Skip to main content

List Homomorphism: Beyond the Known Boundaries

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13568))

Included in the following conference series:

  • 615 Accesses

Abstract

Given two graphs G and H, and a list \(L(u)\subseteq V(H)\) associated with each \(u\in V(G)\), a list homomorphism from G to H is a mapping \(f:V(G)\rightarrow V(H)\) such that (i) for all \(u\in V(G)\), \(f(u) \in L(u)\), and (ii) for all \(u,v\in V(G)\), if \(uv\in E(G)\) then \(f(u)f(v)\in E(H)\). The List Homomorphism  problem asks whether there exists a list homomorphism from G to H. Enright, Stewart and Tardos [SIAM J. Discret. Math., 2014] showed that the List Homomorphism  problem can be solved in \(O(n^{k^2-3k+4})\) time on graphs where every connected induced subgraph of G admits “a multichain ordering” (see the introduction for the definition of multichain ordering of a graph), that includes permutation graphs, biconvex graphs, and interval graphs, where \(n=|V(G)|\) and \(k=|V(H)|\). We prove that List Homomorphism parameterized by k even when G is a bipartite permutation graph is W[1]-hard. In fact, our reduction implies that it is not solvable in time \(n^{o(k)}\), unless the Exponential Time Hypothesis (ETH) fails. We complement this result with a matching upper bound and another positive result.

  1. 1.

    There is a \(O(n^{8k+3})\) time algorithm for List Homomorphism  on bipartite graphs that admit a multichain ordering that includes the class of bipartite permutation graphs and biconvex graphs.

  2. 2.

    For bipartite graph G that admits a multichain ordering, List Homomorphism  is fixed parameter tractable when parameterized by k and the number of layers in the multichain ordering of G.

In addition, we study a variant of List Homomorphism called List Locally Surjective Homomorphism. We prove that List Locally Surjective Homomorphism parameterized by the number of vertices in H is W[1]-hard, even when G is a chordal graph and H is a split graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to paucity of space the proofs of results marked with \(\star \) are omitted here.

References

  1. Bok, J., Brewster, R., Feder, T., Hell, P., Jedličková, N.: List homomorphism problems for signed graphs. arXiv preprint arXiv:2005.05547 (2020)

  2. Bok, J., Brewster, R., Feder, T., Hell, P., Jedličková, N.: List homomorphisms to separable signed graphs. In: Balachandran, N., Inkulu, R. (eds.) CALDAM 2022. LNCS, vol. 13179, pp. 22–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95018-7_3

    Chapter  Google Scholar 

  3. Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars Comb. 67 (2003)

    Google Scholar 

  4. Chen, H., Jansen, B.M.P., Okrasa, K., Pieterse, A., Rzazewski, P.: Sparsification lower bounds for list \(H\)-coloring. In: Cao, Y., Cheng, S.-W., Li, M. (eds.) 31st International Symposium on Algorithms and Computation, ISAAC 2020, 14–18 December 2020. LIPIcs, vol. 181, pp. 58:1–58:17 (2020)

    Google Scholar 

  5. Chitnis, R., Egri, L., Marx, D.: List \(h\)-coloring a graph by removing few vertices. Algorithmica 78(1), 110–146 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  7. Díaz, J., Diner, Ö.Y., Serna, M., Serra, O.: On list k-coloring convex bipartite graphs. In: Gentile, C., Stecca, G., Ventura, P. (eds.) Graphs and Combinatorial Optimization: from Theory to Applications. ASS, vol. 5, pp. 15–26. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63072-0_2

    Chapter  MATH  Google Scholar 

  8. Díaz, J., Serna, M.J., Thilikos, D.M.: Counting h-colorings of partial k-trees. Theor. Comput. Sci. 281(1–2), 291–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Egri, L., Krokhin, A., Larose, B., Tesson, P.: The complexity of the list homomorphism problem for graphs. Theory Comput. Syst. 51(2), 143–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Enright, J.A., Stewart, L., Tardos, G.: On list coloring and list homomorphism of permutation and interval graphs. SIAM J. Discret. Math. 28(4), 1675–1685 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdös, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings West Coast Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol. 26, pp. 125–157 (1979)

    Google Scholar 

  12. Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Comb. Theory Ser. B 72(2), 236–250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Combinatorica 19(4), 487–505 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feder, T., Hell, P., Huang, J.: Bi-arc graphs and the complexity of list homomorphisms. J. Graph Theory 42(1), 61–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discret. Math. 16(3), 449–478 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feder, T., Hell, P., Klein, S., Nogueira, L.T., Protti, F.: List matrix partitions of chordal graphs. Theor. Comput. Sci. 349(1), 52–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 47–63 (1974)

    Google Scholar 

  18. Garg, N., Papatriantafilou, M., Tsigas, P.: Distributed list coloring: how to dynamically allocate frequencies to mobile base stations. In: Proceedings of SPDP 1996: 8th IEEE Symposium on Parallel and Distributed Processing, pp. 18–25 (1996)

    Google Scholar 

  19. Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding \(k\)-colorability of \(P_5\)-free graphs in polynomial time. Algorithmica 57(1), 74–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discret. Appl. Math. 75(2), 135–155 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, H., Siggers, M.: Towards a dichotomy for the switch list homomorphism problem for signed graphs. arXiv preprint arXiv:2104.07764 (2021)

  22. Kratochvil, J., Tuza, Z.: Algorithmic complexity of list colorings. Discret. Appl. Math. 50(3), 297–302 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Okrasa, K., Piecyk, M., Rzazewski, P.: Full complexity classification of the list homomorphism problem for bounded-treewidth graphs. In: 28th Annual European Symposium on Algorithms, ESA 2020, Pisa, Italy, 7–9 September 2020 (Virtual Conference), pp. 74:1–74:24 (2020)

    Google Scholar 

  24. Okrasa, K., Rzazewski, P.: Complexity of the list homomorphism problem in hereditary graph classes. In: Bläser, M., Monmege, B. (eds.) 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021. LIPIcs, vol. 187, pp. 54:1–54:17 (2021)

    Google Scholar 

  25. Valadkhan, P.: List matrix partitions of special graphs. Ph.D. thesis, Applied Sciences: School of Computing Science (2013)

    Google Scholar 

  26. Valadkhan, P.: List matrix partitions of graphs representing geometric configurations. Discret. Appl. Math. 260, 237–243 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vizing, V.G.: Vertex colorings with given colors. Diskret. Analiz 29, 3–10 (1976)

    Google Scholar 

  28. Wang, W., Liu, X.: List-coloring based channel allocation for open-spectrum wireless networks. In: VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, vol. 1, pp. 690–694. Citeseer (2005)

    Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous referees for their helpful comments. The first author acknowledges SERB-DST for supporting this research via grant PDF/2021/003452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Bhyravarapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhyravarapu, S., Jana, S., Panolan, F., Saurabh, S., Verma, S. (2022). List Homomorphism: Beyond the Known Boundaries. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics