end of the (t− 1)-th iteration of the while loop in line 10 of Algorithm
2, we denote by Xt the set of bridge-neighbors (w.r.t. Ep) of nodes in Qt−1, while Yt ⊆ Xt is the
subset of free nodes for the pair (Xt, Rt−1 ∪Qt−1).

Definition B.2 implies the following properties for the generic, t-th iteration of the while loop at
line 4 of Algorithm 2. At the beginning of the iteration, we initialize set Qt = ∅ and we consider
the set Yt of free nodes for (Xt, Rt−1

⋃
Qt−1). For each node x ∈ Yt, we add to the queue Qt the set
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|LCL(x)| of the L-truncated local cluster of node x (Definition B.2): the set Qt can thus be seen as
the nodes that Qt−1 infects via its free bridge-neighbors in round t. The process stops in the first
round τ , for which queue Qτ is empty, i.e. τ = {t > 0 : Qt = ∅}. Hence, for each t 6 τ

Qt =
⋃
x∈Yt

LCL(x),

and, if we label the nodes in Yt as 1, 2, . . . , |Yt|, we get

|Qt| = |LCL(1)|+ · · ·+ |LCL(|Yt|)| (8)

since the subsets LCL(j)’s are mutually disjoint from Definition B.2.
In the remainder, we denote by A ⊆ St−1 the subset of nodes that are at ring distance at least

L+ 1 from each node in Qt−1
⋃
Rt−1 ∪D at the end of of the (t− 1)-th iteration of the while loop

at line 10 of Algorithm 2. Under the hypotheses of Lemma B.1 on |Qt−1|+ |Rt−1|, we have:

n

(
1− 4L

k

)
6 |A| 6 n− (|Rt−1|+ |Qt−1|+ |D|) 6 n . (9)

Moreover, we can write
|Yt| =

∑
x∈A

Y (x), (10)

where each Y (x) is a Bernoulli random variable, whether node x ∈ A is free. By a standard
argument, we can bound the conditional expectation of |Yt| as follows.

Fact B.3. Under the hypotheses of Lemma B.1 we have

i · p · c ·
(

1− 8L

k

)
6 E [|Yt| | |Qt−1| = i, |Rt−1| = r] 6 i · p · c . (11)

Proof. We know a node x is free if it is connected via a bridge in Gp with at least one node in Qt−1
and no node, within ring distance 2L from x, is connected via a bridge in Gp with a node in Qt−1.
Therefore, (

1− (1− pq)i
)

(1− pq)4Li 6 Pr
(
Y (w′) = 1

)
6 ipq . (12)

Using the assumptions i+ r 6 n/k, p · q · n < 1 and the inequalities

(1 + y)n 6
1

1− ny
, n ∈ N, y ∈ [−1, 0] and (1 + y)r > 1 + yr , y > −1, r ∈ R \ (0, 1) ,

we get that the LHS of (12) is not smaller than

(1− pq)i(1− pq)4Li >
(

1− 1

1 + ipq

)
· (1− 4Lpq) >> ipq

(
1− ipq

1 + ipq

)
(1− 4Lipq) >

> ipq(1− ipq)(1− 4Lipq) > ipq(1− 5Lpq) > ipq

(
1− 5Lp

k

)
.

Consequently, from (9), (10), and (12) we get (11).
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Our next step is to prove that w.h.p., |Yt| does not deviate much from its expectation. As
we noted earlier, |Yt| can be expressed as the sum of Bernoulli random variables Y (x) with x ∈
A. Unfortunately, these variables are not mutually independent: for instance, Y (x) = 1 implies
Y (x′) = 0 for every other x′ ∈ A that lies within ring distance 2L in Gp from x. However, we are
able to prove the following concentration bound, by leveraging the key fact that the variables above
only have local, mutual correlations.

Lemma B.4. Under the hypotheses of Lemma B.1, if β and k are sufficiently large, we have

Pr

(
|Yt| > i · p · c ·

(
1− 9L

k

)
| |Qt−1| = i, |Rt−1| = r

)
> 1− 1

n3
.

Proof. Recall that for any x ∈ A, Y (x) is the Bernoulli random variable that indicates whether x
is free. Since x is free only if it is connected via a bridge in Gp with at least one node in Qt−1 we
have, for every x ∈ A:

f = Pr (Y (x) = 1) 6
i · p · c
n

(13)

Now, for any x ∈ A, denote by N 2L
E1

(x) the set of nodes that are within ring distance 2L from
x. For any other x′ ∈ A, Definition B.2 implies that Y (x) and Y (x′) are mutually dependent if and
only if N 2L

E1
(x) ∩ N 2L

E1
(x′) 6= ∅. Hence, we can bound the maximum number of random variables

Y (x′) that are correlated with Y (x) as follows. Consider N 2L
E1

(x) = {x− 2L, . . . , x, . . . , x+ 2L}. If
N 2L
E1

(x)∩N 2L
E1

(x) 6= ∅ for some other x′ ∈ A, it must be the case that either x < x′∧x′−2L 6 x+2L,
or x′ < x ∧ x− 2L 6 x′ + 2L. The former happens for every x′ such that x < x′ 6 x+ 4L (notice
that exactly 4L nodes can meet this condition), while the latter happens for every x′ such that
x − 4L 6 x′ < x (again, exactly 4L nodes can meet this condition). It thus follows that, for
a fixed Y (x), at most 8L other random variables can be correlated with Y (x). This property
can be described by the dependency graph Γ on the subset {Y (x)}x∈A (see Definition A.16 in
Appendix A.5). In our case, the maximum degree ∆ of the dependency graph is 8L, whence we
have ∆1(Γ) = 8L+ 1 in Definition A.16.

We can thus apply Corollary 2.4 in [17] (see Theorem A.17 in Appendix A.5)). In more detail,
we use Fact B.3, (9) and (13), the assumption p · c < 1, and we apply Theorem A.17 to complete
the proof:

Pr

(
|Yt| 6 ipc

(
1− 9L

k

)
| |Qt−1| = i, |Rt−1| = r

)
6

6 Pr

(
|Yt| 6 ipc

(
1− 8L

k

)(
1− L

k

)
| |Qt−1| = i, |Rt−1| = r

)
6

6 Pr

(
|Yt| 6 E [|Yt| | |Qt−1| = i, |Rt−1| = r]

(
1− L

k

)
| |Qt−1| = i, |Rt−1| = r

)
6

6 exp

(
−8(E [|Yt| | |Qt−1| = i, |Rt−1| = r])2

25(L2/k2) ·∆1(Γ) · |A| · f

)
6 exp

(
−8i2p2c2

(
1− 8L

k

)2
25(L2/k2)(8L+ 1)ipc

)
6

6 exp

(
−8ipc

(
1− 8L

k

)2
25(L2/k2)(8L+ 1)

)
6 exp

(
−8β log npc

(
1− 8L

k

)2
25(L2/k2)(8L+ 1)

)
6 n−3 , (14)

where the last equation holds whenever k and β are sufficiently large constants (depending on ε).

Now we are ready to conclude the proof of Lemma B.1.

28



Proof of Lemma B.1. Essentially, Lemma B.4 implies that, w.h.p., |Yt| is at least i · p · q · n up to a
constant factor that can be made arbitrarily close to 1, provided constants k and β are sufficiently
large. Next, using (8) and (3) in Lemma A.6 and applying Wald’s equation (see Lemma A.14 in
Appendix A.5) we have:

E [|Qt| | |Qt−1| = i, |Rt−1| = r] = E
[
|LCL(1)|

]
E [|Yt| | |Qt−1| = i, |Rt−1| = r] =

=

(
1 + p

1− p
− 2pL+1

1− p

)
·E [|Yt||Qt−1| = i, |Rt−1| = r] .

