
ar
X

iv
:2

20
8.

14
31

5v
1

 [
cs

.D
S]

 3
0

A
ug

 2
02

2

Sorting Genomes by Prefix

Double-Cut-and-Joins

Guillaume Fertin1[0000−0002−8251−2012], Géraldine Jean1[0000−0002−1534−2682],
and Anthony Labarre2[0000−0002−9945−6774]

1 Nantes Université, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
2 LIGM, CNRS, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France

{guillaume.fertin,geraldine.jean}@univ-nantes.fr,
anthony.labarre@univ-eiffel.fr

Abstract. In this paper, we study the problem of sorting unichromo-
somal linear genomes by prefix double-cut-and-joins (or DCJs) in both
the signed and the unsigned settings. Prefix DCJs cut the leftmost seg-
ment of a genome and any other segment, and recombine the severed
endpoints in one of two possible ways: one of these options corresponds
to a prefix reversal, which reverses the order of elements between the two
cuts (as well as their signs in the signed case). Depending on whether
we consider both options or reversals only, our main results are: (1) new
structural lower bounds based on the breakpoint graph for sorting by
unsigned prefix reversals, unsigned prefix DCJs, or signed prefix DCJs;
(2) a polynomial-time algorithm for sorting by signed prefix DCJs, thus
answering an open question in [8]; (3) a 3/2-approximation for sorting
by unsigned prefix DCJs, which is, to the best of our knowledge, the
first sorting by prefix rearrangements problem that admits an approxi-
mation ratio strictly smaller than 2 (with the obvious exception of the
polynomial-time solvable problems); and finally, (4) an FPT algorithm
for sorting by unsigned prefix DCJs parameterised by the number of
breakpoints in the genome.

Keywords: Genome Rearrangements · Prefix Reversals · Prefix DCJs ·

Lower Bounds · Algorithmics · FPT· Approximation algorithms.

1 Introduction

Genome rearrangements is a classical paradigm to study evolution between
species. The rationale is to consider species by observing their genomes, which
are usually represented as ordered sets of elements (the genes) that can be signed
(according to gene strand when known). A genome can then evolve by changing
the order of its genes, through operations called rearrangements, which can be
generally described as cutting the genome at different locations, thus forming seg-
ments, and rearranging these segments in a different fashion. Given two genomes,
a sorting scenario is a sequence of rearrangements transforming the first genome
into the other. The length of a shortest such sequence of rearrangements is called

http://arxiv.org/abs/2208.14315v1

2 G. Fertin, G. Jean and A. Labarre

the rearrangement distance. Several specific rearrangements such as reversals,
translocations, fissions, fusions, transpositions, and block-interchanges have been
defined, and the rearrangement distance together with its corresponding sorting
problem have been widely studied either by considering one unique type of rear-
rangement or by allowing the combination of some of them [5]. The double-cut-
and-join (or DCJ) operation introduced by Yancopoulos et al. [11] encompasses
all the rearrangements mentioned above: it consists in cutting the genome in two
different places and joining the four extremities in any possible way. A DCJ is a
prefix DCJ whenever one cut is applied to the leftmost position of the genome.
The prefix restriction can be applied to other rearrangements such as prefix re-
versals, which prefix DCJs generalise. Whereas the computational complexity of
the sorting problems by unrestricted rearrangements has been thoroughly stud-
ied and pretty well characterised, there is still a lot of work to do to understand
the corresponding prefix sorting problems (see Table 1 in [8] for a summary of
existing results). Our interest in prefix rearrangements is therefore mostly the-
oretical: techniques that apply in the unrestricted setting do not directly apply
under the prefix restriction, and new approaches are therefore needed to make
progress on algorithmic issues and complexity aspects. Since DCJs generalise
several other operations, we hope that the insight we gain through their study
will shed light on other prefix rearrangement problems.

In this paper, we study the problem of Sorting by Prefix DCJs and,
for the sake of simplicity, we consider the case where the source and the target
genomes are unichromosomal and linear. This implies that genomes can be seen
as (signed) permutations (depending on whether the gene orientation is known
or not). Moreover, prefix DCJs applied to such genomes allow to exactly mimick
three kinds of rearrangement: (i) a prefix reversal when the segment between the
two cuts is reversed; (ii) a cycle extraction when the extremities of the segment
between the two cuts are joined; (iii) a cycle reincorporation when the cut occurs
in a cycle and the resulting linear segment is reincorporated at the beginning of
the genome where the leftmost cut occurs.

Based on the study of the breakpoint graph, we first show new structural lower
bounds for the problems Sorting by Unsigned Prefix DCJs and Sorting

by Signed Prefix DCJs. Since prefix reversals are particular cases of prefix
DCJs, we can extend this result to Sorting by Unsigned Prefix Rever-

sals (it has been already shown for Sorting by Signed Prefix Reversals

in [9]). Thanks to these preliminary results, we are able to answer an open ques-
tion from [8] by proving that Sorting by Signed Prefix DCJs is in P just
like the unrestricted case [11]. However, while sorting by unsigned DCJs is NP-
hard [4], the computational complexity of the prefix-constrained version of this
problem is still unknown.We provide two additional results: a 3/2-approximation
algorithm, which is, to the best of our knowledge, the first sorting by prefix rear-
rangements problem that admits an approximation ratio strictly smaller than 2
(with the obvious exception of the polynomial-time solvable problems); and an
FPT algorithm parameterised by the number of breakpoints in the genome. Due
to space constraints, some of the proofs are deferred to the Appendix.

