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Abstract. Given an array of size n from a total order, we con-
sider the problem of constructing a data structure that supports vari-
ous queries (range minimum/maximum queries with their variants and
next/previous larger/smaller queries) efficiently. In the encoding model
(i.e., the queries can be answered without the input array), we propose
a (3.701n + o(n))-bit data structure, which supports all these queries
in O(log(`) n) time, for any positive integer ` (here, log(1) n = logn,
and for ` > 1, log(`) n = log(log(`−1)n)). The space of our data struc-
ture matches the current best upper bound of Tsur (Inf. Process. Lett.,
2019), which does not support the queries efficiently. Also, we show that
at least 3.16n−Θ(logn) bits are necessary for answering all the queries.
Our result is obtained by generalizing Gawrychowski and Nicholson’s
(3n−Θ(logn))-bit lower bound (ICALP, 15) for answering range mini-
mum and maximum queries on a permutation of size n.

Keywords: Range minimum queries · Encoding model · Balanced
parenthesis sequence.

1 Introduction

Given an array A[1, . . . , n] of size n from a total order and an interval [i, j] ⊂
[1, n], suppose there are k distinct positions i ≤ p1 ≤ p2 . . . ≤ pk ≤ j where
p1, p2, . . . , pk are the positions of minimum elements in A[i, . . . , j]. Then, for
q ≥ 1, range q-th minimum query on the interval [i, j] (RMin(i, j, q)) returns
the position pq (returns pk if q > k), and range minimum query on the interval
[i, j] (RMin(i, j)) returns an arbitrary position among p1, p2, . . . , pk. One can also
analogously define range q-th maximum query (resp. range maximum query) on
the interval [i, j], denoted by RMax(i, j, q) (resp. RMax(i, j)).

In addition to the above queries, one can define next/previous larger/smaller
queries as follows. When the position i is given, the previous smaller value query
on the position i (PSV(i)) returns the rightmost position j < i, where A[j] is
smaller than A[i] (returns 0 if no such j exists), and the next smaller value
query on the position i (NSV(i)) returns the leftmost position j > i where A[j]
is smaller than A[i] (returns n+ 1 if no such j exists). The previous (resp. next)
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2 Jo and Kim

larger value query on the position i, denoted by PLV(i) (resp. NLV(i))) is also
defined analogously.

In this paper, we focus on the problem of constructing a data structure
that efficiently answers all the above queries. We consider the problem in the
encoding model [15], which does not allow access to the input A for answering
the queries after prepossessing. In the encoding data structure, the lower bound
of the space is referred to as the effective entropy of the problem. Note that for
many problems, their effective entropies have much smaller size compared to the
size of the inputs [15]. Also, an encoding data structure is called succinct if its
space usage matches the optimal up to lower-order additive terms. The rest of
the paper only considers encoding data structures and assumes a Θ(log n)-bit
word RAM model, where n is the input size.

Previous Work The problem of constructing an encoding data structure for
answering range minimum queries has been well-studied because of its wide
applications. It is well-known that any two arrays have a different set of answers
of range minimum queries if and only if their corresponding Cartesian trees [19]
are distinct. Thus, the effective entropy of answering range minimum queries on
the array A of size n is 2n−Θ(log n) bits. Sadakane [17] proposed the (4n+o(n))-
bit encoding with O(1) query time using the balanced-parenthesis (BP) [11] of
the Cartesian tree on A with additional nodes. Fisher and Heun [7] proposed the
(2n+o(n))-bit data structure (hence, succinct), which supports O(1) query time
using the depth-first unary degree sequence (DFUDS) [2] of the 2d-min heap on
A. Here, a 2d-min heap of A is an alternative representation of the Cartesian
tree on A. By maintaining the encodings of both 2d-min and max heaps on A
(2d-max heap can be defined analogously to 2d-min heap), the encoding of [7]
directly gives a (4n+o(n))-bit encoding for answering both range minimum and
maximum queries in O(1) time. Gawrychowski and Nicholson [8] reduced this
space to (3n+ o(n))-bit while supporting the same query time for both queries.
They also showed that the effective entropy for answering the range minimum
and maximum queries is at least 3n−Θ(log n) bits.

Next/previous smaller value queries were motivated from the parallel com-
puting [3], and have application in constructing compressed suffix trees [14].
If all elements in A are distinct, one can answer both the next and previous
smaller queries using Fischer and Heun’s encoding for answering range minimum
queries [7]. For the general case, Ohlebusch et al. [14] proposed the (3n+o(n))-bit
encoding for supporting range minimum and next/previous smaller value queries
in O(1) time. Fischer [6] improved the space to 2.54n+o(n) bits while maintain-
ing the same query time. More precisely, their data structure uses the colored
2d-min heap on A, which is a 2d-min heap on A with the coloring on its nodes.
Since the effective entropy of the colored 2d-min heap on A is 2.54n−Θ(log n)
bits [10], the encoding of [6] is succinct. For any q ≥ 1, the encoding of [6] also
supports the range q-th minimum queries in O(1) time [9].

From the above, the encoding of Fischer [6] directly gives a (5.08n + o(n))-
bit data structure for answering the range q-th minimum/maximum queries and
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Table 1. Summary of the upper and lower bounds results of encoding data structures
for answering q-th minimum/maximum queries and next larger/smaller value queries
on the array A[1, . . . , n], for any q ≥ 1 (here, we can choose ` as any positive integer).
Note that all our upper bound results also support the range minimum/maximum and
previous larger/smaller value queries in O(1) time (the data structures of [6, 9] with
O(1) query time also support these queries in O(1) time).