Omitting the conditioning on the event {|Qt−1| = i, |Rt−1| = r} for the sake of brevity in the
remainder of this proof, Lemma B.4 implies |Yt| > p · c · i · (1 − 9L/k) with probability at least
1− n−3. Moreover, by definition of Qt,

Pr

|Qt| > p·c·i(1−9L/k)∑
x=1

|LCL(x)| | |Yt| > p · c · i · (1− 9L/k)

 = 1.

If we set Z =
∑p·c·i(1−9L/k)

x=1 |LCL(x)| the above inequality implies

Pr (|Qt| 6 z | {|Yt| > p · c · i · (1− 9L/k)}) 6 Pr (Z 6 z) . (15)

Again from Wald’s equation,

E [Z] =
p(1 + p)

1− p
· c · i ·

(
1− 9L

k

)(
1− 2pL+1

(1− p)(1 + p)

)
= µ.

Hence, for sufficiently large n, from the law of total probability, from Lemma B.4 and from (15),
we have:

Pr

(
|Qt| 6 µ

(
1− L

k

))
6 Pr

(
|Qt| 6

(
1− L

k

)
µ | {|Yt| > p · c · i · (1− 9L/k)}

)
+

1

n3

6 Pr

(
Z 6

(
1− L

k

)
µ

)
+

1

n3
6(∗) 2 exp

(
−2µ2

(k2/L2) · p · i · q · (1− 9L/k) · 4L2

)
+

1

n3

6(∗∗) 2 exp

(
−c · β log n

4k2

)
+

1

n3
6 3n−3 6 n−2 ,

where in (*) we used the Hoeffding inequality (see Theorem A.15 in the Appendix), by leveraging
the fact that the random variables counting the number of infectious nodes in each local cluster
are mutually independent and, moreover, they range between 1 and 2L + 1. Moreover, (**) holds
if we take β and k sufficiently large. Recalling that for simplicity we omitted the conditioning on
|Qt−1| = i, |Rt−1| = r, the above derivations imply

Pr

(
|Qt| >

pc(1 + p)

(1− p)
· i ·
(

1− 10L

k

)(
1− 2pL+1

(1− p)(1 + p)

)
| |Qt−1| = i, |Rt−1| = r

)
> 1− 1

n2
. (16)

The proof of Lemma B.1 then follows by observing that, since p =
√
c2+6c+1−c−1

2c + ε, we can fix
suitable values for constants k and L, so that

c · p(1 + p)

1− p

(
1− 2pL+1

(1 + p)(1− p)

)(
1− 10L

k

)
= (1 + δ) , (17)

for some constant δ > 0. Together, (16) and (17) imply (7) in Lemma B.1.
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B.3 Wrapping up: proof of Claim 1 of Theorem 2.4

We first prove Theorem 2.4, since it is implicated almost directly by the lemmas proved in the
previous subsections, namely Lemmas 3.2 and B.1. To prove the theorem, we introduce the following
algorithm, which is nothing more than a simple combination of Algorithms 1 and 2, with some
simplifications.

Algorithm 3 L-visit from a set of initiators
Input: A small-world graph GSW = (V,ESW); a subgraph H of GSW; a set of initiators I0 ⊆ V .
1: Q = I0
2: R = ∅
3: D = ∅
4: while Q 6= ∅ and Q < β log n do
5: Perform lines 4-10 of Algorithm 1 . Sequential L-visit
6: while Q 6= ∅ do
7: Perform lines 4-15 of Algorithm 2 . Parallel L-visit

It should be noted that the algorithm above is essentially a sequence of two main while loops.
The first loop in line 4 corresponds to Algorithm 1 and describes a “bootstrap” phase of the RF
process, while the second main loop in line 6, describes a second phase starting with a subset Q of
visited nodes of size Ω(log n).

The following lemma states the main properties produced by our analysis of Algorithm 3 with
input (G,Gp, I0). In particular, it claims that, with probability Ω(1), the first while loop terminates
after O(log n) rounds. Moreover, once the second while loop starts, it is such that, after O(log n)
rounds, there will be at least Ω(n) visited nodes w.h.p. This result implies that, starting from a
single source s ∈ V , the algorithm will visit Ω(n) nodes with constant probability. On the other
hand, starting from a set of sources I0 such that |I0| = Ω(log n), the algorithm will reach Ω(n)
nodes, w.h.p. Hence, Claim 1 of Theorem 2.4 follows from the following lemma.

Lemma B.5. Let V be a set of n nodes and I0 ∈ V a set of initiators. For every ε > 0, c > 0 and
for every probability p such that

√
c2 + 6c+ 1− c− 1

2c
+ ε 6 p 6 1,

there are positive parameters L, k, γ, β that depend only on c and ε such that the following holds.
Sample a graph G = (V,E) according to the SWG(n, c/n) distribution, and let Gp be the percolation
graph of G with parameter p. Run Algorithm 3 on input (G,Gp, I0) for sufficiently large n, then:

1. The first while loop in line 4 terminates at some round τ1 = Θ(log n) in which

Pr (|R ∪Q| > n/k OR |Q| > β log n) > γ;

2. Conditioning to the above event, the second while loop in line 6 terminates at some round
τ2 = Θ(log n) in which |Q ∪R| > n/k, , w.h.p.

Proof. The first claim is a direct consequence of Lemma 3.2 by setting t in the latter so that
ε′t = β log n.11 Then, at the end of the first while loop, two cases may arise: i) |Q ∪ R| > n/k
(where Q and R are the snapshot of the two sets at the end of the first while loop), so Θ(n) nodes

11Note that t0 in the claim of Lemma A.9 is a constant.
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are visited within O(log n) iterations and Claim 2 immediately follows; ii) A round τ1 = Θ(log n)
exists in which the subset of infectious nodes gets size at least |Q| > β log n, where Q is the queue’s
snapshot at the end of the first while loop.

In order to complete the proof of Claim 2 of the lemma, it thus suffices to only address case ii)
above, which corresponds to the setting in which, at the beginning of the second while loop, the
queue Q is initialized with a set of size > β log n. We can now observe that Claim 2 is a direct
consequence of Lemma B.1.

B.4 Wrapping up: proof of Claim 1 of Theorem 2.1

In the previous subsection we heve essentially proved that, starting from a single source s ∈ V , if
we explore the connected component of s in Gp, then, with probability Ω(1), we will visit at least
Ω(n) nodes and, moreover, such nodes induce a connected sub-graph of diameter O(log n).

The goal of this subsection is to prove that, w.h.p., a set of Ω(n) nodes in V exists that induces
in Gp a connected component with diameter O(log n). To this aim, we introduce the following
algorithm that can be informally seen as several “attempts” of bootstraps, according to Algorithm
1, each one performed from a different source node s, then followed by a parallel L-visit according
to Algorithm 2.