Sorting Genomes by Prefix Double-Cut-and-Joins 3

1.1 Permutations, genomes, and rearrangements

We begin with the simplest models for representing organisms.

Definition 1. A (unsigned) permutation of [n] = {1, 2, . . . , n} is a bijective
application of [n] onto itself. A signed permutation of {±1,±2, . . . ,±n} is a
bijective application of {±1,±2, . . . ,±n} onto itself that satisfies π−i = −πi.
The identity permutation is the permutation ι = (1 2 · · · n).

We study transformations based on the following well-known operation.

Definition 2. A reversal ρ(i, j) with 1 ≤ i < j ≤ n is a permutation that
reverses the order of elements between positions i and j:

ρ(i, j) =

(
1 · · · i− 1 i i + 1 · · · j − 1 j j + 1 · · · n

1 · · · i− 1 j j − 1 · · · i+ 1 i j + 1 · · · n

)

.

A signed reversal ρ(i, j) with 1 ≤ i ≤ j ≤ n is a signed permutation that reverses
both the order and the signs of elements between positions i and j:

ρ(i, j) =

(
1 · · · i− 1 i i+ 1 · · · j − 1 j j + 1 · · · n
1 · · · i− 1 −j − (j − 1) · · · − (i+ 1) − i j + 1 · · · n

)

.

If i = 1, then ρ(i, j) (resp. ρ(i, j)) is called a prefix (signed) reversal.

A reversal ρ applied to a permutation π transforms it into another permu-
tation σ = πρ. When the distinction matters, we mention whether objects or
transformations are signed or unsigned; otherwise, we omit those qualifiers to
lighten the presentation. The following model is a straightforward generalisation
of unsigned permutations.

Definition 3. A genome G is a collection of vertex-disjoint paths and cycles
over {0, 1, 2, . . . , n+1}. It is linear if it consists of a single path with endpoints 0
and n+1. The identity genome is the path induced by the sequence (0, 1, 2, . . . , n+
1).

Let us note that a genome may contain loops or parallel edges (see Figure 1).

Definition 4. Let e = {u, v} be an edge of a genome G. Then e is a breakpoint
if 0 /∈ e and either |u − v| 6= 1, or e has multiplicity two. Otherwise, e is an
adjacency. The number of breakpoints of G is denoted by b(G).

For instance, the genome with edge set {{0, 4}, {4, 3}, {3, 6}, {1, 2}, {2, 1},
{5, 5}} has three breakpoints (underlined). Note that permutations can be viewed
as linear genomes using the following simple transformation: given a permuta-
tion π, extend it by adding two new elements π0 = 0 and πn+1 = n+1, and build
the linear genome Gπ with edge set {{πi, πi+1} | 0 ≤ i ≤ n}. This allows us to
use the notion of breakpoints on permutations as well, with the understanding
that they apply to the extended permutation, and therefore b(π) = b(Gπ).

A reversal can be thought of as an operation that “cuts” (i.e., removes) two
edges from a genome, then “joins” the severed endpoints (by adding two new
edges) in such a way that the segment between the cuts is now reversed (see G1

in Figure 1). The following operation builds on that view to generalise reversals.

4 G. Fertin, G. Jean and A. Labarre

G

0 1 2 4 3 6 5

0 2 1 4 3 6 5

G1

0 4 3 6 1 2 5

G2

Fig. 1. Cutting edges {0, 1} and {2, 4} from the nonlinear genome G produces genome
G1 with a reversed segment, if we add edges {0, 2} and {1, 4}, or genome G2 with an
extracted cycle if we add {0, 4} and {1, 2} instead.

Definition 5. [11] Let e = {u, v} 6= f = {w, x} be two edges of a genome
G. The double-cut-and-join (or DCJ for short) δ(e, f) applied to G transforms
G into a genome G′ by replacing edges e and f with either {{u,w}, {v, x}} or
{{u, x}, {v, w}}. δ is a prefix DCJ if either 0 ∈ e or 0 ∈ f .

DCJs that do not correspond to reversals extract paths from genomes and
turn them into cycles (see G2 in Figure 1). Signed permutations can be gener-
alised to signed genomes as well. The definition of a signed linear genome is more
complicated than in the unsigned case, and is based on the following notion.

Definition 6. Let π be a signed permutation. The unsigned translation of π is
the unsigned permutation π′ obtained by mapping πi onto the sequence (2πi −
1, 2πi) if πi > 0, or (2|πi|, 2|πi| − 1) if πi < 0, for 1 ≤ i ≤ n; and adding two
new elements π′

0 = 0 and π′

2n+1 = 2n+ 1.

Definition 7. A signed genome G is a perfect matching over the set {0, 1, 2, . . .,
2n + 1}. G is linear if there exists a signed permutation π such that E(G) =
{{π′

2i, π
′

2i+1} | 0 ≤ i ≤ n}. The signed identity genome is the perfect matching
{{2i, 2i+ 1} | 0 ≤ i ≤ n}.

DCJs immediately generalise to signed genomes: they may cut any pair of
edges of the perfect matching, and recombine their endpoints in one of two ways.

Finally, we will be using different kinds of graphs in this work with a common
notation. The length of a cycle in a graph G is the number of elements3 it
contains, and a k-cycle is a cycle of length k: it is trivial if k = 1, and nontrivial
otherwise. We let c(G) (resp. c1(G)) denote the number of cycles (resp. 1-cycles)
in G.