Array Type Space (in bits) Query time Reference
Upper bounds

A[i] 6= A[i + 1] for all i ∈ [1, n− 1]
4n + o(n) O(1) [9]

3.585n O(n) [18]
3.585n + o(n) O(log(`) n) This paper

General array

5.08n + o(n) O(1) [6, 9]
4.088n + o(n) O(n) [9]
4.585n + o(n) O(1)

3.701n O(n) [18]
3.701n + o(n) O(log(`) n) This paper

Lower bounds
Permutation 3n−Θ(logn) [8]
General array 3.16n−Θ(logn) This paper

next/previous larger/smaller value queries in O(1) time by maintaining the data
structures of both colored 2d-min and max heaps. Jo and Satti [9] improved the
space to (i) 4n + o(n) bits if there are no consecutive equal elements in A and
(ii) 4.585n + o(n) bits for the general case while supporting all the queries in
O(1) time. They also showed that if the query time is not of concern, the space
of (ii) can be improved to 4.088n + o(n) bits. Recently, Tsur [18] improved the
space to 3.585n bits if there are no consecutive equal elements in A and 3.701n
bits for the general case. However, their encoding does not support the queries
efficiently (O(n) time for all queries).

Our Results Given an array A[1, . . . , n] of size n with the interval [i, j] ⊂ [1, n]
and the position 1 ≤ p ≤ n, we show the following results:

(a) If A has no two consecutive equal elements, there exists a (3.585n + o(n))-
bit data structure, which can answer (i) RMin(i, j), RMax(i, j), PSV(p),
and PLV(p) queries in O(1) time, and (ii) for any q ≥ 1, RMin(i, j, q),
RMax(i, j, q), NSV(p), and NLV(p) queries in O(log(`) n) time3, for any posi-
tive integer `.

(b) For the general case, the data structure of (a) uses 3.701n+ o(n) bits while
supporting the same query time.

Our results match the current best upper bounds of Tsur [18] up to lower-order
additive terms while supporting the queries efficiently.

The main idea of our encoding data structure is to combine the BP of colored
2d-min and max heap of A. Note that all previous encodings in [8,9,18] combine
the DFUDS of the (colored) 2d-min and max heap on A. We first consider

3 Throughout the paper, we denote logn as the logarithm to the base 2
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the case when A has no two consecutive elements (Section 3). In this case, we
show that by storing the BP of colored 2d-min heap on A along with its color
information, there exists a data structure that uses at most 3n+ o(n) bits while
supporting range minimum, range q-th minimum, and next/previous smaller
value queries efficiently. The data structure is motivated by the data structure
of Jo and Satti [9] which uses DFUDS of colored 2d-min heap on A. Compared
to the data structure of [9], our data structure uses less space for the color
information. Next, we show how to combine the data structures on colored 2d-
min and max heap on A into a single structure. The combined data structure is
motivated by the idea of Gawrychowski and Nicholson’s encoding [8] to combine
the DFUDS of 2d-min and max heap on A.

In Section 4, we consider the case that A has consecutive equal elements. In
this case, we show that by using some additional auxiliary structures, the queries
on A can be answered efficiently from the data structure on the array A′, which
discards all the consecutive equal elements from A.

Finally, in Section 5, we show that the effective entropy of the encoding
to support the range q-th minimum and maximum queries on A is at least
3.16n − Θ(log n) bits. Our result is obtained by extending the (3n − Θ(log n))-
bit lower bound of Gawrychowski and Nicholson [8] for answering the range
minimum and maximum queries on a permutation of size n. We summarize our
results in Table 1.

2 Preliminaries

This section introduces some data structures used in our results.

0

1 2

3

4

7

6

8

5 9

0

1 2 4 5

0

1 2 4

0

1 2 4 9

3

0

1

2

73

84

5 6 9

Min(A) Max(A)

Fig. 1. Min(A) and Max(A) on the array A = 5 4 5 3 1 2 6 3 1.

2d min-heap and max-heap Given an array A[1, . . . , n] of size n, the 2d
min-heap on A (denoted by Min(A)) [6] is a rooted and ordered tree with n+ 1
nodes, where each node corresponds to the value in A, and the children are
ordered from left to right. More precisely, Min(A) is defined as follows:
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1. The root of Min(A) corresponds to A[0] (A[0] is defined as −∞).
2. For any i > 0, A[i] corresponds to the (i + 1)-th node of Min(A) according

to the preorder traversal.
3. For any non-root node corresponds to A[j], its parent node corresponds to
A[PSV(j)].

In the rest of the paper, we refer to the node i in Min(A) as the node corre-
sponding to A[i] (i.e., the (i + 1)-th node according to the preorder traversal).
One can also define the 2d-max heap on A (denoted as Max(A)) analogously.
More specifically, in Max(A), A[0] is defined as ∞, and the parent of node i > 0
corresponds to the node PLV(i) (see Figure 1 for an example). In the rest of the
paper, we only consider Min(A) unless Max(A) is explicitly mentioned. The same
definitions, and properties for Min(A) can be applied to Max(A).

For any i > 0, Min(A) is the relevant tree of the node i if the node i is an
internal node in Min(A). From the definition of Min(A), Tsur [18] showed the
following lemma.

Lemma 1 ([18]). For any i ∈ {1, 2, . . . , n− 1}, the following holds:

(a) If Min(A) is a relevant tree of the node i, then the node (i+1) is the leftmost
child of the node i in Min(A).

