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Abstract. We study Klee’s measure problem — computing the volume of
the union of n axis-parallel hyperrectangles in R

d — in the oblivious RAM
(ORAM) setting. For this, we modify Chan’s algorithm [12] to guarantee
memory access patterns and control flow independent of the input; this
makes the resulting algorithm applicable to privacy-preserving computa-
tion over outsourced data and (secure) multi-party computation.

For d = 2, we develop an oblivious version of Chan’s algorithm that
runs in expected O(n log5/3 n) time for perfect security or O(n log3/2 n)
time for computational security, thus improving over optimal general
transformations. For d ≥ 3, we obtain an oblivious version with perfect
security while maintaining the O(nd/2) runtime, i. e., without any over-
head.

Generalizing our approach, we derive a technique to transform divide-
and-conquer algorithms that rely on linear-scan processing into oblivious
counterparts. As such, our results are of independent interest for geomet-
ric divide-and-conquer algorithms that maintain an order over the input.
We apply our technique to two such algorithms and obtain efficient obliv-
ious counterparts of algorithms for inversion counting and computing a
closest pair in two dimensions.

Keywords: Klee’s measure problem · Oblivious RAM · Data-oblivious
algorithms · Data-oblivious divide-and-conquer algorithms

1 Introduction

First introduced by Klee [20] in 1977, Klee’s measure problem is a well-known
problem in computational geometry:

Given a set B of n axis-parallel hyperrectangles (for short: boxes) in R
d,

compute ‖
⋃

(B)‖. Here, ‖·‖ is the d-dimensional volume of a (measurable)
subset of Rd.

On the theoretical side, the problem is related to other geometric problems,
e. g., the depth and coverage problems [12]. There has been a series of works
improving the upper bounds for Klee’s measure problem [11,12,16,23]. The cur-
rently best runtime of O(n log n + nd/2) for any (fixed) number d of dimensions
is obtained by Chan’s algorithm [12].

A special case of Klee’s measure problem, computing the so-called hyper-
volume indicator, is used in, e. g., evaluating multi-objective optimizations [19].
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For the hypervolume indicator, the boxes are restricted to have a common lower
bound in all dimensions [12,19]. For this and other special cases, faster algo-
rithms than for the general problem are known [12].

Oblivious Algorithms. We design a data-oblivious (for short: oblivious) algo-
rithm for Klee’s measure problem. In the random access machine (RAM) con-
text, the notion of (data-)obliviousness was introduced by Goldreich and Ostro-
vsky [17]. Informally, the requirement is that the probe sequence, i. e., the
sequence of memory operations and memory access locations, must be inde-
pendent of the input. This guarantees that no information about the input can
be derived from observing the memory access patterns. Oblivious algorithms —
in combination with encryption — can be used to perform privacy-preserving
computation over outsourced data. Additionally, oblivious algorithms can be
transformed into efficient protocols for multi-party computation [15,25].

We distinguish two notions of obliviousness: Let x and y be two inputs of
equal length n. Then the probe sequences for x and y must be identically dis-
tributed (perfect security) or indistinguishable by any polynomial-time algorithm
except for negligible probability in n (computational security).1 In line with stan-
dard assumptions for oblivious algorithms [6,15], we include the control flow in
the probe sequence. Access to a constant number of private memory cells (regis-
ters) as well as the memory contents are not considered to be part of the probe
sequence (since we may assume that the memory is encrypted [17]).

As the underlying model of computation, we assume the word RAM model
(in line with standard assumptions for oblivious algorithms). However, we note
that our results with perfect security also hold in the real RAM model usu-
ally assumed in computational geometry. We use oblivious sorting as a building
block. There are oblivious sorting algorithms with O(n log n) runtime and perfect
security, e. g., due to asymptotically optimal sorting networks [1].

In recent years, there has been a lot of progress regarding oblivious algo-
rithms. It is known that — in general — transforming a RAM program into an
oblivious program incurs an Ω(log N) (multiplicative) overhead [17,21] (where N
is the space used by the program). On the constructive side, there is an ORAM
construction matching this lower bound [4]. This provides — for programs with
at least linear runtime — a black-box transformation to achieve obliviousness
with only a logarithmic overhead in runtime. Even with such general transforma-
tions, there are still some limitations: Optimal general ORAM transformations
currently entail high constant runtime factors that make them unsuitable for
practical application [4]. Additionally, all known optimal transformations only
satisfy the weaker requirement of computational security [7]. The state-of-the-
art general transformation with perfect security is due to Chan et al. [9] and
achieves a runtime overhead of O(log3 N/log log N).

To address these issues and overcome the Ω(log n) lower bound associated
with the general transformation, oblivious algorithms for specific problems have
1 See the definitions by Asharov et al. [3, Section 3] for a more formal introduction of

oblivious security applicable to oblivious algorithms.
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been proposed: examples include sorting algorithms [2,22], graph algorithms [6],
and some algorithms for fundamental geometric problems [15]. To the best of
our knowledge, oblivious algorithms for Klee’s measure problem and its variants
have not been considered in the literature so far.