3 The definition of an element will depend on the graph structure and will be explicitly
stressed.

Sorting Genomes by Prefix Double-Cut-and-Joins 5

1.2 Problems

We study several specialised versions of the following problem. A configuration
is a permutation or a genome, and the identity configuration is the identity
permutation or genome, depending on the type of the initial configuration.

sorting by Ω
Input: a configuration G, a number K ∈ N, and a set Ω of allowed operations.
Question: is there a sequence of at most K operations from Ω that transforms
G into the identity configuration?

Specific choices for Ω and the model chosen for G yield the following variants:

– Sorting by Unsigned Prefix DCJs, where G is a linear genome and Ω
is the set of all prefix DCJs;

– Sorting by Signed Prefix DCJs, where G is a signed linear genome and
Ω is the set of all prefix DCJs;

– Sorting by Unsigned Prefix Reversals, where G is an unsigned per-
mutation and Ω is the set of all prefix reversals;

– Sorting by Signed Prefix Reversals, where G is a signed permutation
and Ω is the set of all prefix signed reversals.

We refer to the smallest number of operations needed to transform G into the
identity configuration as the Ω-distance of G. A specific distance is associated
to each of the above problems; we use the following notation:

– pdcj(G) for the prefix DCJ distance of an unsigned genome G, and psdcj(G)
for its signed version;

– prd(π) for the prefix reversal distance of an unsigned permutation π, and
psrd(π) for its signed version.

2 A Generic Lower Bounding Technique

We present in this section a lower bounding technique which applies to both
the signed and the unsigned models, and on which we will build in subsequent
sections to obtain exact or approximation algorithms.

2.1 The Signed Case

We generalise a lower bounding technique introduced in the context of Sorting
by Signed Prefix Reversals [9]. It is based on the following structure.

Definition 8. [2] Given a signed permutation π, let π′ be its unsigned transla-
tion. The breakpoint graph of π is the undirected edge-bicoloured graph BG(π)
with ordered vertex set (π′

0 = 0, π′

1, π
′

2, . . . , π
′

2n, π
′

2n+1 = 2n+ 1) and whose edge
set consists of:

6 G. Fertin, G. Jean and A. Labarre

– black edges {π′

2i, π
′

2i+1} for 0 ≤ i ≤ n;
– grey edges {π′

2i, π
′

2i + 1} for 0 ≤ i ≤ n.

See Figure 2 for an example. Following Definition 7, the breakpoint graph of
a signed linear genome is simply the union of that genome (which plays the
role of black edges) and of the signed identity genome (which plays the role
of grey edges). Breakpoint graphs are 2-regular and as such are the union of
disjoint cycles whose edges alternate between both colours, thereby referred to
as alternating cycles. Black edges play the role of elements in that graph, so the
length of a cycle in a breakpoint graph is the number of black edges it contains.

0 2 1 7 8 6 5 4 3 9 10 11

Fig. 2. The breakpoint graph BG(π) of π = −1 4 −3 −2 5.

To bound the prefix DCJ distance, we use a connection between the effect
of a DCJ on the breakpoint graph and the effect of algebraic transpositions, or
exchanges, on the classical cycles of a permutation.

Definition 9. An exchange ε(i, j) with 1 ≤ i < j ≤ n is a permutation that
swaps elements in positions i and j:

ε(i, j) =

(
1 · · · i − 1 i i+ 1 · · · j − 1 j j + 1 · · · n

1 · · · i − 1 j i+ 1 · · · j − 1 i j + 1 · · · n

)

.

If i = 1, then ε(i, j) is called a prefix exchange.

We let Γ (π) denote the (directed) graph of a permutation π, with vertex
set [n] and which contains an arc (i, j) whenever πi = j. Exchanges act on
two elements that belong either to the same cycle in Γ (π) or to two different
cycles, and therefore |c(Γ (π)) − c(Γ (πε(i, j)))| ≤ 1. The following result allows
the computation of the prefix exchange distance ped(π) in polynomial time, and
will be useful to our purposes.

Theorem 1. [1] For any unsigned permutation π, we have

ped(π) = n+ c(Γ (π))− 2c1(Γ (π))−

{
0 if π1 = 1,
2 otherwise.

Theorem 2. For any signed linear genome G, we have

psdcj(G) ≥ n+ 1 + c(BG(G)) − 2c1(BG(G)) −

{
0 if {0, 1} ∈ G,
2 otherwise.

(1)

Sorting Genomes by Prefix Double-Cut-and-Joins 7

Proof. As observed in [11], a DCJ acts on at most two cycles of BG(G) and can
therefore change the number of cycles by at most one. This analogy with the
effect of exchanges on the cycles of a permutation is preserved under the prefix
constraint, and the lower bound then follows from Theorem 1. ⊓⊔

Since (prefix) signed reversals are a subset of (prefix) signed DCJs, the result
below from [9] is a simple corollary of Theorem 2.

Theorem 3. [9] For any signed permutation π, we have

psrd(π) ≥ n+ 1 + c(BG(π)) − 2c1(BG(π)) −

{
0 if π1 = 1,
2 otherwise.

(2)

2.2 The Unsigned Case

We now show that our lower bounds apply to the unsigned setting as well. The
definition of the breakpoint graph in the unsigned case is slightly different, but
the definition of the length of a cycle remains unchanged.