Algorithm 4 Search of the giant component
Input: A small-world graph GSW = (V,ESW); a subgraph H of GSW; two integers β, β′.
1: Q = ∅
2: D = ∅
3: while |Q| 6 β log n or |Q ∪R| 6 n/k do . First phase
4: Let s ∈ V \D
5: Q = {s}
6: R = ∅
7: for i = 1, . . . , β′ log n do
8: Perform lines 4-10 of Algorithm 1 . Sequential L-visit
9: D = D ∪R
10: if |Q ∪R| 6 n/k then . Second phase
11: Perform Algorithm 2 with input GSW , H, I0 = Q, D0 = R ∪D . Parallel L-visit

More in detail, the algorithm above works in two phases. The first phase starts in the while
loop in line 3 and performs different “bootstraps”. In this phase, we essentially look for a source
node s ∈ V such that the queue Q of the visit of the component of s in Gp gets Ω(log n) nodes,
after Θ(n) steps of the visit. In particular, at each iteration of the while loop, a node s ∈ V is
chosen arbitrarily and, starting from it, Θ(log n) steps of the sequential L-visit of Algorithm 1 are
performed: if, at this point, the set Q has Ω(log n) nodes, the first phase is successfully completed,
otherwise it starts again from another source node. The second phase of the algorithm starts in
line 11 with a subset Q of Ω(log n) visited nodes, and consists in the parallel visit in Algorithm 2
setting Q as the source subset.

The following lemma essentially states that, w.h.p.: i) within τ1 = O(log n) bootstrap attempts,
the first phase ends successfully, and, then, ii) the second phase will discover Ω(n) nodes within
further τ2 = O(log n) iterations.

Lemma B.6. Let V be a set of n nodes. For every ε > 0, c > 0 and β > 0, and for every probability
p such that √

c2 + 6c+ 1− c− 1

2c
+ ε 6 p 6 1,
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there are positive parameters L, k (that depends only on c and ε) and a constant β′ (that depends on
c, ε and β) such that the following holds. Sample a graph G = (V,E) according to the SWG(n, c/n)
distribution and let Gp be the percolation graph of G with parameter p. Run Algorithm 4 on input
(G,Gp, β, β

′) with any sufficiently large n, then:

1. The first while loop in line 3 terminates at some round τ1 = O(log n), w.h.p.;

2. Conditioning to the above event, the second phase of the algorithm starting in line 11 termi-
nates at some round τ2 = Θ(log n) in which |Q ∪R| > n/k, w.h.p.

Proof. As for the first claim, let γ > 0 and ε′ be the constants in Lemma 3.2, and define β′ = β/ε′.
Moreover, let τ = log1−γ(n). First, we notice that, at each iteration of the while in line 3, the set D
grows w.h.p. of at most 8Lβ′ log2 n size: indeed, each node in Gp has degree of at most 4 log n with
probability at least 1−1/n2 (this fact follows from a standard application of Chernoff’s bound) and
so, within β′ log n iterations of the for loop, at most 8Lβ′ log2 n nodes will be reached by s. This
implies that, at each iteration j 6 τ of the while loop, D has size |D| = O(log3 n).

Then, we claim that, at each j-th iteration of the while loop in line 3, if j 6 τ , there is probability
at least γ > 0 that the process terminates. Indeed, thanks to Lemma 3.2, there exists a constant
γ > 0 such that, at the end of the for loop in line 8,

Pr
(
|Q| > ε′β′ log n or |R ∪Q| > n/k

)
> γ.

Therefore, the probability that the process continues after τ iterations is at most

(1− γ)τ 6
1

n
.

Claim 2 is instead a direct consequence of Lemma B.1.

C The SWG(n, q) Model below the Threshold

The goal of this section is to prove the second claims of Theorems 2.1 and 2.4. Informally, in the
following we show that, whenever p <

√
c2+6c+1−c−1

2c , w.h.p., the percolation graph Gp of a graph
G = (V,E) sampled from SWG(n, q) is such that every connected component has O(log n) nodes.
We state here the claim which is proved in Subsection C.1.

Lemma C.1. Let V be a set of n nodes. For every ε > 0, c > 0 and for every contagion probability
p such that

0 6 p 6

√
c2 + 6c+ 1− c− 1

2c
− ε

there is a positive constant β that depends only on c and ε such that the following holds. Sample a
graph G = (V,E) according to the SWG(n, c/n) distribution, and let Gp be the percolation graph of
G with parameter p. If n is sufficiently large, with probability at least 1 − 1/n with respect to the
randomness of G and the randomness of Gp, Gp contains no connected component of size exceeding
β log n.

Interestingly enough, thanks to the equivalence between the SIR process and the percolation
process, the above lemma also implies Claim 2 of Theorem 2.4, since the SIR process infects at least
one new node in each round unless it has died out, the above result also implies that, w.h.p., the
SIR process dies out within β log n rounds, infecting at most |I0| · β log n new nodes.
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C.1 Proof of Lemma C.1

In order to prove upper bounds on the number of nodes in a connected component, we might
proceed as with did to prove lower bounds. We proceed as follows: i) we run a BFS in Gp, i.e.
we run Algorithm 5 with input GSW = G, H = Gp and an arbitrary source s ∈ V , and we define
a (sequential) Galton-Watson branching process that stochastically dominates12 the BFS process
with respect to the overall size of the set of nodes visited upon termination; ii) thanks to step (i),
we can prove that for each source s ∈ V and every t > β log n, the BFS in Algorithm 5 with input
(G,Gp, s) terminates within t iterations of the while loop after visiting less than t nodes, w.h.p.

Algorithm 5 BFS visit
Input: A small-world graph GSW = (V,ESW) and a subgraph H of GSW; a source s ∈ V .
1: Q = {s}
2: while Q 6= ∅ do
3: w = dequeue(Q)
4: visited(w) = True
5: for each bridge neighbor x of w in H such that visited(x) = False do
6: for each y in the local cluster LC(x) such that visited(y) = False do
7: enqueue(y,Q)

It should be noted that i) Algorithm 5 visits the connected component containing s; ii) the
number of nodes visited by the algorithm is exactly equal to the number of iterations of the main
while loop before Q becomes empty. To formalize our approach we need to define the following
random subsets of nodes.

Definition C.2. For each t > 1, let Qt be the set Q of the BFS in Algorithm 5 at the end of
the t-th iteration of the while loop. Let Rt = ∪t−1i=1Qi, and let St = V \ (Rt ∪ Qt). We also
define cc(s) = max{t : Qt 6= ∅} as the overall number nodes visited at the end of the execution of
Algorithm 5 with input GSW = G, H = Gp, and an arbitrary source s ∈ V .

We now consider the “sequential” Galton-Watson Branching process {Bt}t>0 (see Definition A.7)
determined by the random variables {Wt}t>0, where theWt’s are independent copies of the following
random variable W :

Definition C.3. W is generated as follows: i) we first randomly sample an integer Y from the
distribution Bin(n, pc/n); ii) W = Y +

∑2Y
j=1 Lj, where each Lj is a variable that counts the number

of successes in a sequence of independent Bernoulli trials with success probability p, till the first
failure.

It should be noted that
∑2x

j=1 Lj is the overall number of successes in a sequence of 2x Bernoulli
trials with parameter p, until we observe exactly 2x failures. As such,

∑2x
j=1 Lj follows a nega-

tive binomial distribution. The next lemma shows that the above Galton-Watson process {Bt}t>0

dominates the process {Qt}t.