Algorithm 1. Chan’s RAM algorithm [12] to compute Klee’s measure for d ≥ 2.
The coordinates of the boxes B are sorted in a pre-processing step.
1: function Measure(B, Γ )
2: if |B| ≤ some suitably chosen constant then
3: return ‖Γ \

⋃
(B)‖ (computed using a brute-force approach) � O(d)

4: Simplify(B, Γ ) � O(d · n)
5: 〈ΓL, ΓR〉 ← Cut(B, Γ ) � O(d · n)
6: BL ← all b ∈ B intersecting ΓL; BR ← all b ∈ B intersecting ΓR � O(d · n)
7: return Measure(BL, ΓL) + Measure(BR, ΓR)

2 Warm-Up: Shaving Off a log log n Factor

As a warm-up, we first show how to improve over general and naive transfor-
mations of Chan’s algorithm for d = 2 by a O(log log n) factor in runtime. We
also introduce the representation of the boxes used throughout the paper. In
Sect. 3, we build on this approach when showing how to improve the runtime for
d = 2 to our main result. For completeness, we first describe Chan’s algorithm
as presented in the original paper [12]. We will also briefly sketch how to obtain
an oblivious modification for d ≥ 3.

2.1 Original Algorithm

The input for Klee’s measure problem is a set B of n axis-parallel hyperrectan-
gles. Chan’s algorithm, shown in Algorithm 1, first computes the measure m of
the complement of

⋃
(B) relative to some box Γ (domain) containing all boxes

B. For the final result, m is subtracted from the measure of Γ . The algorithm to
compute m is — at its core — a simple divide-and-conquer algorithm with two
helper functions: Simplify and Cut. In each call, a set of boxes intersecting
the current domain Γ is processed. Throughout the algorithm, the coordinates
of the boxes B are maintained in sorted order for each dimension.

The main idea of Simplify is to remove the area covered by the boxes
D ⊆ B that cover the domain Γ in all but one dimension: For a given dimension
i ∈ {1, . . . , d}, let Di denote the boxes covering Γ in all but dimension i. The
simplification can be performed by first computing the union of the boxes Di

and then adjusting the xi-coordinates of all other boxes in B so that the volume
of all connected components of

⋃
(Di) is reduced to 0. Since the coordinates are

sorted in each dimension, this simplification can be realized with a linear scan
in each dimension. To maintain the measure of the complement, the extent of Γ
in dimension i (height) is reduced accordingly, i. e., by the height of

⋃
(Di).
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Intuitively, the simplification reduces the problem complexity by reducing the
number of sub-domains a box intersects with. Consider the problem for d = 2:
When cutting the domain Γ for the recursion, the simplification guarantees that
— on every level of the recursion — each box only has to be considered in a
constant number of sub-domains; this is since the area covered by the box is
removed from the covered sub-domains in-between.

For the Cut-step, a weighted median is computed that splits Γ into two
sub-domains ΓL and ΓR. Like in k-d-tree constructions, the algorithm cycles
through the dimensions in a round-robin manner. In the analysis, Chan shows
that cutting reduces the weight of each sub-domain by a factor of 22/d. Since
the weight is related to the number of boxes by a constant factor (depending
on d), this also provides an upper bound for the number of boxes in each sub-
domain. The runtime for Algorithm 1 is thus bounded by the recurrence T (n) =
2 · T (n / 22/d) + O(n). With the time O(n log n) for pre-sorting the coordinates
this implies a runtime of O(nd/2) for d ≥ 3 and a runtime of O(n log n) for d = 2
overall.

2.2 High Dimensions

Before presenting an oblivious modification of Chan’s algorithm for d = 2, we will
briefly consider higher dimensions d ≥ 3. Here, we note that Chan’s algorithm
can easily be transformed into an oblivious algorithm while maintaining the
runtime complexity. This leaves the planar case d = 2 as the “hard case”.

To see why the case d ≥ 3 is actually easier, consider again the recurrence
bounding the runtime: As we will discuss in Sect. 2.5, the main difficulty for
the oblivious algorithm is to maintain the sorted coordinates for an efficient
simplification. If we solve this naively by sorting, we have costs of O(n log n)
instead of O(n) in each recursive call. This results in a runtime bounded by the
recurrence T (n) = 2·T (n / 22/d)+O(n log n). A naive transformations thus leads
to a runtime of T (n) ∈ O(n log2 n) for d = 2, yet for d ≥ 3 this immediately
solves to T (n) ∈ O(nd/2), maintaining the runtime of the original algorithm.

There still remain challenges for an oblivious implementation of Chan’s algo-
rithm for d ≥ 3. We will briefly sketch how to address them: For the representa-
tion, it suffices to store the individual boxes with their bounds in each dimension;
the boxes can be duplicated and sorted as needed. An oblivious implementation
also needs to ensure that the input size for the recursive calls does only depend
on the problem size n, otherwise the runtimes for the recursive calls might leak
information about the input. For this, we note that the recurrence given by
Chan already bounds the number of boxes in the recursive calls. By carefully
padding the input with additional (empty) boxes we can always recursively call
with the worst-case size. Splitting the n boxes for the recursive calls can be done
by duplication and oblivious routing in O(n log n) time [18].