Definition 10. [2] The unsigned breakpoint graph of an unsigned permutation
π is the undirected edge-bicoloured graph UBG(π) with ordered vertex set (π0 =
0, π1, π2, . . . , πn, πn+1 = n+ 1) and whose edge set consists of:

– black edges {πi, πi+1} for 0 ≤ i ≤ n;
– grey edges {πi, πi + 1} for 0 ≤ i ≤ n.

0 3 2 5 4 1 6 0 3 2 5 4 1 6

(a) (b)

Fig. 3. (a) The unsigned breakpoint graph UBG(π) of π = 3 2 5 4 1; (b) an optimal
decomposition of UBG(π) into two trivial cycles (thick) and one 4-cycle (dotted).

Figure 3(a) shows an example of an unsigned breakpoint graph. Following
Definition 3, the breakpoint graph of an unsigned linear genome is simply the
union of that genome (which plays the role of black edges) and of the iden-
tity genome (which plays the role of grey edges). Vertices 0 and n + 1 in the
unsigned breakpoint graph have degree 2, and all other vertices have degree 4.
The unsigned breakpoint graph also decomposes into alternating cycles, but the
decomposition is no longer unique. For any genome G and an arbitrary decom-
position D of UBG(G), let cD (resp. cD

1) denote the number of cycles (resp.
trivial cycles) of UBG(G) in D . We call D optimal if it minimises cD − 2cD

1

(see Figure 3(b)). The following result characterises optimal decompositions (see
Appendix for the proof).

8 G. Fertin, G. Jean and A. Labarre

Lemma 1. Let G be a genome and D be a decomposition of UBG(G). Then D

is optimal iff it maximises the number of trivial cycles and minimises the number
of nontrivial cycles.

As a result, we obtain the following lower bound on the prefix DCJ distance,
where c∗(UBG(G)) and c∗1(UBG(G)) denote, respectively, the number of cycles
and the number of 1-cycles in an optimal decomposition of UBG(G).

Theorem 4. For any genome G, we have

pdcj(G) ≥ n+ 1 + c∗(UBG(G)) − 2c∗1(UBG(G)) −

{
0 if {0, 1} ∈ G,
2 otherwise.

(3)

Proof. Follows from the fact that DCJs affect the number of cycles in a decom-
position by at most one, Theorem 1, and Lemma 1. ⊓⊔

As an immediate corollary, the above lower bound is also a lower bound on
prd(π), since (prefix) reversals are a subset of (prefix) DCJs.

Corollary 1. For any unsigned permutation π, we have

prd(π) ≥ n+ 1 + c∗(UBG(π)) − 2c∗1(UBG(π)) −

{
0 if π1 = 1,
2 otherwise.

(4)

We now show that an optimal decomposition can be found in polynomial
time. This contrasts with the problem of finding an optimal decomposition in the
case of sorting by unrestricted reversals, which was shown to be NP-complete [3]
(note that in that context, an optimal decomposition maximises the number of
cycles). Recall that an alternating Eulerian cycle in a bicoloured graph G is a
cycle that traverses every edge of G exactly once and such that the colours of
every pair of consecutive edges are distinct.

Corollary 2. [7,10] A bicoloured connected graph contains an alternating Eu-
lerian cycle iff the number of incident edges of each colour is the same at every
vertex.

Proposition 1. There exists a polynomial-time algorithm for computing an op-
timal decomposition for UBG(G).

Proof. Straightforward: extract all trivial cycles from UBG(G). Each connected
component in the resulting graph then corresponds to a cycle (Corollary 2). ⊓⊔

Finally, we note that the lower bound of Theorem 4 is always at least as large
as the number of breakpoints (see Appendix for the proof).

Proposition 2. For any unsigned genome G, the lower bound from Equation 3
is greater than or equal to b(G), and the gap that separates both bounds can be
arbitrarily large.

Sorting Genomes by Prefix Double-Cut-and-Joins 9

3 Prefix DCJs

3.1 Signed Prefix DCJs

We give a polynomial-time algorithm for Sorting by Signed Prefix DCJs.

Theorem 5. The Sorting by Signed Prefix DCJs problem is in P.

Proof. We show that the lower bound of Theorem 2 is tight. For convenience, let
g(G) denote the right-hand side of Equation 1, and let π′ denote the unsigned
translation of the underlying signed permutation π from which G is obtained
(recall Definition 7 and the fact that G is linear):

– if π′

1 6= 1: then the grey edge {π′

1, x} connects by definition π′

1 to an element
x ∈ {π′

1 − 1, π′

1 + 1}. Let {x, y} be the black edge incident with x; then the
prefix DCJ that replaces {0, π′

1} and {x, y} with {0, y} and {π′

1, x} creates
one or two new 1-cycles, depending on the value of y. Let G′ denote the
resulting genome:

1. if y 6= 1, then

g(G′)− g(G) = n+ 1 + c(BG(G)) + 1− 2(c1(BG(G)) + 1)− 2

− (n+ 1 + c(BG(G)) − 2c1(BG(G)) − 2)

= −1.

2. if y = 1, then

g(G′)− g(G) = n+ 1 + c(BG(G)) + 1− 2(c1(BG(G) + 2))

− (n+ 1 + c(BG(G)) − 2c1(BG(G)) − 2)

= −1.