(b) If A has no two consecutive equal elements, Min(A) (resp. Max(A)) is a
relevant tree of the node i if and only if the node i is a leaf node in Max(A)
(resp. Min(A)).
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Fig. 2. cMin(A) and cMax(A) on the array A = 5 4 5 3 1 2 6 3 1. The nodes with
slash line indicate the valid nodes.

Colored 2d min-heap and max-heap The colored 2d-min heap of A (denoted
by cMin(A)) [6] is Min(A) where each node is colored red or blue as follows. The
node i in cMin(A) is colored red if and only if i is not the leftmost child of its
parent node, and A[i] 6= A[j], where the node j is the node i’s immediate left
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sibling. Otherwise, the node i is colored blue. One can also define the colored 2d-
max heap on A (denoted by cMax(A)) analogously (see Figure 2 for an example).
The following lemma says that we can obtain the color of some nodes in cMin(A)
from their tree structures.

Lemma 2. For any node i in cMin(A), the following holds:

(a) If the node i is the leftmost child of its parent node, the color of the node i
is always blue.

(b) If A has no two consecutive equal elements, the color of the node i is always
red if its immediate left sibling is a leaf node.

Proof. (a) is directly proved from the definition of cMin(A). Also, if the imme-
diate left sibling j of the node i is a leaf node, j is equal to i − 1 (note that
the preorder traversal of cMin(A) visits the node i immediately after visiting the
node j). Thus, if A has no consecutive equal elements, the color of the node i is
red. ut

We say the node i in cMin(A) is valid if the node i is a non-root node in
cMin(A) which is neither the leftmost child nor the immediate right sibling of
any leaf node. Otherwise, the node i is invalid. By Lemma 2, if A has no two
consecutive equal elements, the color of the invalid nodes of cMin(A) can be
decoded from the tree structure.

Rank and Select queries on bit arrays Given a bit array B[1, . . . , n] of size
n, and a pattern p ∈ {0, 1}+, (i) rankp(i, B) returns the number of occurrence
of the pattern p in B[1, . . . , i], and (ii) selectp(j, B) returns the first position of
the j-th occurrence of the pattern p in B. The following lemma shows that there
exists a succinct encoding, which supports both rank and select queries on B
efficiently.

Lemma 3 ([12, 16]). Given a bit array B[1, . . . , n] of size n containing m 1s,
and a pattern p ∈ {0, 1}+ with |p|≤ log n

2 , the following holds:

– There exists a (log
(
n
m

)
+ o(n))-bit data structure for answering both

rankp(i, B) and selectp(j, B) queries in O(1) time. Furthermore, the data
structure can access any Θ(log n)-sized consecutive bits of B in O(1) time.

– If one can access any Θ(log n)-sized consecutive bits of B in O(1) time, both
rankp(i, B) and selectp(j, B) queries can be answered in O(1) time using o(n)-
bit auxiliary structures.

Balanced-parenthesis of trees Given a rooted and ordered tree T with n
nodes, the balanced-parenthesis (BP) of T (denoted by BP(T )) [11] is a bit
array defined as follows. We perform a preorder traversal of T . We then add
a 0 to BP(T ) when we first visit a node and add a 1 to BP(T ) after visiting
all nodes in the subtree of the node. Since we add single 0 and 1 to BP(T )
per each node in T , the size of BP(T ) is 2n. For any node i in T , we define
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f(i, T ) and s(i, T ) as the positions of the 0 and 1 in BP(T ) which are added
when the node i is visited, respectively. When T is clear from the context, we
write f(i) (resp. s(i)) to denote f(i, T ) (resp. s(i, T )). If T is a 2d-min heap,
f(i, T ) = select0(i+ 1, BP (T )) by the definition of 2d-min heap.

3 Data structure on arrays with no consecutive equal
elements

In this section, for any positive integer `, we present a (3.585n + o(n))-bit
data structure on A[1, . . . , n], which supports (i) range minimum/maximum and
previous larger/smaller queries on A in O(1) time, and (ii) range q-th mini-
mum/maximum and next larger/smaller value queries on A in O(log(`) n) time
for any q ≥ 1, when there are no two consecutive equal elements in A. We first
describe the data structure on cMin(A) for answering the range minimum, range
q-th minimum, and next/previous smaller value queries on A. Next, we show how
to combine the data structures on cMin(A) and cMax(A) in a single structure.

Encoding data structure on cMin(A) We store cMin(A) by storing its tree
structure along with the color information of the nodes. To store the tree struc-
ture, we use BP(cMin(A)). Also, for storing the color information of the nodes,
we use a bit array cmin, which stores the color of all valid nodes in cMin(A)
according to the preorder traversal order. In cmin we use 0 (resp. 1) to indicate
the color blue (resp. red). It is clear that cMin(A) can be reconstructed from
BP(cMin(A)) and cmin. Since BP(cMin(A)) and cmin takes 2(n+ 1) bits and at
most n bits, respectively, the total space for storing cMin(A) takes at most 3n+2
bits. Note that a similar idea is used in Jo and Satti’s extended DFUDS [9], which
uses the DFUDS of cMin(A) for storing the tree structure. However, extended
DFUDS stores the color of all nodes other than the leftmost children, whereas
cmin does not store the color of all invalid nodes. The following lemma shows
that from BP(cMin(A)), we can check whether the node i is valid or not without
decoding the entire tree structure.

Lemma 4. The node i is valid in cMin(A) if and only if f(i) > 2 and both
BP (cMin(A))[f(i)− 2] and BP (cMin(A))[f(i)− 1] are 1.