2.3 Oblivious Box Representation

For the planar case d = 2, Chan’s algorithm can be simplified to only cutting the
domain in the x-dimension [12]. Consequently, simplification is only performed
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Fig. 1. Simplification of a sub-domain Γ with 5 boxes to remove the area covered by
the hatched slabs. The result of the simplification is shown on the right.

for the y-dimension. We say a box b covers the domain Γ iff b spans over Γ in
the x-dimension; in this case we call b a slab. For d = 2 the cutting can also
be performed without weights, balancing the number of vertices in each sub-
domain. Note that since the initial domain contains all vertices and cuts are
only performed in the x-dimension, we only need to check the x-dimension to
see if a vertex is contained in a given sub-domain Γ .

We represent each box by its four vertices. The sequence of vertices is not
maintained in a fixed order; instead, we explicitly sort the sequence when needed.
Since we need information about the horizontal extent of the boxes when pro-
cessing the vertices, we keep the full x-interval in each vertex. We also store the
relative location in both dimensions, i. e., whether the vertex is a lower (lo) or
upper (hi) vertex. So overall, each vertex is represented by a tuple

b ∈ R
2 × {lo,hi}

︸ ︷︷ ︸
x-interval

×R × {lo,hi}
︸ ︷︷ ︸
y-coordinate

.

For a vertex b, we write bx, by to denote the coordinates and b[x] to denote the
x-interval. We write box(b) to refer to the box the vertex b (partially) represents.

Since our algorithms for the planar case are based on processing the vertices
in y-order, we simplify terminology by referring to the lower y-vertices as start-
and to the upper y-vertices as endpoints. Similarly, we will refer to the lower x-
vertices as left and to the upper x-vertices as right vertices. Storing the x-interval
in each vertex allows us to represent the box by either both left or both right
vertices. We will leverage this when cutting the box at sub-domain boundaries.

2.4 Simplification in One Sub-domain

For an oblivious modification of Chan’s algorithm we need a way to obliviously
simplify a given domain Γ , i. e., to remove the area covered by the slabs D. To do
so, we reverse the order of cutting and simplification: We remove the area covered
by slabs in a sub-domain (while maintaining the measure of the complement)
before recursing. This exchange of the two algorithmic steps means that in each
recursive call, the number of boxes (and vertices) remains unchanged — an
important requirement for not leaking any information about the input.

For the simplification, Chan’s algorithm first computes the connected com-
ponents of

⋃
(D) and then adjusts the coordinates of the remaining boxes in a
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Algorithm 2. Algorithm to remove the area covered by slabs D in Γ . The
return value is the combined height of all connected components of

⋃
(D).

1: procedure OblSimplify(B, Γ )
2: ylo ← undef; c ← 0; h ← 0 � y-anchor; overlap; height
3: for each vertex b ∈ B do � in y-order
4: if box(b) covers Γ then Update(〈ylo, c, h〉, b) � update the state

5: if b is in Γ then Adjust(〈ylo, c, h〉, b) � adjust the vertex

6: return h
7: procedure Update(〈ylo, c, h〉, b)
8: if b is a startpoint ∧ c = 0 then ylo ← by � start of a component

9: if b is a startpoint then c ← c + 1 else c ← c − 1

10: if b is an endpoint ∧ c = 0 then h ← h + (by − ylo) � end of the component

11: procedure Adjust(〈ylo, c, h〉, b)
12: Δ ← h
13: if c > 0 then Δ ← Δ + (by − ylo) � in the component

14: by ← by − Δ

synchronized traversal. Unfortunately, such traversal is infeasible in the oblivious
context since doing so might leak information about the coordinates’ distribu-
tion. To address this, we redesign the subroutine to perform a single linear scan:
The vertices B are processed in y-order (start- before endpoints); each vertex
b ∈ B contained in the sub-domain Γ (bx ∈ Γ[x]) is adjusted to remove the
area covered by the slabs D. Specifically, by is reduced by the height of

⋃
(D)

below by.
The resulting Algorithm 2 is the key ingredient to realize the subroutine

Simplify; we can maintain the measure of the complement by subtracting the
obtained value h from the height of Γ . An example of a simplification is shown
in Fig. 1. It is essential that the algorithm performs exactly one linear scan over
the entire input — processing (and potentially modifying) each vertex with a
constant number of operations — and uses only a constant amount of space
for the state 〈ylo, c, h〉. This immediately implies that this algorithm can be
implemented as a linear time, oblivious program.