Therefore, the value of the lower bound decreases by one in both cases.
– otherwise, let i be the smallest index such that |π′

2i−1 − π′

2i| 6= 1. Then the
prefix DCJ that replaces black edges {0, π′

1} and {π′

2i−1, π
′

2i} with {0, π′

2i−1}
and {π′

1, π
′

2i} decreases the number of 1-cycles by 1. Let us again use G′ to
denote the resulting genome; then

g(G′)− g(G) = n+ 1 + c(BG(G)) − 1− 2(c1(BG(G)) − 1)− 2

− (n+ 1 + c(BG(G)) − 2c1(BG(G)))

= −1.
⊓⊔

3.2 Unsigned Prefix DCJs

The complexity of the Sorting by Unsigned Prefix DCJs problem remains
open, and we conjecture it to be NP-complete. Here, we prove two results, both

10 G. Fertin, G. Jean and A. Labarre

based on the number of breakpoints. The first one is a 3/2-approximation al-
gorithm for solving Sorting by Unsigned Prefix DCJs (Theorem 6), the
second one is a FPT algorithm with respect to b(G) (Theorem 7).

We start with our approximation algorithm. First, observe that prefix DCJs
on linear genomes may produce nonlinear genomes, but the structure of these
genomes is nonetheless not arbitrary. We characterise some of their properties
in the following result, which will be useful later on.

Lemma 2. Let G be a linear genome and S be an arbitrary sequence of prefix
DCJs that transform G into a new genome G′. Then:

1. G′ contains exactly one path, whose endpoints are 0 and n+ 1;
2. if G′ contains any other component, then that component is a cycle.

Proof. By induction on k = |S|. If k = 0, then the claim clearly holds. Otherwise,
let δ be a prefix DCJ that cuts edges e = {0, v} and f = {w, x} from a genome
G′′ obtained from G by k − 1 prefix DCJs; by hypothesis, 0 and n + 1 are
the endpoints of the only path P of G′′. If both e and f belong to P , then
δ either extracts a subpath Q from P that will become a cycle, or reverses a
subpath R of P ; in both cases, neither Q nor R contains 0 nor n + 1, which
become extremities of P \ Q (or of the path obtained from P by reversing R).
Otherwise, since e = {0, v}, by hypothesis f belongs to a cycle, and both ways of
recombining the extremities of e and f yield a path starting with 0 and ending
with n+ 1, preserving any other cycle of G′′. ⊓⊔

We will need the following lower bound.

Lemma 3. For any genome G, we have pdcj(G) ≥ b(G). Moreover, if G is
unsorted and contains {0, 1} and {1, 2}, then pdcj(G) > b(G).

Proof. The first claim follows directly from Theorem 4 and Proposition 2. For
the second claim, if G is unsorted and contains {0, 1} and {1, 2}, then any new
edge {1, y} that would replace {0, 1} would yield a breakpoint — either because
1 and y cannot be consecutive in values or, in the event that y = 2, because edge
{1, 2} would get multiplicity 2 and thereby would also count as a breakpoint. ⊓⊔

We are now ready to prove our upper bound on pdcj(G).

Lemma 4. For any linear genome G, we have pdcj(G) ≤ 3b(G)
2 .

Proof. Assume G is not the identity genome, in which case the claim trivially
holds. We have two cases to consider:

1. if {0, v} ∈ G with v 6= 1, then G contains an element x ∈ {v−1, v+1} that is
not adjacent to v. By Lemma 2, every vertex in G has degree 1 or 2, so x has
a neighbour y such that {x, y} is a breakpoint (either because |x− y| 6= 1 or
because {x, y} has multiplicity two). The prefix DCJ that replaces {0, v} and
the breakpoint {x, y} with the adjacency {v, x} and {0, y} yields a genome
G′ with b(G′) = b(G)− 1.

Sorting Genomes by Prefix Double-Cut-and-Joins 11

2. otherwise, {0, 1} ∈ G. If {1, 2} /∈ G, then 2 has a neighbour y in G such that
{2, y} is a breakpoint, in which case the prefix DCJ that replaces {0, 1} and
{2, y} with {0, y} and {1, 2} yields a genome G′ with b(G′) = b(G)− 1.
If {1, 2} ∈ G, then let k be the closest element to 0 in the only path of
G such that the next vertex ℓ forms a breakpoint with k. Then the prefix
DCJ δ1 that replaces {0, 1} and {k, ℓ} with {0, ℓ} and {1, k} yields a genome
G′ which contains the cycle (1, 2, . . . , k) and with b(G′) = b(G). Although
δ1 does not reduce the number of breakpoints, G′ allows us to apply two
subsequent operations that do:
(a) since {0, ℓ} ∈ G′ with ℓ 6= 1, the analysis of case 1 applies and guarantees

the existence of a prefix DCJ δ2 that produces a genomeG′′ with b(G′′) =
b(G′)− 1.

(b) δ2 replaces {0, ℓ} and breakpoint {a, b} with {0, a} and adjacency {b, ℓ}.
Since {k, ℓ} was a breakpoint in G, we have k < ℓ− 1. Moreover, δ1 ex-
tracted from G a cycle consisting of all elements in {1, 2, . . . , k}. There-
fore, the breakpoint {a, b} cut by δ2 belongs to a component of G′′ dif-
ferent from that cycle, which means that a > k > 1 and in turn implies
that case 1 applies again: there exists a third prefix DCJ δ3 transforming
G′′ into a genome G′′′ such that b(G′′′) = b(G′′)− 1 = b(G)− 2.