Proof. If both BP (cMin(A))[f(i) − 2] and BP (cMin(A))[f(i) − 1] are 1, the
preorder traversal of cMin(A) must complete the traversal of two subtrees con-
secutively just before visiting the node i for the first time, which implies the
node i’s immediate left sibling is not a leaf node (hence the node i is valid).

Conversely, if BP (cMin(A))[f(i) − 1] = 0, cMin(A) is a relevant tree of the
node i−1. Thus, the node i is the leftmost child of the node (i−1) by Lemma 1.
Next, if BP (cMin(A))[f(i) − 2] = 0 and BP (cMin(A))[f(i) − 1] = 1, the node
(i−1) is the immediate left sibling of the node i since f(i)−2 is equal to f(i−1).
Also the node (i− 1) is a leaf node since f(i)− 1 is equal to s(i− 1). Thus, the
node i is invalid in this case. ut
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Now we describe how to support range minimum, range q-th minimum, and
next/previous smaller value queries efficiently on A using BP(cMin(A)) and cmin

with o(n)-bit additional auxiliary structures. Note that both the range minimum
and previous smaller value query on A can be answered in O(1) time using
BP (cMin(A)) with o(n)-bit auxiliary structures [5, 13]. Thus, it is enough to
consider how to support a range q-th minimum and next smaller value queries
on A. We introduce the following lemma of Jo and Satti [9], which shows that one
can answer both queries with some navigational and color queries on cMin(A).

Lemma 5 ([9]). Given cMin(A), suppose there exists a data structure, which
can answer (i) the tree navigational queries (next/previous sibling, subtree size,
degree, level ancestor, child rank, child select, and parent4) on cMin(A) in t(n)
time, and the following color queries in s(n) time:

– color(i): return the color of the node i
– PRS(i): return the rightmost red sibling to the left of the node i.
– NRS(i): return the leftmost red sibling to the right of the node i.

Then for any q ≥ 1, range q-th minimum, and the next smaller value queries on
A can be answered in O(t(n) + s(n)) time.

Since all tree navigational queries in Lemma 5 can be answered in O(1) time
using BP(cMin(A)) with o(n)-bit auxiliary structures [13], it is sufficient to show
how to support color(i), PRS(i), and NRS(i) queries using BP(cMin(A)) and cmin.
By Lemma 3 and 4, we can compute color(i) in O(1) time using o(n)-bit auxiliary
structures by the following procedure: We first check whether the node i is valid
using O(1) time by checking the values at the positions f(i) − 1 and f(i) − 2
in BP(cMin(A)). If the node i is valid (i.e., both the values are 1), we answer
color(i) in O(1) time by returning cmin[j] where j is rank110(f(i),BP(cMin(A)))
(otherwise, by Lemma 4, we answer color(i) as blue if and only if the node i is
the leftmost child of its parent node). Next, for answering PRS(i) and NRS(i),
we construct the following `′-level structure (`′ will be decided later):

– At the first level, we mark every (log n log log n)-th child node and maintain
a bit array M1[1, . . . , n] where M1[t] = 1 if and only if the node t is marked
(recall that the node t is the node in Min(A) whose preorder number is t). Since
there are n/(log n log log n) = o(n) marked nodes, we can store M1 using o(n)
bits while supporting rank queries in O(1) time by Lemma 3 (in the rest of
the paper, we ignore all floors and ceilings, which do not affect to the results).
Also we maintain an array P1 of size n/(log n log log n) where P1[j] stores both
PRS(s) and NRS(s) if s is the j-th marked node according to the preorder
traversal order. We can store P1 using O(n log n/(log n log log n)) = o(n) bits.

– For the i-th level where 1 < i ≤ `′, we mark every (log(i) n log(i+1) n)-th child
node. We then maintain a bit array Mi which is defined analogously to M1.
We can store Mi using o(n) bits by Lemma 3.

4 refer to Table 1 in [13] for detailed definitions of the queries
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Now for any node p, let cr(p) be the child rank of p, i.e., the number
of left siblings of p. Also, let pre(i−1)(p) (resp. next(i−1)(p)) be the right-
most sibling of p to the left (resp. leftmost sibling of p to the right) which
is marked at the (i − 1)-th level. Suppose s is the j-th marked node at
the current level according to the preorder traversal order. Then we de-
fine an array Pi of size n/(log(i) n log(i+1) n) as Pi[j] stores both (i) the
smaller value between cr(s) − cr(PRS(s)) and cr(s) − cr(pre(i−1)(s)), and
(ii) the smaller value between cr(NRS(s))−cr(s) and cr(next(i−1)(s))−cr(s).
Since both (i) and (ii) are at most log(i−1) n log(i) n, we can store Pi using
O(n log(i) n/(log(i) n log(i+1) n)) = o(n) bits. Therefore, the overall space is
O(n/log(`′+1) n) = o(n) bits in total for any positive integer `′.

To answer PRS(i) (the procedure for answering NRS(i) is analogous), we
first scan the left siblings of i using the previous sibling operation. Whenever
the node i1 is visited during the scan, we check whether (i) color(i1) = red, or
(ii) M`′ [i1] = 1 in O(1) time. If i1 is neither the case (i) nor (ii), we continue
the scan. If i1 is in the case (i), we return i1 as the answer. If i1 is in the case
(ii), we jump to the i1’s left sibling i2 whose child rank is cr(i1)− P`′ [j], where
j = rank1(i1,M`′−1). Since the node i2 always satisfies one of the following:
color(i2) = red orM`′−1[i2] = 1, we can answer PRS(i) by iteratively performing
child rank and rank operations at most O(`′) times after finding i2. Thus, we
can answer PRS(i) in O(`′) time in total (we scan at most O(`′) nodes to find
i2). By choosing ` as `′ + 2, we obtain the following theorem.