Regarding the correctness of OblSimplify for a set B of vertices and a
domain Γ , we let BΓ := {box(b) | b ∈ B ∧ bx ∈ Γ[x]} be the boxes represented by
vertices in Γ and let DΓ := {box(b) | b ∈ B ∧ b[x] ⊇ Γ[x]} be the boxes covering
Γ . Let B′

Γ be the boxes BΓ after running the algorithm. By considering the
connected components of DΓ when projected on the y-axis we can easily prove:

Lemma 1. Given a sequence B of vertices sorted by their y-coordinate and a
domain Γ , OblSimplify adjusts the y-coordinates and returns a value h so that

∥
∥
∥
⋃

(B′
Γ )

∥
∥
∥ =

∥
∥
∥
⋃

(BΓ ) \
⋃

(DΓ )
∥
∥
∥ and

∥
∥
∥
⋃

(DΓ )
∥
∥
∥ = h · width(Γ )

where all measures are restricted to the domain Γ .
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There are two properties of this simple algorithm that are worth pointing out
as they are required for the correctness: Firstly note that, for a slab b ∈ D, it
does not matter whether we process the left, the right, or both pairs of vertices.
Processing both pairs temporarily increases the overlap, but — since both start-
and both endpoints have the same y-coordinate — effects neither the anchor
point ylo nor the height h. This property ensures the correctness of the complete
algorithm since we process both the left and the right vertices of a box before
eventually separating them by cutting at a sub-domain boundary.

Secondly, it may be that we adjust a vertex of a slab b ∈ D in Adjust, i. e.,
that we adjust a box that previously caused an update in Update. In this case
the height of b is reduced to 0. This implies that changes to ylo and c due to
the vertices of b in any subsequent invocation of OblSimplify have no effect;
for the analysis we can thus assume that the vertices b with bx ∈ Γ[x] ⊆ b[x] are
removed. We stress that no vertices are ever actually removed.

2.5 Oblivious Algorithm

While OblSimplify realizes an oblivious simplification, it still requires the ver-
tices to be sorted by their y-coordinate. This is necessary in each recursive call
of the divide-and-conquer algorithm. Chan’s RAM algorithm pre-sorts the coor-
dinates in each dimension and maintains these orders, e. g., with a doubly-linked
list over the boxes for each dimension. This is possible since both Simplify and
Cut do not effect the relative order. For d = 2, another option would be to
stably partition the vertices for the recursive calls.

Neither can be done efficiently in the ORAM model: The transformation
lower bound mentioned in the introduction implies a Ω(log n) lower bound on
random access to n elements, barring us from efficiently maintaining links. This
makes a direct implementation of Chan’s approach inefficient. Unfortunately,
there also is an Ω(n log n) lower bound on stable partitioning n elements (assum-
ing indivisibility) [22]; this implies that — unlike in the RAM model — stable
partitioning is no faster than sorting.

As we will show in Sect. 4, this challenge is not unique to this algorithm and
in fact arises for many geometric divide-and-conquer algorithms. Our approach
— instead of maintaining the order — is to re-sort the vertices by y-coordinate in
each recursive call. To make up for at least some part of this runtime overhead,
we increase the number of recursive calls from 2 to m (a value to be determined
below). Algorithm 3 shows our general outline for the combined cutting and
simplification with m ≥ 2 recursive calls. Remember that in contrast to Chan’s
algorithm, we simplify immediately after cutting.

To determine the boundaries of the m sub-domains Γ1, . . . , Γm, we first sort
the vertices by their x-coordinate. We ensure that both left vertices of a box
always end up in the same sub-domain, same for the right vertices. To avoid
leaking information about the input via the runtime of the recursive calls, the
number of vertices in each sub-domain must only depend on n: Since there may
be several vertices with identical x- and y-coordinates, we assign an additional
unique identifier to each box. By establishing a total order this allows us to ensure
an even distribution of the n := |B| vertices to the m sub-domains, independent
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Algorithm 3. Procedure for cutting the given vertices B into m sub-domains
and simplifying each sub-domain.
1: procedure CutAndSimplify(B, Γ )
2: sort B by x-coordinate � O(n log n)

3: det. sub-domains Γ1, . . . , Γm (boundaries: B[
 i·|B|
m

�]
x

for 1 ≤ i < m) � O(m)
4: sort B by y-coordinate � O(n log n)
5: for each sub-domain Γi (simultaneously) do � O(n · m)
6: hi ← OblSimplify(B, Γi)
7: height(Γi) ← height(Γi) − hi

8: sort B by x-coordinate � O(n log n)
9: return 〈Γ1, . . . , Γm〉

of the input configuration. The value for m only depends on n and we only
access the sub-domain representations in a non–input-dependent manner; thus
we can store the sub-domain representations in Θ(m) successive memory cells
and access them directly without violating the oblivious security requirement.

For the planar case d = 2 we consider, it suffices to partition the vertices,
there is no need to duplicate or explicitly remove vertices. This follows from the
properties of Algorithm 2: The initial domain Γ is recursively divided into sub-
domains. Any box b can — on any level of the recursion — partially cover no
more than two sub-domains, one for each of its vertical sides. The sub-domains
in-between are fully covered, and through the simplification the area covered by
b is removed from these sub-domains. If a left or right pair of vertices coincides
with the bounds of a sub-domain (and thus no longer forms a left or right box),
that box is implicitly removed by reducing its height to 0.

After determining the sub-domains, we can sort the vertices by their y-
coordinates to apply OblSimplify for simplification. Afterwards, we reduce
the height of Γi by the height hi removed in that sub-domain. Sequentially pro-
cessing the sub-domains might reduce the height of a slab covering the next
sub-domain, thus resulting in an incorrect simplification. To avoid this, we can
perform all simplifications simultaneously: We process all vertices b ∈ B, keeping
a separate state for each of the m sub-domains. Again, we can store the states in
Θ(m) successive memory cells. In each iteration, we process the current vertex
b for each sub-domain and keep track of the single adjustment to the vertex
(which we can apply before processing the next vertex). The final sorting step
partitions the vertices according to their sub-domain for the recursive calls.