This implies that, in the worst case, i.e. when {0, 1} ∈ G and {1, 2} ∈ G,
there exists a sequence of three prefix DCJs that yields a genome G′′′ with
b(G′′′) = b(G) − 2. Therefore, starting with b(G) breakpoints, we can decrease
this number by two using at most three prefix DCJs. Since the identity genome

has no breakpoint, we conclude that pdcj(G) ≤ 3b(G)
2 . ⊓⊔

Lemma 3 and Lemma 4 immediately imply the existence of a 3/2-approxi-
mation for sorting by prefix DCJs, as stated by the following theorem.

Theorem 6. The Sorting by Unsigned Prefix DCJs problem is 3/2-ap-
proximable.

Note that Lemma 4 also allows us to show that our approximation algorithm
is tight for an unbounded number of genomes. Incidentally, this also shows that
the lower bound of Equation 3 is optimal for an unbounded number of genomes
(see Appendix for the proof).

Observation 1. There exists an unbounded number of genomes for which the
algorithm described in proof of Lemma 4 is optimal.

We now turn to proving that Sorting by Unsigned Prefix DCJs is FPT,
as stated by the following theorem.

Theorem 7. The Sorting by Unsigned Prefix DCJs problem is FPT pa-
rameterised by b(G).

Proof. The main idea is to use the search tree technique in a tree whose arity
and depth are both bounded by a function of b(G). For this, we will use the

12 G. Fertin, G. Jean and A. Labarre

notion of strip in a genome G, which is defined as a maximal set of consecutive
edges (in a path or a cycle of G) that contains no breakpoint. The length of a
strip is the number of elements it contains, strips of length k are called k-strips;
1-strips are also called singletons, and strips of length > 2 are called long strips.
We need the following result (see Appendix for the proof).

Observation 2. For any instance of Sorting by Unsigned Prefix DCJs,
there always exists a shortest sorting sequence of prefix DCJs that never cut a
long strip.

Now let us describe our search tree technique: at every iteration starting
from G, guess in which location, among the available 2-strips and breakpoints,
to operate the rightmost cut. Once this is done, guess among the two possibilities
allowed by a DCJ to reconnect the genome. By definition, every strip is framed
by breakpoints. Therefore, any genome G has at most b(G) 2-strips (recall that
{0, x} is never a breakpoint). Altogether, this shows that, at each iteration, the
rightmost cut has to be chosen among at most 2b(G) possibilities. Because there
are two ways to reconnect the cuts in a DCJ, the associated search tree has

arity at most 4b(G). Moreover, its depth is at most 3b(G)
2 since pdcj(G) ≤ 3b(G)

2
(Theorem 6). Thus the above described algorithm uses a search tree whose size
is a function of b(G) only, which proves the result. More precisely, the overall
complexity of the induced algorithm is in O∗((4b(G))1.5b(G)). ⊓⊔

4 Conclusions and Future Work

In this paper, we focused on the problem of sorting genomes by prefix DCJs,
a problem that had not yet been studied in its prefix-constrained version. We
provided several algorithmic results for both signed and unsigned cases, includ-
ing computational complexity, approximation and FPT algorithms. Nevertheless,
several questions remain open: while we have shown that Sorting by Signed

Prefix DCJs is a polynomial-time solvable problem, what about the compu-
tational complexity of Sorting by Unsigned Prefix DCJs? We were able
to design a 3/2-approximation algorithm for the latter problem, which makes
it to the best of our knowledge the first occurrence of a prefix rearrangement
problem of unknown complexity where a ratio better than 2 has been obtained.
Is it possible to improve it further, by making good use of the new lower bound
introduced in section 2? Whether or not this lower bound can help improve the
2-approximation ratios known for both Sorting by Unsigned Prefix Rever-

sals and Sorting by Signed Prefix Reversals remains open. Finally, we
have studied the case where both source and target genomes are unichromosomal
and linear; it would be interesting to extend this study to a more general context
where input genomes can be multichromosomal and not necessarily linear.

References

1. Sheldon B. Akers, Balakrishnan Krishnamurthy, and Dov Harel. The star graph:
An attractive alternative to the n-cube. In Proceedings of the Fourth International

Sorting Genomes by Prefix Double-Cut-and-Joins 13

Conference on Parallel Processing, pages 393–400. Pennsylvania State University
Press, August 1987.

2. Vineet Bafna and Pavel A. Pevzner. Genome Rearrangements and Sorting by
Reversals. SIAM Journal on Computing, 25(2):272–289, 1996.

3. Alberto Caprara. Sorting permutations by reversals and Eulerian cycle decomposi-
tions. SIAM Journal on Discrete Mathematics, 12(1):91–110 (electronic), January
1999.

4. Xin Chen. On sorting unsigned permutations by double-cut-and-joins. Journal of
Combinatorial Optimization, 25(3):339–351, apr 2013.

5. Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and Stéphane
Vialette. Combinatorics of Genome Rearrangements. Computational Molecular
Biology. MIT Press, 2009.

6. John Kececioglu and David Sankoff. Efficient bounds for oriented chromosome
inversion distance. In Maxime Crochemore and Dan Gusfield, editors, Combina-
torial Pattern Matching, pages 307–325, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg.

7. Anton Kotzig. Moves without forbidden transitions in a graph. Matematický
časopis, 18(1):76–80, 1968.

8. Anthony Labarre. Sorting by Prefix Block-Interchanges. In Yixin Cao, Siu-Wing
Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and
Computation (ISAAC), volume 181 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 55:1–55:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

9. Anthony Labarre and Josef Cibulka. Polynomial-time sortable stacks of burnt
pancakes. Theor. Comput. Sci., 412(8-10):695–702, 2011.