Fact C.4. For every x > 0, the following holds, for every t:

Pr (Bt > x) > Pr (|Qt| > x) ,

12More precisely in Lemma C.4 we use Definition A.11 in the appendix and notice that a simple coupling argument
(see Definition A.12 and Lemma A.13.) applies between the two processes.
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where the left side of the inequality is taken over the randomness of the Galton-Watson process
{Bt}t>0, while the right side is taken on the outcome of Algorithm 5 with input GSW = G and
H = Gp, with respect to the randomness of the initial graph G sampled from SWG(n, q) and that of
its percolation Gp.

Proof. The argument is based on the following observations. Consider the process generated by
Algorithm 5 in Definition C.2 with input GSW = G, H = Gp and any fixed source s ∈ V and
consider a given state at iteration t. Consider the node w dequeued from Q at the beginning
of iteration t of Algorithm 5, and consider the set of nodes it can possibly add to the queue at
iteration t. In the best possible case, i) w has some number Ŷ of bridge edges in Ep (the bridge
edges considered in line 6 of the algorithm), and ii) a local cluster consisting of some L nodes will
be infected starting at each of them. Ŷ is distributed as Bin(|St|, pc/n) and is thus dominated
by any variable distributed as Bin(n, pc/n). As for L, it is certainly dominated by the sum of Ŷ
variables, each counting the total number of activations in the local cluster created by a single node
of an infinite path topology (see Fact A.4). But the above considerations imply that the variable
counting the number of nodes that w can possibly infect is dominated by a variable distributed like
the Wt’s.

Thanks to the above fact, to get an upper bound on the overall number of nodes the SIR process
can infect under the hypotheses of Lemma C.1, we can analyse the Galton-Watson process specified
in Definition C.3.

Lemma C.5. Consider the Galton-Watson process {Bt}t>0 with W1,W2, . . . as in Definition C.3.
For any t > 0,

Pr

(
t∑
i=1

Wi > (1 + 2δ)
p(1 + p)

1− p
ct

)
6 2e−

δ2p2t
9 . (18)

Proof. We begin by observing that, the definition of the Wi’s and Definition C.3 imply, for every
i > 0,

Wi = Yi +

2Yi∑
s=1

Li,s .

Here, Yi is distributed as Bin(n, pc/n), while each Li,s is an independent copy of a variable that
counts the number of successes until the first failure in a sequence of independent Bernoulli trials
with success probability p.13 Next, if we set W =

∑t
i=1Wi, we have

W =

t∑
i=1

Wi =
t∑
i=1

(Yi +

2Yi∑
s=1

Li,s) . (19)

An obvious remark is that all the Li,s are just independent copies of a random variable with identical
distribution. As a consequence, if we set Y =

∑t
i=1 Yi, we can rewrite (19) as

W =

t∑
i=1

Wi = Y +
2Y∑
j=1

Lj , (20)

13It can be equivalently regarded as a geometric random variable with success probability 1− p.

34



where the Lj ’s are independent random variables distributed like the Li,s’s. Hence:

Pr

(
t∑
i=1

Wi > (1 + 2δ)
p(1 + p)

(1− p)
ct

)
= Pr

Y +
2Y∑
j=1

Lj > (1 + 2δ)
p(1 + p)

(1− p)
ct

 . (21)

In order to bound the right hand side of the equation above we proceed in two steps. First, we prove a
concentration result on Y . This is easy, since it is Y =

∑t
i=1 Yi, with each Yi being an (independent)

binomial variable with distribution Bin(n, pc/n). Each Yi is in turn the sum of n independent
Bernoulli variables, each with parameter pc/n. Overall, Y is just the sum of nt independent Bernoulli
variables with parameter pc/n. Hence, E [Y ] = pct. Moreover, a straightforward application of
Chernoff bound yields, for every 0 < δ < 1,

Pr (Y > (1 + δ)pct) 6 e−
δ2

3
pct . (22)

We next argue about
∑2Y

j=1 Lj . We further have, for 0 < δ < 1,

Pr

 2Y∑
j=1

Lj > (1 + 2δ)
2p2

1− p
ct | Y 6 (1 + δ)pct

 6 Pr

2(1+δ)pct∑
j=1

Lj > (1 + 2δ)
2p2

1− p
ct

 , (23)

where we dropped the conditioning on {Y 6 (1+δ)pct}, since this only implies that we are summing
at most (1 + δ)pct independent, geometric random variables with parameter p. We next note that

Pr

2(1+δ)pct∑
j=1

Lj > (1 + 2δ)
2p2

1− p
ct

 = Pr

2(1+δ)pct+(1+2δ) 2p2

1−p ct∑
i=1

B̌i < 2(1 + δ)pct

 , (24)

where the B̌i’s are independent, Bernoulli variables with success probability 1 − p. The equality
above is true since

∑2y
j=1 Lj follows a negative binomial distribution, whose cumulative distribution

function is related to the one of the binomial [29].14 The expectation of the sum of the B̌i’s is

E

2(1+δ)pct+(1+2δ) 2p2

1−p ct∑
i=1

B̌i

 = 2(1 + δ)pct(1− p) + 2p2(1 + 2δ)ct = 2(1 + δ)pct

(
1 +

δp

1 + δ

)
. (25)

The above derivations imply

2(1 + δ)pct

E
[∑

i B̌i
] 6

1

1 + δp
1+δ

< 1− δp

3
,

where the last inequality follows from simple manipulations and where we eventually use 1+δ+δp <
3. We denote µ = E

[∑
i B̌t
]
and from (25) we have that µ > 2pct. From (23) and (24), this allows

14Intuitively,
∑2y
j=1 Lj is the number of successes in a sequence of

∑2y
j=1 Lj + 2y Bernoulli trials with success

probability p, before exactly 2y failures are observed. As a consequence,
∑2y
j=1 Lj > x implies that 2y+ x trials were

not sufficient to observe 2y failures.
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us to write

Pr

 2Y∑
j=1

Lj > (1 + 2δ)
2p2

1− p
ct | Y 6 (1 + δ)pct



6 Pr

2(1+δ)pct+(1+2δ) 2p2

1−p ct∑
i=1

B̌i <

(
1− δp

3

)
µ

 6 e−
δ2p3ct

9 , (26)

where the first inequality follows from the inequality relating E
[∑

i B̌i
]
to 2(1+δ)pct written above,

and the last inequality is a simple Chernoff bound on the lower tail, considering that µ > 2pct.
This allows us to conclude the proof. Indeed, we have that for every t > 0 and from the law of

total probability

Pr

Y +

2Y∑
j=1

Lj > (1 + 2δ)
p(1 + p)

(1− p)
ct


6 Pr

 2Y∑
j=1

Lj > (1 + 2δ)
2p2

1− p
ct | Y 6 (1 + δ)pct

+ Pr (Y > (1 + δ)pct)

6 e−
δ2p3ct

9 + e−
δ2

3
pct 6 2e−

δ2p3ct
9 ,

where the last inequality follows from (22) and (26). The claim follows finally from (21).