To balance the costs of sorting and simplifying, we set m := max(
log2 n�, 2).
The recursion tree then has O(logm n) = O(log n/log log n) height; this yields
O(n log2 n/log log n) total runtime. Not only does this improve over an optimal
general transformation by a O(log log n) factor, our construction also guarantees
(deterministic) identical memory access patterns, implying perfect security.

3 Improved Processing Using Oblivious Data Structures

When processing the m sub-domains individually, the algorithm presented in the
previous section spends considerable time processing boxes not intersecting the
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current sub-domain and repeatedly adjusting vertices in different sub-domains
to remove the area covered by the same slab. Here, we show how to avoid both
of these, resulting in further improvement over the general transformation.

For our improved algorithm, we apply Algorithm 2 to m slabs simultaneously
in a hierarchical manner. As a prerequisite, we first note on how to construct
the necessary data structures with perfect and computational security. We then
describe a novel, tree-based data structure; using this data structure we construct
the improved algorithm and state its runtime and security properties.

3.1 Oblivious Data Structures

The conceptual idea of our oblivious data structure is to model the recursion tree
of a divide-and-conquer algorithm up to a certain height. For this, we first sketch
how to construct oblivious static binary trees from known oblivious primitives.
We then describe how to use the static binary trees to model the divide-and-
conquer recursion tree; for this, we will explicitly state some necessary conditions.

Oblivious Static Binary Tree. As observed by Wang et al. [27], it is possible
to build efficient oblivious data structures from position-based ORAM construc-
tions. Position-based ORAMs are often used as a building block to construct a
“full” ORAM [7,24,26] since they are efficient in practice [24,26] and suitable
to build ORAM constructions with perfect security [7,9].

To access the elements efficiently, position-based ORAMs assign a (tempo-
rary) label to each element. Accessing an element reveals its label, so to hide
the access pattern it is necessary to assign a new label every time an element is
accessed. The labels for all elements are maintained in a position map which — in
general — does not fit in the private memory. Recursive position-based ORAM
schemes address this by recursively storing the position map in a (smaller)
position-based ORAM until it fits in private memory [7,9,24,26]. Depending
on the construction, this recursion usually leads to an additional logarithmic
runtime overhead [7,24,26]. For data structures where the access pattern graph
exhibits some degree of predictability the recursion (with the associated over-
head) is not necessary [27]. An example are rooted trees with a bounded degree;
here, the labels of the O(1) direct successors can be encoded in the current
element.

We build on this insight to construct oblivious static binary trees with perfect
security. Wang et al. use Path ORAM [24] to represent oblivious binary trees [27]:
Their representation allows traversing a rooted path in a (static) binary tree with
N nodes and height h in O(h log N) time. However, due to the constraints of
the employed ORAM construction, they only achieve the (weaker) statistical
security and require a super-constant number of private memory cells [24].2 To

2 Most statistically-secure ORAM constructions incur a O(log n) time overhead to
achieve a security failure probability negligible in n [9]. This excludes many ORAM
construction with good performance in practice [24,26] for our range of parameters.
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achieve perfect security, we apply their technique to a position-based ORAM
construction with perfect security, e. g., the construction of Chan et al. [7].3

In conclusion, by leveraging the technique of Wang et al. [27], we can obtain
perfectly-secure oblivious static binary tree data structures. The runtime prop-
erties follow from the ORAM construction of Chan et al. [7].

Lemma 2. For a static binary tree T with N nodes and height h, both public
parameters, we can construct an oblivious representation with perfect security.
Then T requires O(N) space, O(1) private memory cells, and can be constructed
in O(N log N) time. A rooted path in T can be traversed in expected (over the
random choices) and amortized (over the path traversals) O(h log2 N) time.

We will refer to T as an oblivious binary tree. Note that for complete binary
trees h = 
log2(N + 1)�, thus N is effectively the only public parameter.

By relaxing the security requirement to computational security (and assum-
ing the existence of a family of pseudorandom functions with negligible security
failure probability), the query complexity stated in Lemma 2 can be reduced
by a O(log N) factor. For this, the tree nodes are stored as elements in an
asymptotically optimal ORAM construction, e. g., OptORAMa [4]. This results
in an amortized O(h log N) time for traversing a rooted path. As will become
clear later, we have (for a constant c > 1) some small number N ∈ Θ(2log

1/c n)
of nodes and a large number T ∈ O(nO(1)) of accesses. For these parameters,
we explicitly consider the parameter λ guarding the security failure probability
for OptORAMa: Choosing λ ∈ Θ(n), we can apply a theorem due to Asharov
et al. [4, Theorem 7.2] and simultaneously achieve an (amortized) O(h log N)
runtime and a negligible security failure probability.