Theorem 1. Given an array A[1, . . . , n] of size n and any positive integer `, we
can answer (i) range minimum and previous smaller value queries in O(1) time,
and (ii) range q-th minimum and next smaller value queries for any q ≥ 1 in
O(log(`) n) time, using BP(cMin(A)) and cmin with o(n)-bit auxiliary structures.

Theorem 1 implies that there exists a data structure of cMax(A) (composed
to BP(cMax(A)) and cmax with o(n)-bit auxiliary structures), which can answer
(i) range maximum and previous larger value queries in O(1) time, and (ii) range
q-th maximum and next larger value queries for any q ≥ 1 in O(log(`) n) time.

Combining the encoding data structures on cMin(A) and cMax(A)
We describe how to combine the data structure of Theorem 1 on cMin(A) and
cMax(A) using 3.585n+ o(n) bits in total. We first briefly introduce the idea of
Gawrychowski and Nicholson [8] to combine the DFUDS of Min(A) and Max(A).
In DFUDS, any non-root node i is represented as a bit array 0di1 where di is the
degree of i [2]. The encoding of [8] is composed of (i) a bit array U [1, . . . , n], where
U [i] indicates the relevant tree of the node i, and (ii) a bit array S = s1s2 . . . sn
where si is the bit array, which omits the first 0 from the DFUDS of the node i
on its relevant tree. To decode the DFUDS of the node i in Min(A) or Max(A),
first check whether the tree is the relevant tree of the node i by referring to U [i].
If so, one can decode it by prepending 0 to si. Otherwise, the decoded sequence
is simply 1 by Lemma 1(b). Also, Gawrychowski and Nicholson [8] showed that
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U and S take at most 3n bits in total. The following lemma shows that a similar
idea can also be applied to combine BP(cMin(A)) and BP(cMax(A)) (the lemma
can be proved directly from Lemma 1).

Lemma 6. For any node i ∈ {1, 2, . . . , n − 1}, if cMin(A) is a relevant
tree of the node i, f(i + 1, cMin(A)) = f(i, cMin(A)) + 1, and f(i +
1, cMax(A)) = f(i, cMax(A))+k, for some k > 1. Otherwise, f(i+1, cMax(A)) =
f(i, cMax(A)) + 1, and f(i+ 1, cMin(A)) = f(i, cMin(A)) + k, for some k > 1.
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S (not stored) 0 10 10 0 0 110 0 0 1110

D 0 1 1 0 0 2 0 0 2
E 0 10

cmin 1 0
cmax 0 1

1

Fig. 3. Combined data structure of cMin(A) and cMax(A). i-th column of the table
shows (i) the substring of BP(cMin(A)) and BP(cMax(A)) begin at position f(i−1)+1
and end at position f(i) (shown in the second and the third row, respectively), and (ii)
si for each i (shown in the fourth row).

We now describe our combined data structure of cMin(A) and cMax(A). We
first maintain the following structures to store BP(cMin(A)) and BP(cMax(A)):

1. The same bit array U [1, . . . , n−1] as in the encoding of [8]. We define U [i] = 0
(resp. U [i] = 1) if cMin(A) (resp. cMax(A)) is a relevant tree of the node i.
For example, U [6] = 0 since cMin(A) is a relevant tree of the node 6.

2. For each node i ∈ {1, 2, . . . , n−1}, suppose the tree T ∈ {cMin(A), cMax(A)}
is not a relevant tree of i, and let ki be the number of ones between f(i, T )
and f(i+ 1, T ). Now let S = s1s2 . . . sn−1 be a bit array, where si is defined
as 1ki−10. For example, since there exist three 1’s between f(6) and f(7)
in cMax(A), s6 = 110. Then, S is well-defined by Lemma 6 (ki ≥ 1 for
all i). Also, since there are at most n − 1 ones and exactly n − 1 zeros by
lemma 1(b), the size of S is at most 2(n − 1). We maintain S using the
following two arrays:



Space-efficient data structure for next/previous larger/smaller value queries 11

(a) An array D[1, . . . n − 1] of size n where D[i] = 0 if si contains no ones,
D[i] = 1 if si contains a single one, and D[i] = 2 otherwise. For example,
D[6] = 2, since s6 has two ones. We maintain D using the data structure
of Dodis et al. [4], which can decode any Θ(log n) consecutive elements of
D in O(1) time using d(n− 1) log 3e bits. Now let k and ` be the number
of 1’s and 2’s in D, respectively.

(b) Let i2 be the position of the i-th 2 in D. Then, we store a bit array
E = e1e2, . . . , e` where ei is a bit array defined by omitting the first two
1’s from si2 . For example, since the 6 is the first position of D whose
value is 2 and s6 = 110, e1 is defined as 0. The size of E is at most
2(n− 1)− (n− 1)− (k + `) = n− k − `.

3. We store both f(n, cMin(A)), and f(n, cMax(A)) using O(log n) bits.

To store both cmin and cmax, we simply concatenate them into a single array
cminmax, and store the length of cmin using O(log n) bits. Then, by Lemma 4,
the size of cminmax is k+`. Thus, our encoding of cMin(A) and cMax(A) takes at
most (n−1)+(n−1) log 3+(n−k−`)+(k+`)+O(log n) = (2+log 3)n+O(log n) <
3.585n+O(log n) bits in total [18]. An overall example of our encoding is shown
in Figure 3. Now we prove the main theorem in this section.