Next, assume that p =
√
c2+6c+1−c−1

2c − ε for constant ε ∈ (0, 1 −
√
c2+6c+1−c−1

2c ). This yields
that, for some ε′ > 0, we have pc(1 + p)/(1− p) = 1− ε′, so

(1 + 2δ)
pc(1 + p)

1− p
= (1 + 2δ)(1− ε′) 6

(
1− ε′

2

)
,

where the last inequality holds whenever δ 6 ε′

4(1−ε′) . For this choice of δ, we consider Lemma C.5
setting t = β log n for a sufficiently large β, in order to have the RHS in (C.5) smaller than 1/n2.
We notice that the choice β depends only on ε. With the above choices, Lemma C.5 implies

W1 + · · ·+Wt < β log n , (27)

with probability at least 1− 1/n2.
To complete our proof, consider again the Galton-Watson Branching process {Bt}t>0. The size

of the overall population up to iteration t is
∑t

i=1Wi and we just proved that, for t = β log n,

t∑
i=1

Wi < β log n ,

with probability at least 1− 1/n2, which implies that, with the same probability, if Bt > 0 then it
would hold

Bt =
t∑
i=1

Wi − β log n < 0 ,
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so a contradiction. Therefore, w.h.p. there is a τ < β log n, such that Bτ = 0, which in turn implies
that, with probability at least 1− 1/n2, the Galton-Watson Branching process {Bt}t>0 goes extinct
within β log n iterations, with a population size less than β log n.

We are now in a position to show that, with the same probability, |Qt| = 0 for t 6 β log n,
implying that Algorithm 5 completes within β log n rounds and hence, it visits at most β log n
nodes. In fact:

Pr (|cc(s)| > β log n) = Pr (|Qβ logn| > 0) 6 Pr

(
β logn∑
i=1

Wi − β log n > 0

)
6

1

n2
,

where the first equality follows from the definition ofR∞, the second inequality follows from Fact C.4,
while the last inequality follows from Lemma C.5.

We thus proved that, for a fixed source s ∈ V , Algorithm 5 with input G and Gp visits at most
β log n nodes in the graph Gp with probability at least 1 − 1/n2. So, Lemma C.1 follows from a
union bound over all possible choices of source s ∈ V .

D The 3-SWG(n) Model above the Threshold

In this section we prove the first claims of Theorems 2.2 and 2.5. We show that, with probability
Ω(1), the connected component of an initiator node in the percolation graph Gp of a 3-SWG(n)
graph contains Ω(n) nodes, as soon as p = 1/2 + ε, where ε > 0 is an arbitrarily-small constant.
Moreover, over the same conditions on p, we show that Gp has a giant component of Ω(n) nodes
w.h.p.

D.1 Sequential L-visit (proof of Claim 1 of Theorem 2.5)

As in the proofs of Section B, we analyze the number of nodes reached by a BFS-like visit of the
percolation graph Gp starting at a set of nodes I0. We consider a slightly modified version of
Algorithm 1 in which, once a bridge neighbor x of a dequeued node w is “observed”, it will no
longer be considered in any of the subsequent iterations of the while loop. This allows us to use
the principle of deferred decisions on the randomness used to determine the bridge neighbor x of
a dequeued node w and on the randomness used to determine whether a bridge edge exists in the
percolation graph.

The following lemma contains the analysis of the Algorithm 6. In detail, it shows that, if we
start the visit from a single source node s, after Θ(log n) steps of the visit we will have Ω(log n)
nodes in the queue, with constant probability. Moreover, the lemma claims also that, if we start
the visit from Ω(log n) nodes, the visited nodes will be Ω(n) w.h.p.

We notice also that the first claim of Theorem 2.5 is directly implied by the following lemma.

Lemma D.1. Let V be a set of n nodes, I0 ⊆ V a set of initiators and D0 ⊆ V \ I0 a set of deleted
nodes such that |D0| 6 log4 n. For every ε > 0 and for every probability p such that 1/2+ε 6 p 6 1,
there are positive parameters L, k, β and γ that depend on ε such that the following holds. Sample
a graph G = (V,E) according to the 3-SWG(n) distribution and let Gp be the percolation graph of
G with percolation probability p. Run the Sequential L-visit procedure in Algorithm 6 on input
(G,Gp, I0, D0): if n is sufficiently large,

1. if |I0| = 1, after τ1 = O(log n) iterations of the while loop we have that

Pr (|Q| > β log n or |Q ∪R ∪D| > n/k) > γ;
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Algorithm 6 Sequential L-visit
Input: A small-world graph GSW = (V,ESW); a subgraph H = (V,EH); a set of initiators I0 ⊆ V and a set
of deleted nodes D0 ⊆ V \ I0.
1: Q = I0
2: R = ∅
3: D = D0 ∪N(D0)
4: while Q 6= ∅ do
5: w = dequeue(Q)
6: R = R ∪ {w}
7: x = bridge neighbor of w in GSW

8: case x is free for (D ∪R ∪Q) in GSW and {w, x} ∈ EH . We are using Definition 3.1
9: Q = Q ∪ (LCL(x) \ {x})
10: R = R ∪ {x}
11: case x is free for (D ∪R ∪Q) in GSW and {w, x} /∈ EH

12: D = D ∪ {x}
13: case x is not free for (D ∪R ∪Q) in GSW and x ∈ Q
14: Q = Q \ {x}
15: R = R ∪ {x}
16: case x is not free for (D ∪R ∪Q) in GSW and x /∈ Q
17: D = D ∪ {x}

2. if |I0| > β log n, after τ2 = O(n) iterations of the while loop we have that |Q ∪ R| > n/(4k)
w.h.p.

Proof. We first make some observation that will be useful for the proof of both the claims of the
lemma. We begin with noticing that Algorithm 6 preserves the following invariant: at the beginning
of each iteration of the while loop, the bridge neighbors of all nodes in Q have not been observed
so far. From the principle of deferred decisions, it thus follows that, when a node is dequeued, its
bridge neighbor can be any of the nodes not in R ∪D, with uniform probability.

For t = 1, 2, . . . , let Qt, Rt, and Dt be the sets of nodes in Q, R, and D, respectively, at the
end of the t-th iteration of the while loop, and let Zt be the number of nodes added to the queue Q
during the t-th iteration. Notice that |Q0| = 1 and

|Qt| =
{

0 if Qt−1 = ∅
|Qt−1|+ Zt − 1 otherwise (28)

Observe that here Zt is an integer-valued random variable with −1 6 Zt 6 2L. As we did in the
proof of Lemma 3.2 we show that, as long as the overall number of nodes in Q ∪ R ∪ D is below
a constant fraction of n, the sequence {|Qt|}t stochastically dominates a diverging Galton-Watson
branching process (Definition A.7).

Let k > 1 be a sufficiently large constant that will be fixed later. Consider the generic t-th
iteration of the while loop with Q 6= ∅, let |Q ∪R ∪D| 6 n/k be the number of nodes in the queue
or in the set R ∪ D at the beginning of the while loop, and let A be the set of nodes at distance
larger than L from any node in Q∪R∪D in the subgraph of GSW induced by the edges of the ring,
i.e.

A = {v ∈ V | d(V,E1)(Q ∪R ∪D, v) > L+ 1} .

Observe that there are at most 2L(n/k) nodes at distance smaller than or equal to L from a node
in Q ∪R ∪D in (V,E1), so |A| > n(1− 2L/k).
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Let w be the node dequeued at the t-th iteration of the while loop and let x be its bridge
neighbor. Since |Q ∪ R ∪ D| 6 n/k, from the principle of deferred decision it follows that x is
already in the queue Q with probability at most 1/k while x is free for Q ∪ R ∪ D in GSW with
probability at least |A|/n = (1− 2L/k) and the bridge edge {w, x} exists in the percolation graph
with probability p. Hence, random variable Zt in (28) takes vaues either −1, with probability at
most 1/k, or the size of the local cluster centered at x excluding x itself, with probability at least
p(1 − 2L/k). From (3) on the expected size of a local cluster it thus follows that the expected
number of new nodes added to the queue is

E [Zt | Qt−1 6= ∅, |Qt ∪Rt ∪Dt| 6 n/k] > −1

k
+ p

(
1− 2L

k

)(
1 + p− 2pL+1

1− p
− 1

)
= −1

k
+

2p2

1− p

(
1− 2L

k

)(
1− 2pL

)
=

2p2

1− p
−O

(
L

k

)
−O

(
pL
)
.