Oblivious Processing Tree. We use the oblivious binary tree as a tool to
model the recursion tree of what we will refer to as a scan-based divide-and-
conquer algorithm: an algorithm that — in each invocation — performs a linear
processing scan over the input using O(1) additional space and then stably
partitions the input in preparation for some (constant) number a of recursive
calls. One example for such an algorithm is the closest-pair algorithm of Bentley
and Shamos [5] (see Sect. 4). Overall, these restrictions imply that the algorithm
is order-preserving, i. e., the processing order remains the same in all recursive
calls.

The challenge when obliviously implementing a scan-based divide-and-
conquer algorithm is the Ω(n log n) lower bound for stably partitioning n ele-
ments [22]. Thus, although conceptually simple, a naive oblivious computation
of such a divide-and-conquer algorithm up to some depth h would incur a run-
time of O(h · n log n) for a given input of size n. To avoid this, we explicitly
construct an oblivious tree T where the nodes correspond to the recursive calls

3 The state-of-the-art perfectly-secure ORAM construction [8] further improves the
runtime by a O(log log n) factor; this improvement is due to a reduction in the
recursion depth and therefore does not benefit our application.
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of the algorithm, i. e., the nodes of the recursion tree. Each node v ∈ T stores the
state of the processing step (state(v)) in the corresponding recursive call as well
as routing information, i. e., information on how the elements are partitioned
for the recursive calls. We then individually trace each element e through the
tree, guided by the routing information. For each node v on the path we update
state(v) by simulating the processing step with e as the current element.

This approach correctly simulates the recursion since we require the process-
ing step to be linear and sequence of elements processed in each node corresponds
to the sequence of elements processed in the corresponding recursive call. Since
we traverse paths of length h ∈ O(log m) in a tree with N ∈ O(m) nodes, the
oblivious binary trees described above yield:

Lemma 3. Using an oblivious binary tree we can obliviously simulate a scan-
based divide-and-conquer algorithm up to depth h, resulting in m := ah leaves.
The processing steps can be applied to n ∈ Ω(m) ∩ O(2log

c m) elements, for
c > 1, in expected O(n log3 m) time for perfect security or O(n log2 m) time for
computational security, O(m) additional space, and O(1) private memory cells.

3.2 Simplification in m Sub-domains

We now show how to simplify the m given sub-domains by processing all vertices
and sub-domains simultaneously in a single scan. Rather than concentrating on
the geometric details, we will derive this from Algorithm 2 in a general way by
applying the above processing technique. We use an oblivious binary tree with m
leaves as described above: This recreates the recursion structure of the original
algorithm (except we simplify before recursing). As in Sect. 2 the sub-domains
Γ1, . . . , Γm are determined in advance by sorting the vertices.

Each of the m sub-domains Γi corresponds to the i-th leftmost leaf �i in the
oblivious binary tree T . Then Γ�i = Γi is the domain of the leaf �i; the domain
Γv of an inner node v is exactly the union of sub-domains below v. To efficiently
traverse T , we annotate each inner node v with their left and right sub-domains
ΓL = Γleft(v) and ΓR = Γright(v). This allows us to easily identify whether a
vertex is contained in or a box covers the left or right sub-domain.

The algorithm is shown in Algorithm 4; see Fig. 2 for an example. To simulate
the recursion of the original algorithm, we trace each vertex b through the explicit
recursion tree T , adjusting b to remove the area covered by slabs. To simplify
the left and right sub-domains before recursing, we keep two separate states per
inner node v of the binary recursion tree: sL for simplification in the left and
sR for simplification in the right sub-domain of v. After processing all vertices
it remains to determine the combined height hi of the areas removed in each
sub-domain Γi. For this, we can traverse the paths to each leaf �i and sum the
heights h in the respective states (in sL for Γ�i ⊆ ΓL and in sR for Γ�i ⊆ ΓR).

We now state the correctness of OblCombinedSimplify. For each i ∈
{1, . . . , m}, let Bi := {box(b) | b ∈ B ∧ bx ∈ (Γi)[x]} be the set of boxes repre-
sented by the vertices in Γi and let Di := {box(b) | b ∈ B ∧ b[x] ⊇ (Γi)[x]} be the
slabs over Γi. Let each B′

i be the boxes Bi after running the algorithm:
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Fig. 2. Simplification of Γ1, Γ2, Γ3, Γ4 with 20 vertices. The boundaries are drawn in
gray and the vertices are indicated by the marks. Consider processing the vertex b: In
the root, b updates the state sR for the domain Γ3 ∪ Γ4 and is adjusted according to
the initial state sL. Then b is processed in the left successor where b updates the state
sR for Γ2 and is adjusted according to sL for Γ1; this results in the processed b′.