Theorem 2. Given an array A[1, . . . , n] of size n and any positive integer
`, suppose A has no two consecutive equal elements. Then there exists a
(3.585n + o(n))-bit encoding data structure which can answer (i) range min-
imum/maximum and previous larger/smaller value queries in O(1) time, and
(ii) range q-th minimum/maximum and next larger/smaller value queries in
O(log(`) n) time, for any q ≥ 1.

Proof. We show how to decode any log n consecutive bits of BP(cMin(A)), which
proves the theorem. Note that the auxiliary structures and the procedure for
decoding BP(cMax(A)) are analogous. Let B[1, . . . , f(n) − 1] be a subarray of
BP(cMin(A)) of size f(n)−1, which is defined as BP(cMin(A))[2, . . . , f(n)]. Then
it is enough to show how to decode log n consecutive bits of B in O(1) time using
o(n)-bit auxiliary structures (note that BP(cMin(A)) is 0 · B · 12n+2−f(n)). We
also denote f(n)− 1 by f ′(n) in this proof.

We first define correspondences between the positions of B and D, and be-
tween the positions of B and E as follows. For each position j ∈ {1, . . . , f ′(n)}
of B, let α(j) and β(j) be the corresponding positions of j in D and E, respec-
tively. We define both α(1) and β(1) as 1, and for each j ∈ {2, . . . , f ′(n)}, we
define α(j) as rank0(j − 1, B). Next, let k be the number of 2’s in D[1, . . . , α(j)]
and j′ be the number of 1’s in B between B[j] and the and the leftmost 0 in
B[j, . . . , f(α(j + 1))]. Then β(j) is defined as (i) 1 if k = 0, (ii) select0(k,E) + 1
if k > 0 and D[α(j)] 6= 2, and (iii) select0(k,E) − max (j′ − 3, 0) otherwise.
Then any subarray of B starting from the position j can be constructed from
the subarrays of U , D and E starting from the positions rank0(j, B), α(j) and
β(j), respectively.

Now, for i ∈ {1, 2, . . . , d(f ′(n))/log ne}, let the i-th block of B be
B[d(i− 1) log n+ 1e , . . . ,min (di log ne , f ′(n))]. Then, it is enough to decode at
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most two consecutive blocks of B to construct any log n consecutive bits of B.
Next, we define the i-th block of U , D, and E as follows:

– i-th block of U is defined as a subarray of U whose starting and ending po-
sitions are rank0(d(i− 1) log ne , B), and rank0(min (di log ne − 1, f ′(n)), B),
respectively. To decode the blocks of U without B, we mark all the starting
positions of the blocks of U using a bit array U1 of size f ′(n) where U1[i] = 1
if and only if the position i is the starting position of the block in U . Then,
since U1 contains at most O(f ′(n)/log n) = o(n) 1’s, we can store U1 using
o(n) bits while supporting rank and select queries in O(1) time by Lemma 3.

– i-th block of D is defined as a subarray of D whose starting and ending
positions are α(d(i− 1) log ne+ 1) and α(min (di log ne , f ′(n))), respectively.
Then, the size of each block of D is at most log n, since any position of D
has at least one corresponding position in B. We maintain a bit array D1

analogous to U1 using o(n) bits. Also, to indicate the case that two distinct
blocks of D share the same starting position, we define another bit array D2

of size df ′(n)/log ne where D2[i] = 1 if and only if i-th block of D has the
same starting position as the (i − 1)-th block of D. We store D2 using the
data structure of Lemma 3 using o(n) bits to rank and select queries in O(1)
time. Then, we can decode any block of D in O(1) time using rank and select
operations on D1 and D2.

– i-th block of E is defined as a subarray of E whose starting and ending po-
sitions are β(d(i− 1) log ne+ 1) and β(min (di log ne , f ′(n))), respectively. To
decode the blocks of E, we maintain two bit arrays E1 and E2 analogous to
D1 and D2, respectively, using o(n) bits.

Note that, unlike D, the size of some blocks in E can be arbitrarily large
since some positions in E do not have the corresponding positions in B. To
handle this case, we classify each block of E as bad block and good block where
the size of bad block is at least at c log n for some constant c ≥ 9, whereas
the size of good block is less than c log n. If the i-th block of E is good (resp.
bad), we say it as i-th good (resp. bad) block.

For each i-th bad block of E, let Fi be a subsequence of the i-th bad
block, which consists of all bits at the position j where β−1(j) exists. We
store Fi explicitly, which takes Θ(n) bits in total (the size of Fi is at most
log n). However, we can apply the same argument used in [8] to maintain
min-bad block due to the fact that each position in E corresponds to at least
one position in either BP(cMin(A)) or BP(cMax(A)). The argument says that
for each i-th bad block of E, one can save at least log n bits by maintaining
it in a compressed form. Thus, we can maintain Fi for all i-th bad blocks of
E without increasing the total space.