10. Pavel A. Pevzner. DNA physical mapping and alternating eulerian cycles in colored
graphs. Algorithmica, 13(1/2):77–105, 1995.

11. Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. Efficient sorting of ge-
nomic permutations by translocation, inversion and block interchange. Bioinfor-
matics, 21(16):3340–3346, 2005.

14 G. Fertin, G. Jean and A. Labarre

Appendix: Omitted Proofs

Proof (Lemma 1). We prove both directions separately.

⇒: if cD
1 is not maximal, then D contains a nontrivial cycle from which a trivial

cycle can be extracted. This yields a new decomposition E with

cE − 2cE

1 = cD + 1− 2(cD

1 + 1) < cD − 2cD

1 .

Likewise, if cD − cD
1 is not minimal, then D must contain two nontrivial

cycles which can be merged into one, which decreases the quantity cD −2cD
1 .

⇐: if D is not optimal, then there exists another decomposition E with

cD − 2cD

1 > cE − 2cE

1 . (5)

We distinguish between the following three cases:

1. if cD
1 = cE

1 , then cD > cE , so cD − cD
1 > cE − cD

1 = cE − cE
1 and therefore

D does not minimise the number of nontrivial cycles;
2. if cD = cE , then cD

1 < cE
1 , and therefore D does not maximise the number

of trivial cycles;
3. if neither of the above holds, then

(a) either cD < cE , in which case Equation 5 implies cD
1 < cE

1 and
therefore D does not maximise the number of trivial cycles;

(b) or cD > cE , in which case either cD
1 < cE

1 , and therefore D does not
maximise the number of trivial cycles; or cD

1 > cE
1 , in which case

Equation 5 yields cD − cD
1 > cE − cE

1 +(cD
1 − cE

1), which implies that
E has fewer nontrivial cycles than D since cD

1 − cE
1 > 0.

⊓⊔

Proof (Proposition 2). In order to prove the inequality, we distinguish between
two cases:

1. if {0, 1} 6∈ G, then the lower bound from Equation 3 has value

n+ c∗(UBG(G)) − 2c∗1(UBG(G)) − 1. (6)

Note that, by definition, each trivial cycle in UBG(G) corresponds to an
edge {i, i+ 1}, which is therefore an adjacency. Moreover, since {0, 1} 6∈ G,
0 and 1 do not form a trivial cycle, and consequently

n = b(G) + c∗1(UBG(G)). (7)

Finally, since {0, 1} 6∈ G, G is not the identity genome and we have

c∗(UBG(G)) ≥ c∗1(UBG(G)) + 1. (8)

Combining equations (6), (7) and (8) yields the claim.

Sorting Genomes by Prefix Double-Cut-and-Joins 15

2. if {0, 1} ∈ G, then the lower bound from Equation 3 has value

n+ c∗(UBG(G)) − 2c∗1(UBG(G)) + 1. (9)

In that case, since 0 and 1 form a trivial cycle, we have

n+ 1 = b(G) + c∗1(UBG(G)); (10)

moreover, since c∗(UBG(G)) ≥ c∗1(UBG(G)) always holds, combining equa-
tions (9) and (10) yields the claim.

In order to show that the gap between the lower bound of Theorem 4 and
b(G) can be arbitrarily large, consider a linear genome G with n = 6p for an
arbitrary integer p ≥ 2. Genome G corresponds to permutation π which is the
concatenation of subpermutations σ1, σ2, . . . , σp, where for every 1 ≤ i ≤ p,
σi = (6i − 5) (6i − 3) (6i − 1) (6i − 4) (6i − 2) 6i. For instance, when p = 3, we
have π = 1 3 5 2 4 6

︸ ︷︷ ︸

σ1

7 9 11 8 10 12
︸ ︷︷ ︸

σ2

13 15 17 14 16 18
︸ ︷︷ ︸

σ3

.

Formally, G contains the following edges, for every 1 ≤ i ≤ p: {6i−5, 6i−3},
{6i− 3, 6i− 1}, {6i− 1, 6i− 4}, {6i− 4, 6i− 2}, {6i− 2, 6i} and {6i, 6i+ 1}; G
also contains edge {0, 1}.

It can be seen that c∗1(UBG(G)) = p+1, which correspond to edges {6i, 6i+
1}, 0 ≤ i ≤ p. Consequently, b(G) = n + 1 − c∗1(UBG(G)) = 5p. Finally, G
has been built in such a way that, for every 1 ≤ i ≤ p, the elements of the
interval [6i−5; 6i] form a cycle in UBG(G). As a consequence, when trivial cycles
are removed from UBG(G), p connected components remain, each induced by
elements of [6i − 5; 6i], 1 ≤ i ≤ p. Hence, as argued in proof of Proposition 1,
G contains p nontrivial cycles. This allows us to conclude that c∗(UBG(G)) =
2p + 1. Altogether, since {0, 1} ∈ G, we have that our lower bound n + 1 +
c∗(UBG(G))− 2c∗1(UBG(G)) evaluates to 6p, while as mentioned above, b(G) =
5p, which is the sought result. ⊓⊔

Proof (Observation 1.). Let n = 4p where p ≥ 2 is any integer, and let G be the
linear genome corresponding to the following permutation

π = 1 2n (n−1) 5 6 (n−4) (n−5) 9 10 (n−8) (n−9) 13 14 . . .8 7 (n−3) (n−2) 4 3

See Figure 4 for an example in the case p = 4. More formally, genome G contains
the following edges:

1. {4i+ 1, 4i+ 2} for every 0 ≤ i ≤ p− 1,
2. {4i+ 2, n− 4i} for every 0 ≤ i ≤ p− 1,
3. {4i+ 3, n− 4i+ 1} for every 0 ≤ i ≤ p− 1,
4. {4i+ 4, 4i+ 3} for every 0 ≤ i ≤ p− 1, and
5. {0, 1}.