Algorithm 4. Algorithm to simplify in all sub-domains Γi simultaneously. The
procedures Update and Adjust correspond to the sub-routines in Algorithm
2.
1: procedure OblCombinedSimplify(B, Γ1, . . . , Γm)
2: T ← (complete) oblivious binary tree with m leaves � recursion tree
3: for each vertex b ∈ B do � in y-order
4: v ← root(T )
5: do
6: ΓL ← domain for left(v); ΓR ← domain for right(v)
7: 〈sL, sR〉 ← state(v) � read the simplification states
8: if box(b) covers ΓL then Update(sL, b) � update the states for

covered sub-domains9: if box(b) covers ΓR then Update(sR, b)

10: if b is in ΓL then Adjust(b, sL); v ← left(v) � adjust according to
the respective state11: if b is in ΓR then Adjust(b, sR); v ← right(v)

12: state(v) ← 〈sL, sR〉 � write back the simplification states
13: while v is not a leaf
14: return heights 〈h1, . . . , hm〉 of the boxes removed from each sub-domain

Lemma 4. Given a sequence B of vertices sorted by their y-coordinate and
m disjoint sub-domains Γ1, . . . , Γm, OblCombinedSimplify adjusts the y-
coordinates and returns values h1, . . . , hm so that

∥
∥
∥
⋃

(B′
i)

∥
∥
∥ =

∥
∥
∥
⋃

(Bi) \
⋃

(Di)
∥
∥
∥ and

∥
∥
∥
⋃

(Di)
∥
∥
∥ = hi · width(Γi)

for each i ≤ m where all measures are restricted to the respective domain Γi.

Proof (sketch). Let B̂ be a sorted sequence of vertices and B̂′ those vertices
adjusted to remove the area covered by some slabs D̂. For the sub-procedures
Update and Adjust we first show that orderly processing Update(s, b) for the
vertices b ∈ B̂′ maintains the height of

⋃
({box(b) | b ∈ B̂}) \

⋃
(D̂) in the state s.

We then proceed by induction over the levels of T , starting with the root: We
maintain the invariant that, for any node v ∈ T and any vertex b ∈ Γv, bv

y =
by −h≤by (

⋃
(
⋂

Γi⊆Γv
Di)) (∗). Here, bv

y is defined to be the y-coordinate of b before
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the iteration of the do-while loop for v and h≤y(S) is the height of S≤y := S ∩
R×(−∞, y], i. e., the one-dimensional measure of S≤y when projected onto the y-
axis. This invariant together with the above properties of Update and Adjust
implies that, for any v ∈ T with direct successor w, Update(s, ·) maintains the
height of

⋃
(Dw) \

⋃
(Dv) in the state s for the sub-domain Γw (�).

The first equality of Lemma 4 then follows from (∗) for the respective leaf v = �i

by considering the bounds of the connected components of
⋃

(B′
i). For the second

equality, consider the state s corresponding to each non-root node w (with parent
v) after processing the last vertex b: Clearly s.c = 0 and s.h = height(

⋃
(Dw)) −

height(
⋃

(Dv)) according to (�). By summing the heights s.h on the path to each
leaf �i we obtain hi = height(

⋃
(Di)). ��

With Lemma 3 and since the inner loop in Lines 6 to 12 only accesses a
constant number memory cells in the current node, the following properties
hold:

Lemma 5. OblCombinedSimplify obliviously simplifies m ∈ Ω(2log
1/c n) ∩

O(n) sub-domains, for c > 1, with a total of n vertices in expected O(n log3 m)
time for perfect security or O(n log2 m) time for computational security, O(m)
space, and O(1) private memory cells.

3.3 Putting Everything Together

To obtain a faster algorithm for Klee’s measure problem, we replace the one-
slab-at-a-time simplification (Algorithm 2) with the multi-slab simplification
(Algorithm 4) in Algorithm 3. As before, the returned values hi can be used
to update the heights of the sub-domains Γi.

Since adjusting the y-coordinates for m sub-domains can be done in expected
O(n logc m) time (with c = 2 for computational security and c = 3 for per-
fect security), we can balance the cost of sorting and updating the coordinates
by choosing m := max(2�log1/c

2 n�, 2). This leads to a recursion tree height of
O(logm n) = O(log1−1/c n) for the complete algorithm. With the time required
for sorting in each recursive call this yields a O(n log2−1/c n) runtime overall.

The security of Algorithm 4 immediately follows from the security of the
oblivious binary tree T : The algorithm repeatedly traverses rooted paths in T ,
performing a constant number of operations for each node. Algorithm 3 is secure
due to the security of oblivious sorting and the fact that the sub-domain access
is independent of the input. With a total order over the boxes, the input sizes
for the recursive calls solely depend on the problem size n. The base case for
O(1) boxes with runtime O(1) can trivially be transformed into an oblivious
algorithm. Since each recursive call processes the boxes in an oblivious manner,
the obliviousness of the full divide-and-conquer algorithm follows.

Theorem 1. There is an oblivious algorithm solving Klee’s measure problem for
d = 2 in expected O(n log5/3 n) time for perfect security or O(n log3/2 n) time for
computational security, O(n) additional space, and O(1) private memory cells.
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4 General Technique

Above we showed how to use the oblivious binary tree to construct an efficient
algorithm for Klee’s measure problem. The technique is not specific to Chan’s
algorithm and can be applied to other geometric divide-and-conquer algorithms
as well. In this section, we will outline the necessary conditions for the application
of our technique. As an illustration, we will also sketch the application to two
other problems, namely inversion counting and the closest-pair problem for d =
2. For both problems we will focus on the linear processing step; the runtime —
both for perfect and computational security — then immediately follows as for
Klee’s measure problem above.