For every ε > 0, the above inequality allows us to fix suitable constants L, k, and ε′ > 0 such that,
if p = 1

2 + ε then
E [Zt | Qt−1 6= ∅, |Qt ∪Rt ∪Dt| 6 n/k] > 1 + ε′ .

As long as there are less than n/k nodes in (Q∪R∪D) and Q is not empty, the number of nodes
in Q thus satisfies |Qt| = |Qt−1| − 1 + Zt = |Qt−1| − 2 + (Zt + 1), where Zt + 1 is a non-negative
integer-valued random variable with expectation larger than 2. We now proceed as in the proof of
Lemma 3.2, and omit some details.

We define a Galton-Watson branching process {Bt}t with the aim of bounding Qt in terms
of B2t. The branching process {Bt}t is defined in terms of a random variable W defined to be
the worst-case distribution of (Zt + 1)/2 when |Qt ∪ Rt ∪ Dt| 6 n/k. The process is such that
E [W ] > 1+ε′ for an absolute constant ε′ > 1, and we can construct a coupling (see Definition A.12
and Lemma A.13 in the Appendix) of {Bt}t with the execution of the algorithm such that, at every
time step t, it holds with probability 1 that |Qt ∪Rt ∪Dt| > n/k or that |Qt| > B2t.

Now we proceed with the proofs of the two claims of the lemma. As for the first claim, it
follows from Lemma A.9. Indeed, since W is a bounded random variable (i.e. W 6 2L+ 1), it has
finite variance. Therefore, for Lemma A.9, we have that there exists positive constants γ, β and β′

(depending on ε) such that, if we indicate with t = β log n,

Pr (|Qt| > β log n or |Qt ∪Rt ∪Dt| > n/k) > Pr (B2t > β log n) > γ,

and the first claim follows from the equation above.
As for the second claim, it follows by Lemma A.10. Indeed, the random variables W are finite,

since W 6 2L+ 1 and then, we have that there exists positive constants c and β (which depends on
ε, we can take β as the maximum with the previous constant) such that, if we indicate with t = cn

Pr (|Qt| > 0 or |Qt ∪Rt ∪Dt| > n/k | |Q1| > β log n) > Pr (B2t > 0 | B1 > β log n) > 1− 1

n
.

The second claim follows from the fact that, if we are in the case in which Qt > 0, we obviously have
that |Rt| > t, since in each iteration of the while loop in the algorithm at least one node is added
to Rt. Instead, in the case in which |Qt ∪ Rt ∪Dt| > n/k, we can claim that |Qt ∪ Rt| > n/(4k).
Indeed, while the visit is running, at least one node is added to Rt at each step and at most one
node is added to Dt, so |Rt| > |Dt| − |D0|. So, since |D0| 6 3 log4 n, for a sufficiently large n

|Qt ∪Rt ∪ (Dt \D0)| >
n

2k
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and this implies that
|Qt ∪Rt| >

n

4k
.

D.2 Wrapping up: proof of Claim 1 of Theorem 2.2

The proof proceeds on the same lines as the proof in Subsection B.4. Indeed, we want to prove that
w.h.p. in Gp there exists a giant component with Ω(n) nodes. In order to do so, we introduce the
following algorithm, which is divided into two phases.

Algorithm 7 Search of the giant component
Input: A small-world graph GSW = (V,ESW); a subgraph H of GSW; two integers β, β′.
1: Q = ∅
2: D = ∅
3: R = ∅
4: while |Q| 6 β log n or |Q ∪R ∪D| 6 n/k do . First phase
5: Let s ∈ V \D
6: Q = {s}
7: R = ∅
8: for i = 1, . . . , β′ log n do
9: Perform lines 4-17 of Algorithm 6 . Sequential L-visit
10: D = D ∪R
11: if |Q ∪R ∪D| 6 n/k then . Second phase
12: Perform Algorithm 6 with input GSW , H, I0 = Q, D0 = R ∪D . Sequential L-visit

In the first phase is a “bootstrap” where we search for a node in the giant component: we look
for a source node s such that, after Θ(log n) steps of the sequential L-visit, the queue Q has Ω(log n)
nodes. The second phase consists of the sequential L-visit starting from the queue Q with Ω(log n)
nodes. We note that in this case, we have not performed the analysis via the parallel visit: this
is because the random variables describing the process, in this case, assume dependencies that are
difficult to handle in the parallel case.

The following lemma contains the analysis of Algorithm 7 with in input (G,Gp, β, β
′), where β

and β′ are two positive constants. It claims that the first phase of the algorithm, that begins in
the while loop in line 4, ends after τ1 = O(log n) iterations of the while loop w.h.p. Moreover, the
lemma claims that the in second phase of the algorithm (starting in line 11) the visit reach Ω(n)
nodes.

Lemma D.2. Let V be a set of n nodes. For every ε > 0 and β > 0, and for every probability
p such that 1/2 + ε 6 p 6 1, there are positive parameters L, k (that depends only on ε) and a
constant β′ (that depends on ε and β) such that the following holds. Sample a graph G = (V,E)
according to the 3-SWG(n) distribution and let Gp be the percolation graph of G with percolation
probability p. Run the Search of the giant component in Algorithm 7 on input (G,Gp, β, β

′):
if n is sufficiently large,

1. the first while loop in line 4 terminates at some round τ1 = O(log n) w.h.p.;

2. conditioning on the above event, the second phase of the algorithm starting in line 11 terminates
at some round τ2 = O(n) in which, w.h.p. |Q ∪R| > n/(4k).

Proof. The proof proceeds similarly to the proof of Lemma B.6 in Section B. In particular, it follows
from Lemma D.1.
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We notice that Claim 1 of Theorem 2.2 follows from the lemma above.

E Regular Graphs Below the Threshold

In this section, we analyze the percolation process in regular graphs and prove Theorem 2.3. As for
the 3-regular graphs generated by the 3-SWG(n) model, we observe that Claim 2 of Theorem 2.2
is a direct consequence of the general result proved in this section.

Theorem E.1. Let G = (V,E) be a graph of maximum degree d and let s be a vertex in V . If
p = (1−ε)/(d−1) for some ε such that 1 > ε > 0, then the probability that the connected component
of s in the percolation graph Gp of G has size > t is at most exp(−Ω(ε2t)). Furthermore, w.h.p.,
all connected components of Gp have size O(ε−2 log n).

Proof. We consider an execution of the BFS algorithm below with the percolation graph Gp =
(V,Ep) of G = (V,E) as input H and any fixed source s ∈ V 15.

Algorithm 8 BFS visit
Input: a graph H = (V,EH) and a source s ∈ V .