Next, let g(u, d, e, b) be a function, which returns a subarray of B from the
subarrays of U , and D, and E as follows (suppose u = u[1] · u′ and d = d[1] · d′):
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g(u, d, e, b) =



ε if u = ε or d = ε

0 · g(u′, d′, e, b) if u[1] 6= b and d[1] 6= 2

0 · g(u′, d′, e′, b) if u[1] 6= b, d[1] = 2, and e = 1t0 · e′

10 · g(u′, d′, e, b) if u[1] = b and d[1] = 0

110 · g(u′, d′, e, b) if u[1] = b and d[1] = 1

1t · g(u, d, e′, b) if u[1] = b, d[1] = 2, and e = 1t · e′

1t+30 · g(u′, d′, e′, b) if u[1] = b, d[1] = 2, and e = 1t0 · e′

We store a precomputed table that stores g(u, d, e, b) for all possible u, d,
and e of sizes 1

4 log n and b ∈ {0, 1} using O(2
1
4 log n+ 3

2 ·
1
4 log n+ 1

4 log n log n) =

O(n
7
8 log n) = o(n) bits.
To decode the i-th block of B, we first decode the i-block of U and D in

O(1) time using rank and select queries on U1, D1, and D2. Let these subarrays
be bu and bd, respectively. Also, we decode the i-th block of E using rank and
select queries on E1 and E2. We then define be as Fi if the i-th block of E is
bad. Otherwise, we define be as the i-th good block of E. Next, we compute
g(bu, bd, be, 0) in O(1) time by referring to the precomputed table O(1) times,
and prepend 0 if we decode the first block of B. Finally, note that there are at
most q ≤ 4 consecutive positions from p to p+ q − 1 of B whose corresponding
positions are the same in both D and E. Because such a case can only occur
when B[p] = B[p+ 1] = · · · = B[p+ q−2] = 1 and B[p+ q−1] = 0, we maintain
an array R of size O(n/log n), which stores the four cases of the number of
consecutive 1’s (0, 1, 2, or at least 3) from the beginning of the i-th block of B.
Then, if the number of consecutive 1’s from the beginning of g(bu, bd, be, 0) is at
most 3, we delete some 1s from the beginning of g(bu, bd, be, 0) by referring to R
as the final step. ut

4 Data structure on general arrays

In this section, we present a (3.701n + o(n))-bit data structure to support the
range q-th minimum/maximum and next/previous larger/smaller value queries
on the array A[1 . . . , n] without any restriction. Let C[1, . . . , n] be a bit array of
size n where C[1] = 0, and for any i > 1, C[i] = 1 if and only if C[i− 1] = C[i].
If C has k ones, we define an array A′[1, . . . , n−k] of size n−k that discards all
consecutive equal elements from A. Then from the definition of colored 2d-min
and max heap, we can observe that if C[i] = 1, (i) the node i is a blue-colored leaf
node, and (ii) i’s immediate left sibling is also a leaf node, both in cMin(A) and
cMax(A). Furthermore, by deleting all the bits at the positions f(i, cMin(A))−
1, and f(i, cMin(A)) from BP(cMin(A)) we can obtain BP(cMin(A′)). We can
also obtain BP(cMax(A′)) from BP(cMax(A′)) analogously. Now we prove the
following theorem.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 -
A[i] −∞ 5 4 5 3 1 2 2 2 6 3 4 1

BP (cMin(A)) 0 0 10 0 110 10 0 10 10 0 10 0 11110 11
BP (cMax(A)) 0 0 0 110 0 0 10 10 10 1110 0 10 0 1111
BP (cMin(A′)) 0 0 10 0 110 10 0 0 10 0 11110 11
BP (cMax(A′)) 0 0 0 110 0 0 10 1110 0 10 0 1111

U 1 0 1 1 0 0 1 0 1
S (not stored) 0 10 10 0 0 110 0 0 1110

D 0 1 1 0 0 2 0 0 2
E 0 10

cmin 1 0
cmin 0 1
C 0 0 0 0 0 0 1 1 0 0 0 0

1

Fig. 4. Combined data structure of cMin(A) and cMax(A). Note that A′ is the same
array as the array in Figure 3.

Theorem 3. Given an array A[1, . . . , n] of size n and any positive integer `,
there exists a (3.701n + o(n))-bit encoding data structure which can answer (i)
range minimum/maximum and previous larger/smaller value queries in O(1)
time, and (ii) range q-th minimum/maximum and next larger/smaller value
queries in O(log(`) n) time, for any q ≥ 1.

Proof. The data structure consists of C and the data structure of Theorem 2 on
A′, which can answer all the queries on A′ in O(log(`) n) time (see Figure 4 for
an example). By maintaining C using the data structure of Lemma 3, the data
structure takes at most (2 + log 3)(n − k) +

(
n
k

)
+ o(n) ≤ 3.701n + o(n) bits in

total [18] while supporting rank and select queries on C in O(1) time. For any
node i in cMin(A) and cMax(A), we can compute the color of the node i in O(1)
time as follows. If C[i] = 0, we return the color of the node (rank0(i, C)− 1) in
cMin(A′) and cMax(A′), respectively. Otherwise, we return blue. Now we describe
how to decode any log n consecutive bits of BP(cMin(A)) in O(1) time using o(n)-
bit auxiliary structures, which proves the theorem (the auxiliary structures and
the procedure for decoding BP(cMax(A)) are analogous). In the proof, we denote
BP(cMin(A)) and BP(cMin(A′)) as B and B′, respectively.

For each position j of B, we say j is original if B[j] comes from the bit in
B′, and additional otherwise. That is, the position j is additional if and only if
j is f(j′)− 1 or f(j′) where C[j′] = 1. For each original position j, let b′(j) be
its corresponding position in B′.