Our technique for transforming divide-and-conquer algorithms into oblivious
counterparts requires that the following conditions are met:

(a) The input sizes for the recursive calls must only depend on the problem size.
(b) Each element must be contained in the input to at most one recursive call.
(c) Within each recursive call, the elements are processed with a linear scan

using O(1) additional memory cells.

The first condition (a) is necessary for security, otherwise the algorithm might
leak information via the runtime of the recursive calls. It is often possible to
accommodate small size variations without affecting the runtime by padding the
inputs with dummy elements. The conditions (b) and (c) are necessary to indi-
vidually trace the elements through the recursion tree. This individual tracing
also limits the information that can be passed to the recursive calls.

Inversion Counting. The inversion counting problem — for a sequence A
of length n — is to determine the number of indices i, j so that i < j and
A[i] > A[j]. In the RAM model, this problem can be solved in O(n log n) time
by an augmented merge-sort algorithm [14, Exercise 2-4 d].4 Since merging is a
linear-time operation in the RAM model, but has an Ω(n log n) lower bound in
the oblivious RAM model (assuming indivisibility) [22], a direct implementation
of this approach results in an O(n log2 n) time oblivious algorithm.

To improve over this, we interpret this algorithm as scan-based divide-and-
conquer algorithm: Since the RAM algorithm is a divide-and-conquer algorithm,
it remains to describe how to obliviously count inversion pairs using linear scans.
For this, note that it is possible to separate the merging and counting steps by
marking each element. Counting inversions can then be done in a linear scan by
counting the elements from the second half and adding the current count to the
number of inversions for every encountered element from the first half.

4 In the word RAM model of computation there is an O(n log1/2 n) time algorithm
due to Chan and Pătraşcu [13]. For computational security, it is thus also possi-
ble to obtain an O(n log3/2 n) time oblivious algorithm through optimal oblivious
transformation.
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For more efficient processing we split the input into m parts and recurse
for each part. We then annotate each element with its part, sort the elements,
and count inversions between the m parts using an oblivious binary tree: The
annotated parts identify the leafs and each node has a counter for the elements
belonging to a leaf in the right subtree. For the final number of inversions we
sum the inversions counted in all nodes and in the recursive calls.

Closest Pair. For the planar closest-pair problem, we are given a set of n
points P ⊂ R

2 and want to determine a pair p, q ∈ P with minimal distance
according to some metric d. For an oblivious algorithm, we apply our technique
to the divide-and-conquer algorithm of Bentley and Shamos [5].5

As for the inversion counting above, we begin by describing the necessary
modifications to obtain a scan-based divide-and-conquer algorithm: After par-
titioning the points into PL and PR according to the median x-coordinate and
recursing, we have minimal distances δL and δR; let δ := min{δL, δR}. It remains
to check whether there is a pair in PL × PR with a smaller distance: While the
original algorithm performs a synchronized traversal over PL and PR, we need
to slightly modify this to adhere to the requirement that we may only perform
a linear scan over the complete input. We thus sort the points by increasing
y-coordinate and perform a linear scan over the sorted sequence. Using a stan-
dard packing argument [5], we maintain a queue Q of constant size that stores
all points within distance at most δ from the median x-coordinate and within
distance of at most δ below the current point. Whenever we encounter a point
p with |sx − px| ≥ δ where sx is the median x-coordinate, we simply ignore this
point; otherwise, we check p against all points currently in Q to see whether
d(p, q) < δ for any point q on the other side of sx. If we find such a point, we
update δ to d(p, q). We then put p into Q while pruning all points too far below
p or away from sx.

Again, we can utilize an oblivious binary tree by sorting the input according
to the x-coordinate and splitting evenly into m parts before recursing. We addi-
tionally store the separating x-coordinate sx in each node of the binary tree; then
we sort the elements by y-coordinate and process them so that for each node v
the state consists of the queue Q (of constant size) as well as the current closest
pair. Finally, we iterate over all nodes, updating the closest pair as needed.

5 Conclusion and Future Work

We gave an efficient oblivious modification of Chan’s algorithm [12] for Klee’s
measure problem for d = 2, both for perfect and computational security.

5 Eppstein et al. [15] discuss how to obliviously compute a closest pair in the plane in
O(n log n) time through an efficient construction of a well-separated pair decompo-
sition [10]. For this, the input points need to have integer coordinates or a bounded
spread. In contrast, our algorithm works without any such assumptions.
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For d ≥ 3, we sketched how to maintain the runtime of the original algorithm.
Our oblivious algorithms only require O(1) private memory cells and can be
used to construct a protocol for multi-party computation. We constructed our
results with a general technique for oblivious divide-and-conquer algorithms and
demonstrated its generality by applying it to the inversion counting and closest-
pair problems.

Some open problems remain: Most notably, is it possible to obliviously
solve Klee’s measure problem for d = 2 in Θ(n log n) time? From a more gen-
eral perspective, faster oblivious binary tree implementations would not only
improve our algorithm, but also a more general class of divide-and-conquer algo-
rithms using our technique. Designing efficient oblivious tree data structures
thus remains an interesting open problem.

Acknowledgments. We thank the reviewers for their constructive comments that
helped to improve the presentation.
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