1: Q = {s}
2: while Q 6= ∅ do
3: w = dequeue(Q)
4: visited(w) = True
5: for each neighbor x of w in H such that visited(x) = False do
6: enqueue(y,Q)

We first notice that if the above algorithm visits more than t vertices, then it executes the while
loop more than t times. Consider what has happened after the t-th iteration of the while loop. Each
iteration removes one node from the queue, the queue is not empty, and initially the queue held one
node, so we have to conclude that we added at least t nodes to the queue in the first t iterations
of the while loop. Consider how many times we run the for cycle in lines 5-6 in each while-loop
iteration and assume by deferred decision that we make the choice about the edge (w, x) ∈ Ep only
when line 5 is executed. That cycle is executed at most d times at the first iteration, and at most
d−1 times subsequently (because every vertex in the queue has at most d−1 non-visited neighbors
in Gp) and so it is executed at most t · (d− 1) + 1 times. Each time it is executed implies that the
event (w, x) ∈ Ep holds and it has probability p, independent of everything else.

From the above argument, it follows that we have observed at most t · (d − 1) + 1 Bernoulli
random variables with parameter p = (1− ε)/(d− 1) and we found that at least t of them were 1.
By Chernoff bounds this happens with probability exp(−ε2t/3).

As for the “Furthermore” part, it suffices to choose a real b large enough so that the probability
that the connected component of s has size more than b is at most 1 − 1/n2, then take a union
bound over all source s.

F Generalizations and Outlook

As discussed in the introduction, our goal was to investigate the simplest models that can at least
qualitatively capture essential aspects of epidemic processes observed in realistic scenarios. On the

15We notice that, unlike the other visiting procedures we used in the previous sections, this algorithm does not
require to have the graph G as input, only its percolation.
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other hand, we believe some variants and generalizations of the models we considered in this paper
deserve a rigorous study. Two natural directions concern extensions to the IC protocol we considered
and more general models of the underlying network topology.

F.1 Non-homogenous bond percolation probabilities

A possible extension of the considered small-world models is to introduce two different bond percola-
tion (i.e., transmission) probabilities, each one assigned to each type of connection. Formally, given
a small-world graph G = (V,E1 ∪ E2), the percolation graph Gp1,p2 is the result of the following
process: a bond percolation with probability p1 is applied on G1 = (V,E1); and a bond percolation
with probability p2 is applied to G2 = (V,E2); finally, we get the union of the two resulting random
subgraphs, denoted as Gp1,p2 .

With RF (p1, p2), we refer to the corresponding generalization of the RF protocol considered in
this paper.

Since p1 is the percolation probability of the local edges, it is immediate the following result.

Fact F.1. Let G = (V,E) be a one-dimensional small-world graph and p1, p2 be, respectively, the
percolation probabilities on the local and bridge edges. Then, for each node v ∈ V , the size LCL(v)
of its L-truncated local cluster LCL(v) satisfies the following

E
[
|LCL(v)|

]
=

1 + p1
1− p1

− 2pL+1
1

1− p1
. (29)

Our analysis for the homogenous case easily extends to the above non-homogenous setting: the
next theorem formalizes the main result in terms of epidemic protocols.

Theorem F.2 (The RF (p1, p2) protocol on the SWG(n, q) model). Let V be a set of n vertices,
I0 ⊆ V be a set of source nodes, and p1, p2 > 0 two constant probabilities. For any constant c > 0,
sample a graph G = (V,E1∪E2) from the SWG(n, c/n) distribution, and run the RF (p1, p2) protocol
with transmission probabilities p1 over G1 = (V,E1) and p2 over G2 = (V,E2) from I0. For every
ε > 0, we have the following:

1. If p1 + c · p1p2 + c · p2 > 1 + ε, then, with probability Ωε(1) a subset of Ωε(n) nodes will be
informed within time Oε(log n), even if |I0| = 1. Moreover, if |I0| > βε log n for a sufficiently
large constant βε (that depends only on ε), then the above event occurs w.h.p.;

2. If p1 + c · p1p2 + c · p2 6 1 − ε, then w.h.p. the total number of informed nodes will be
Oε(|I0| log n), and the protocol will stop within Oε(log n) time.

As observed above, it is possible to easily recover the proof of the above theorem from the analysis
of the homogeneous case we described in the previous sections. In the following two subsections,
we thus only describe how the main technical statements changes in this non-homogeneous case.

Proof of Claim I of Theorem F.2 We first consider Algorithm 1, recalling the notion of free
node in Definition 3.1, and generalize Lemma 3.2.

Lemma F.3. Let V be a set of n nodes, s ∈ V an initiator node and D0 ⊆ V \ {s} a set of deleted
nodes such that |D0| 6 log4 n. For every ε > 0 and c > 0, and for every probabilities p1, p2 such
that

p1 + c · p1p2 + c · p2 > 1 + ε,
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there are positive parameters L, k, t0, ε′, and γ, that depend only on c and ε, such that the fol-
lowing holds. Sample a graph G = (V,E) according to the SWG(n, c/n) distribution and let
Gp1,p2 be the percolation graph of G with percolation probability p1, p2. Run Algorithm 1 on in-
put (G,Gp1,p2 , s,D0): if n is sufficiently large, for every t larger than t0, at the end of the t-th
iteration of the while loop it holds that

Pr
(
|R ∪Q| > n/k OR |Q| > ε′t

)
> γ .

Lemma F.3 implies that the nodes visited by the end of Algorithm 1 reach a size at least n/k,
with a probability of at least γ. The consequence is a linear lower bound on the size of the connected
component of the source s in Gp.

As we made for the homogenous case, the next goal is to show that if we explore the connected
components of log n nodes taken arbitrarily in the graph, then w.h.p., we visit a linear fraction of
the nodes in the percolated graph, within Θ(log n) number of hops. To do this, we analyze the
execution of Algorithm 2 on input (G,Gp1,p2 , I0, D0), where I0 is an arbitrary subset of initiators
and D0 ⊆ V \ I0 is a set of deleted nodes. Recall that St = V \ (Rt ∪ Qt), where Qt and Rt
respectively are the subsets Q and R at the end of the t-iteration of the while loop in line 10. We
can thus state the new version Lemma B.1.

Lemma F.4. Let V be a set of n nodes, I0 ⊆ V a set of initiators and D0 ⊆ V \ I0 a set of deleted
nodes such that |D0| 6 log4 n. For every ε > 0, c > 0 and for every contagion probabilities p1, p2
such that

p1 + c · p1p2 + c · p2 > 1 + ε

there are positive parameters L, k, β, δ that depend only on c and ε such that the following holds.
Sample a graph G = (V,E) according to the SWG(n, q) distribution, and let Gp1,p2 be the percolation
graph of G with parameters p1, p2. Run Algorithm 2 on input (G,Gp1,p2 , I0, D0): in every iteration
t > 1 of the while loop at line 4 in Algorithm 2, for every integer i > β log n and r > 0 such that
i+ r 6 n/k:

Pr (|Qt| > (1 + δ)i | |Qt−1| = i, |Rt−1| = r) > 1− 1

n2
. (30)

At this point, we run Algorithm 3 in the non-homogeneous framework and get the new version
of B.5.

Lemma F.5. Let V be a set of n nodes and I0 ∈ V a set of initiators. For every ε > 0, c > 0 and
for every contagion probabilities p1, p2 such that

p1 + c · p1p2 + c · p2 > 1 + ε

there are positive parameters L, k, γ, β that depend only on c and ε such that the following holds.
Sample a graph G = (V,E) according to the SWG(n, c/n) distribution, and let Gp1,p2 be the per-
colation graph of G with parameters p1, p2. Run Algorithm 3 on input (G,Gp1,p2 , I0) and, if n is
sufficiently large:

1. The first while loop in line 4 terminates at some round τ1 = Θ(log n) in which

Pr (|R ∪Q| > n/k OR |Q| > β log n) > γ;

2. Conditioning at the above event, the second while loop in line 6 terminates at some round
τ2 = Θ(log n) in which, w.h.p. |Q ∪R| > n/k.
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As in the homogeneous case, this result implies that, starting from a single source s ∈ V , the
algorithm will visit Ω(n) nodes with constant probability. On the other hand, starting from a set
of sources I0 such that |I0| = Ω(log n), the algorithm will reach Ω(n) nodes, w.h.p. This concludes
the proof of Claim 1 of Theorem F.2.