Now we divide B into the blocks of size log n except the last block, and let si
be the starting position of the i-th block of B. We then define a bit arrayMB′ of
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size 2(n−k) as follows. For each i ∈ 1, . . . , d(2(n+ 1)/log ne, we set the b′(si)-th
position ofMB′ as one if si is original. Otherwise, we set the b′(s′i)-th position of
MB′ as one where s′i is the leftmost original position from si to the right in B.
All other bits in MB′ are 0. Also, let M ′B′ a bit array of size d(2(n+ 1)/log ne
where M ′B′ [i] is 1 if and only if we mark the same position for si and si−1.
Since MB′ has at most d(2(n+ 1)/log ne = o(n) ones, we can maintain both
MB′ and M ′B′ in o(n) bits while supporting rank and select queries in O(1) time
by Lemma 3. Similarly, we define a bit array MC of size n as follows. If si is
original, we set the (rank0(si−1, B))-th position ofMC as one. Otherwise, we set
the (rank0(si − 1, B))-th (resp. (rank0(si, B)-th) position of MC as one if B[si]
is 0 (resp. 1). We also maintain a bit array M ′C analogous to M ′B′ . Again, we
can maintain both MC and M ′C using o(n) bits while supporting rank and select
queries on them in O(1) time.

Next, let h(b, c) be a function, which returns a subarray of B from the sub-
arrays of B′ and C, defined as follows (suppose c = c[1] · c′):

h(b, c) =


1t if b = 1t and c[1] = 0

1t0 · h(b′, c′) if b = 1t0 · b′ and c[1] = 0

10 · h(b, c′) if c[1] = 1

We store a precomputed table, which stores h(b, c) for all possible b, c of size
1
4 log n using O(2

1
2 log n log n) = O(

√
n log n) = o(n) bits.

To decode the i-th block of B, we first decode log n-sized subarrays of B′
and C, bb′ and bc, whose starting positions are select1(rank0(i,M ′B′),MB′) and
select1(rank0(i,M ′C),MC), respectively. We then compute h(bb′ , bc) in O(1) time
by referring to the precomputed table O(1) times. Finally, we store a bit array
of size o(n), which indicates whether the first bit of the i-th block of B is 0 or
not. As the final step, we delete the leftmost bit of h(bb′ , bc) if the i-th block of
B starts from 0, and si is additional (this can be done by referring to the bit
array). ut

5 Lower bounds

This section considers the effective entropy to answer range q-th minimum and
maximum queries on an array of size n, for any q ≥ 1. Note that for any
i ∈ {1, . . . , n}, both PSV(i) and PLV(i) queries can be answered by comput-
ing q-th range minimum and maximum queries on the suffixes of the substring
A[1, . . . , i], respectively. Similarly, both NSV(i) and NLV(i) queries can be an-
swered by computing q-th range minimum and maximum queries on the prefixes
of the substring A[i, . . . , n], respectively.

Let An be a set of all arrays of size n ≥ 2 constructed from the following
procedure:

1. For any 0 ≤ k ≤ n−1, pick arbitrary k positions in {2, . . . , n}, and construct
a Baxter Permutation [1] πn−k of size n − k on the rest of n − k positions.
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Here, a Baxter permutation is a permutation that avoids the patterns 2−41−3
and 3−14−2.

2. For k picked positions, assign the rightmost element in πn−k to the left.

Since the number of all possible Baxter permutations of size n − k is
at most 23(n−k)−Θ(log n) [8], the effective entropy of An is at least log|An|≥
log(

∑n−1
k=0 23(n−k)−Θ(log n) ·

(
n−1
k

)
) ≥ max k(3n − 3k + log

(
n
k

)
− Θ(log n)) ≥

n log 9 − Θ(log n) ≥ 3.16n − Θ(log n) bits [18]. The following theorem shows
that the effective entropy of the encoding to support the range q-th minimum
and maximum queries on an array of size n is at least 3.16n−Θ(log n) bits.

Theorem 4. Any array A in An for n ≥ 2 can be reconstructed using range
q-th minimum and maximum queries on A.

Proof. We follow the same argument used in the proof of Lemma 3 in [8], which
shows that one can reconstruct any Baxter permutation of size n using range
minimum and maximum queries.

The proof is induction on n. the case n = 2 is trivial since only the possible
cases are {1, 1} or {1, 2}, which can be decoded by range first and second min-
imum queries. Now suppose the theorem statement holds for any size less than
n ≥ 3. Then, both A1 = A[1, . . . , n− 1] and A2 = A[2, . . . , n] from An−1 can be
reconstructed by the induction hypothesis. Thus, to reconstruct A from A1 and
A2, it is enough to compare A[1] and A[n].

If any answer of RMax(1, n, q) and RMin(1, n, q) contains the position 1 or n,
we are done. Otherwise, let x and y be the rightmost positions of the smallest
and largest element in [2, n − 1], which can be computed by RMax(1, n, q) and
RMin(1, n, q), respectively. Without a loss of generality, suppose x < y (other case
is symmetric). In this case, [8] showed that (i) there exists a position i ∈ [x, y],
which satisfies A[1] < A[i] < A[n] or A[1] > A[i] > A[n], or (ii) A[1] < A[n],
which proves the theorem (note that A[1] cannot be equal to A[n] in this case
since the same elements in A always appear consecutively). ut

6 Conclusion

This paper proposes an encoding data structure that efficiently supports
range (q-th) minimum/maximum queries and next/previous larger/smaller value
queries. Our results match the current best upper bound of Tsur [18] up to lower-
order additive terms while supporting the queries efficiently.

Note that the lower bound of Theorem 4 only considers the case that the
same elements always appear consecutively, which still gives a gap between the
upper and lower bound of the space. Improving the lower bound of the space for
answering the queries would be an interesting open problem.
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