Edge sets (1), (4) and (5) above correspond to p+ p+ 1 trivial cycles, while
edge sets (2) and (3) correspond to the 2p breakpoints that exist. Moreover,

16 G. Fertin, G. Jean and A. Labarre

when the 2p+ 1 trivial cycles are removed from G, in UBG(G) we are left with
a collection of p 2-cycles: for each 0 ≤ i ≤ p − 1, we have a 2-cycle whose
two black edges are taken from sets (2) and (3) (namely {4i + 2, n − 4i} and
{4i+3, n−4i+1}), and the two grey edges are {4i+2, 4i+3} and {n−4, n−4i+1}.

Therefore, since {0, 1} ∈ G, Equation 3 yields

pdcj(G) ≥ n+ 1 + c∗(UBG(G)) − 2c∗1(UBG(G))

= 4p+ 1 + (3p+ 1)− 2(2p+ 1)

= 3p.

Therefore, Equation 3 yields pdcj(G) ≥ 3p. Moreover, since b(G) = 2p, and
by Lemma 4, we conclude that pdcj(G) ≤ 3p. Thus pdcj(G) = 3p, which shows
that the lower bound from Equation 3 and the algorithm described in Lemma 4
are optimal. ⊓⊔

0 1 2 16 15 5 6 12 11 9 10 8 7 13 14 4 3 17

Fig. 4. The breakpoint graph of a genome from the family described in the proof of
Observation 1., for p = 4.

In the following, we will observe an explicit sorting sequence for a genome,
rather than the mere length of such a sequence. We refer to such sequence as a
scenario, and call it optimal if no shorter scenario exists for the given genome.

Proof (Observation 2.). The proof is adapted from proof of Theorem 3 in [6],
and relies on similar arguments. However, two main differences exist in our
context: first, genomes are unsigned, and thus we need to rely on long strips here,
whereas in [6] strips of length 2 or more are sufficient. Second, Theorem 3 in [6]
is concerned with reversals. The fact that we discuss prefix DCJs here implies
more cases to discuss (related to DCJs only, not to the fact that operations are
prefix). More precisely, observe a prefix DCJ δ in a genome G. Since by definition
δ cuts the edge containing 0, and since by Lemma 2 G is composed of one path
P (containing 0) together with cycles, there are three cases to consider: (i) the
second cut of δ is in P and δ is a reversal, (ii) the second cut of δ is in P and
δ creates a new cycle in G, (iii) the second cut of δ is in a cycle C of G, and δ
reincorporates C in P .

Rather than presenting a lengthy case by case analysis, we prefer here to
insist on the general arguments that ensure the proof is correct. Indeed, as it

Sorting Genomes by Prefix Double-Cut-and-Joins 17

turns out, these arguments are similar whatever case we are in (cases (i), (ii)
or (iii)).

The rationale of the proof is as follows: consider a genome, an optimal sce-
nario S that sorts it, and suppose that in S, at least one prefix DCJ cuts a
long strip. Let δ be the last such prefix DCJ, let G be the genome on which δ
is applied, and let S be the long strip that it cuts. We will show the following
property, that we call P for convenience: it is always possible to find an alternate
scenario S ′ that sorts G, is of same length as S, and does not cut any long strip.
In that case, it is possible to apply P to every prefix DCJ that cuts a long strip,
from the last to the first one, and altogether, the observation is proved.

Now let us describe the alternate scenario. Recall that δ cuts strip S, and
suppose S is split into SA and SB. Wlog, let us suppose that the longest substrip
between SA and SB is SA. Since S is a long strip, we have that SA is of length at
least 2, and in particular we know whether it is ascending or descending (i.e., the
successive elements in SA are in increasing or decreasing order). We then replace
δ by the prefix DCJ δ′ that does not cut S, replaces SA by S and deletes SB

from G. The remaining prefix DCJs in scenario S, among which none of them
cuts a long strip, are adapted in S ′ as follows: every time SA is involved in an
operation, replace it by S; besides, delete SB from all genomes between G and
the identity.

The fact that our alternate scenario S ′ also sorts G relies on the following
argument: in the original scenario S, strip S will be eventually grouped again,
either as S (if it was ascending) or as its reverse (if it was descending), so as to
reach the identity genome. We just need to make sure that after the last prefix
DCJ in scenario S ′, strip S has the same orientation as in S. However, this is the
case since S and S ′ agree on SA, which is of length at least 2, and thus carries
information on its “orientation” (ascending or descending). Thus strip S in S ′

is reversed the same number of times as SA in S, which is the sought property.
One final specificity needs to be taken into account. Indeed, it could happen

that, in S ′, a prefix DCJ δ1 which did not cut a strip in S may now cut a strip.
In that case, it suffices to observe that δ1 occurs strictly after δ. Thus we can
reproduce our previous argument to δ1, until no prefix DCJ cuts a long strip –
which always happens since at distance is 0 or 1 to the identity genome, trivially
no strip is cut. ⊓⊔

	Sorting Genomes by Prefix Double-Cut-and-Joins