Proof of Claim II of Theorem F.2 To prove Claim 2 of Theorem F.2, we state Lemma C.1 to
the two-probabilities case.

Lemma F.6. Let V be a set of n nodes. For every ε > 0, c > 0 and for every transmission
probabilities p1, p2 > 0 such that

p1 + c · p1p2 + c · p2 6 1− ε

there is a positive constant β that depends only on c and ε such that the following holds. Sample a
graph G = (V,E) according to the SWG(n, q) distribution, and let Gp1,p2 be the percolation graph
of G with parameters p1, p2. If n is sufficiently large, with probability at least 1 − 1/n contains no
connected component of size exceeding β log n.

The proof is a simple generalization of the proof of Lemma C.1. In particular, we need the
following version of Lemma C.5 that considers a Galton-Watson process {Bt}t>0 with W1,W2, . . .,
defined by extending Definition C.3 to the two-probabilities case.

Lemma F.7. Let {Bt}t>0 be the Galton-Watson process described above. For any t > 0,

Pr

(
t∑
i=1

Wi > (1 + 2δ)
p2(1 + p1)

1− p1
ct

)
6 2e−

δ2 min {p1,p2}
3ct

9 (31)

The above bound is obtained as follows. We recall that: Y =
∑t

i=1 Yi, with each Yi being
an (independent) Binomial variable with distribution Bin(n, p2c/n); each Lj is an (independent)
variable that counts the number of successes until the first failure with success probability p1; and
each B̌i is an (independent) Bernoulli random variable with success probability 1− p1. Proceeding
as in the homogeneous case, we get

Pr (Y > (1 + δ)pct) 6 e−
δ2

3
p2ct

and

Pr

2(1+δ)p2ct∑
j=1

Lj > (1 + 2δ)
2p1p2
1− p1

ct

 =

= Pr

2(1+δ)p2ct+(1+2δ)
2p1p2
1−p1

ct∑
i=1

B̌i < 2(1 + δ)p2ct

 6 e−
δ2p31ct

9

At this point, generalization follows easily.
As in the homogeneous case, we exploit the full equivalence between the bond percolation process

and the IC-process: so, Lemma F.6 also implies Claim 2 of Theorem 2.4. In fact, since the IC process
infects at least one new node in each round unless it has died out, Lemma F.6 also implies that,
w.h.p., the IC process dies out within β log n rounds, infecting at most |I0| · β log n new nodes.
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F.2 Non-unit activity periods.

In the previous sections, we assumed that each infectious node has one single chance to infect its
neighborhood in the step immediately following the one in which it became infected. Natural gen-
eralizations include models where the interval of time during which a node is infectious follows some
distribution. While this can considerably complicate the analysis, our approach straightforwardly
extends to a simple generalization, in which the activity period of a node consists of k consecutive
units of time, where k is a fixed constant. In this case, the corresponding versions of the epidemic
models we considered in this paper can be easily formalized as follows.

Definition F.8 (IC and SIR models with k attempts). Given a graph G = (V,E), an assignment
of contagion probabilities {p(e)}e∈E to the edges of G, and a non-empty set I0 ⊆ V of initially
infectious vertices (that will also be called initiators or sources), the Independent Cascade (for short,
IC) protocol with k attempts is the stochastic process {St, It, Rt}t>0, where St, It, Rt are three sets
of vertices, respectively called susceptible, infectious, and recovered, which form a partition of V and
that are defined as follows. Let Ît ⊆ It be the subset of those nodes which receive the infection for
the first time at step t.

• At time t = 0 we have R0 = ∅ and S0 = V − I0. We set Î−k = · · · = Î0 = ∅.

• At time t > 1:

– Rt = Rt−1 ∪ Ît−k, that is, the nodes that got infected k steps before become recovered.

– Independently from the previous steps, for each edge e = {u, v} such that u ∈ It−1 and
v ∈ St−1, with probability p(e) the event that “u transmits the infection to v at time
t” takes place. The set Ît is the set of all vertices v ∈ St−1 such that, for at least
one neighbor u ∈ It−1, the event “u transmits the infection to v” takes place. We set
It = (It−1 ∪ Ît) \ Ît−k.

– St = St−1 − Ît

The process stabilizes when It = ∅.

We recall that the RF (SIR) protocol is the special case of the IC protocol in which all proba-
bilities are the same. To analyze the process described above, we use the following result, which is
a direct consequence of Theorem A.3 that states the equivalence between the Independent Cascade
process and the percolation process.

Corollary F.9 ([19]). Let R∞ be the final set of nodes reached by the IC process with k attempts,
according to above definition, on the graph G = (V,E) and contagion probabilities {p(e)}e∈E. Let
R̂∞ be the final set of nodes reached by the IC process and on the same graph G, with only one
activation and with contagion probabilities {p̂(e)}e∈E, where p̂(e) = 1− (1− p(e))k. Then, R∞ and
R̂∞ have the same distribution.

Thanks to the above equivalence result, our results stated in Theorems 2.4 and 2.2 (and the
general result in Theorem 2.3) can be easily generalized to the SIR model with k activations by
setting the contagion probability to the value p̂ = 1− (1− p)k. As for the convergence time of the
SIR process, we observe that the k consecutive attempts of every infectious node clearly result in a
slow-down of (at most) an extra multiplicative factor k with respect to the obtained bounds.
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Random incubation periods. Our results easily extend to a discrete, SEIR generalization of
the epidemic model studied in this paper in which every node has an associated, random incubation
period. In more detail, in our discrete-time setting, each node v has an associated random variable
h(v), which gives the number of incubation steps after which, once infected, node v becomes infec-
tious itself. This model can be reduced to a percolation problem in which the activation of edges
is as before, each node v is labeled by h(v), the set of nodes reached by the infection is the set of
nodes reachable from I0 in the percolation graph. In this case, the time of contagion of a node v is
the length of the shortest path from v to I0 in the percolation graph, where the “length” of a path
P is the number of edges plus the sum of the incubation times of the vertices along the path.

If the incubation times h(v) are independent of the randomness of the activation of edges, then
incubation does not affect the number of nodes eventually reached by the infection, it only affects
the time of spreading.

Moreover, if the incubation times are also mutually independent random variables with a nice
(for example, subgaussian) tail, then it is also possible to get bounds in probability for the infection
spreading time.

Other topologies. A second natural direction is investigating more general topologies than those
considered in this paper. In this respect, natural generalizations include families of graphs used to
model short connections and the random networks used to model long-range ones. As for the former,
a natural extension would be considering 2-dimensional grids. Already moving to this setting poses
non-trivial challenges. For example, in this case, characterizing the spread over local clusters seems
considerably harder, whereas this can be done exactly in rings. As for long-range connections, it
would be interesting to investigate distributions in which the existence of an edge depends on the
distance between the end-points in the underlying graph of local connections. While this is a natural
generalization of the setting addressed in this paper, it might prove considerably more challenging.
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