Skip to main content

Local Routing Algorithms on Euclidean Spanners with Small Diameter

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13568))

Included in the following conference series:

  • 592 Accesses

Abstract

Given a set of n points in the plane, we present two constructions of geometric r-spanners with \(r \ge 1\) based on a hierarchical decomposition. These graphs have \({{\,\textrm{O}\,}}(n)\) edges and diameter \({{\,\textrm{O}\,}}(\log n)\). We then design online routing algorithms on these graphs.

The first construction is based on \(\varTheta _k\)-graphs (with \(k > 6\) and \(k\equiv 2 \mod 4\)). The routing algorithm is memoryless and local (i.e. it uses information about the closed neighborhood of the current vertex and the destination). It has routing ratio \(1/(1-2\sin (\pi /k))\) and finds a path with \({{\,\textrm{O}\,}}(\log ^2 n)\) edges.

The second construction uses a TD-Delaunay triangulation, which is a Delaunay triangulation where the empty regions are homothets of an equilateral triangle. The associated routing algorithm is local and memoryless, has a routing ratio of \(5/{\sqrt{3}}\), finds a path consisting of \({{\,\textrm{O}\,}}(\log ^2 n)\) edges and requires the pre-computation of vertex labels of \({{\,\textrm{O}\,}}(\log ^2 n)\) bits (assuming the nodes are placed on a grid of polynomial size).

We have examples that show when using either of our routing algorithms, in the worst case, the paths returned by the algorithm can consist of \(\varOmega (\log ^2 n)\) edges.

Research of P. Bose and Y. Garito supported in part by NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The routing ratio of a routing algorithm is the spanning ratio of the path returned by the algorithm.

References

  1. Abraham, I., Malkhi, D.: Compact routing on euclidean metrics. In: Proceedings of the Annual ACM Symposium on Principles of Distributed Computing, vol. 23, Jul 2004

    Google Scholar 

  2. Ahmed, A.R., et al.: Graph spanners: A tutorial review. Comput. Sci. Rev. 37, 100253 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arya, S., Das, G., Mount, D., Salowe, J., Smid, M.: Euclidean spanners: Short, thin, and lanky. In: Proceedings of the 27th ACM STOC, Mar1996

    Google Scholar 

  4. Arya, S., Mount, D.M., Smid, M.H.M.: Dynamic algorithms for geometric spanners of small diameter: Randomized solutions. Comput. Geom. 13(2), 91–107 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs, delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_25

    Chapter  Google Scholar 

  6. Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_3

    Chapter  Google Scholar 

  7. Bose, P., Carmi, P., Collette, S., Smid, M.: On the stretch factor of convex delaunay graphs. J. Comput. Geo. 1(1), 41–56 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Bose, P., Carufel, J.D., Morin, P., van Renssen, A., Verdonschot, S.: Towards tight bounds on theta-graphs: More is not always better. Theor. Comput. Sci. 616, 70–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive routing in the half-\(\Theta _6\)-graph. In: Rabani, Y. (ed.) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 Jan 2012, pp. 1319–1328. SIAM (2012)

    Google Scholar 

  10. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Optimal local routing on delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput. 44(6), 1626–1649 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wirel. Networks 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  12. Chan, T.H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling metrics. ACM Trans. Algorithms 12(4), 55:1–55:22 (2016)

    Google Scholar 

  13. Chew, P.: There is a planar graph almost as good as the complete graph. In: Proceedings of the Second Annual Symposium on Computational Geometry, SCG 1986, New York, USA, pp. 169–177. Association for Computing Machinery (1986)

    Google Scholar 

  14. Clarkson, K.: Approximation algorithms for shortest path motion planning. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 56–65 (1987)

    Google Scholar 

  15. Diestel, R.: Graph Theory, 4th edn., vol. 173, Graduate texts in mathematics. Springer (2012). https://doi.org/10.1007/978-1-4612-9967-7

  16. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elkin, M., Solomon, S.: Optimal euclidean spanners: Really short, thin, and lanky. Proceedings of the Annual ACM Symposium on Theory of Computing, vol. 62, Jul 2012

    Google Scholar 

  18. Hoedemakers, C.: Geometric spanner networks master thesis (2015)

    Google Scholar 

  19. Kao, M., (ed.) Encyclopedia of Algorithms - 2016 edn. Springer (2016). https://doi.org/10.1007/978-0-387-30162-4

  20. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In: MobiCom, pp. 243–254. ACM (2000)

    Google Scholar 

  21. Keil, J.M.: Approximating the complete euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19487-8_23

    Chapter  Google Scholar 

  22. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete euclidean graph. Dis. Comput. Geometry 7(1), 13–28 (1992). https://doi.org/10.1007/BF02187821

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12, 28–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Le, H., Solomon, S.: Truly optimal euclidean spanners. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), Los Alamitos, CA, USA, pp. 1078–1100. IEEE Computer Society, Nov 2019

    Google Scholar 

  25. Le, H., Solomon, S.: Truly optimal euclidean spanners. SIAM J. Comput. FOCS 19-135 (2022)

    Google Scholar 

  26. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, New York, NY, USA (2007)

    Book  MATH  Google Scholar 

  27. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N., Kendall, D.G.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, Second edn.. Wiley Series in Probability and Mathematical Statistics. Wiley (2000)

    Google Scholar 

  28. Paul Chew, L.: There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci. 39(2), 205–219 (1989)

    Google Scholar 

  29. Pugh, W.W.: Skip lists: A probabilistic alternative to balanced trees. Commun. ACM 33(6), 668–676 (1990)

    Article  Google Scholar 

  30. Ruppert, J., Seidel, R.: Approximation algorithms for shortest path motion planning. In: Proceedings of the 3rd Canadian Conference on Computational Geometry, pp. 207–210 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bonichon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonichon, N., Bose, P., Garito, Y. (2022). Local Routing Algorithms on Euclidean Spanners with Small Diameter. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics