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Abstract. A pattern α is a string of variables and terminal letters. We
say that α matches a word w, consisting only of terminal letters, if w

can be obtained by replacing the variables of α by terminal words. The
matching problem, i.e., deciding whether a given pattern matches a given
word, was heavily investigated: it is NP-complete in general, but can be
solved efficiently for classes of patterns with restricted structure. If we
are interested in what is the minimum Hamming distance between w

and any word u obtained by replacing the variables of α by terminal
words (so matching under Hamming distance), one can devise efficient
algorithms and matching conditional lower bounds for the class of regu-
lar patterns (in which no variable occurs twice), as well as for classes of
patterns where we allow unbounded repetitions of variables, but restrict
the structure of the pattern, i.e., the way the occurrences of different
variables can be interleaved. Moreover, under Hamming distance, if a
variable occurs more than once and its occurrences can be interleaved
arbitrarily with those of other variables, even if each of these occurs just
once, the matching problem is intractable. In this paper, we consider
the problem of matching patterns with variables under edit distance. We
still obtain efficient algorithms and matching conditional lower bounds
for the class of regular patterns, but show that the problem becomes, in
this case, intractable already for unary patterns, consisting of repeated
occurrences of a single variable interleaved with terminals.

Keywords: Pattern with variables · Matching · Edit distance

1 Introduction

A pattern with variables is a string consisting of constant or terminal letters from
a finite alphabet Σ (e.g., a, b, c), and variables (e.g., x, y, x1, x2) from a poten-
tially infinite set X , with Σ∩X = ∅. In other words, a pattern α is an element of
PATΣ = (X ∪Σ)+. A pattern α is mapped (by a function h called substitution)
to a word by substituting the variables by arbitrary strings of terminal letters;
as such, h simply maps the variables occurring in α to words over Σ. For ex-
ample, xxbbbyy can be mapped to aaaabbbbb by the substitution h defined by
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(x → aa, y → b). In this framework, h(α) denotes the word obtained by substi-
tuting every occurrence of a variable x in α by h(x) and leaving all the terminals
unchanged. If a pattern α can be mapped to a string of terminals w, we say that
α matches w; the problem of deciding whether there exists a substitution which
maps a given pattern α to a given word w is called the (exact) matching problem.

Exact Matching Problem: Match
Input: A pattern α, with |α| = m, a word w, with |w| = n.
Question: Is there a substitution h with h(α) = w?

Match appears frequently in various areas of theoretical computer science,
such as combinatorics on words (e.g., unavoidable patterns [32], string solving
and the theory of word equations [31]), stringology (e.g., generalized function
matching [1]), language theory (e.g., pattern languages [2], the theory of extended
regular expressions with backreferences [7,22,18,21]), database theory (e.g., the
theory of document spanners [20,19,13,40,27,41]), or algorithmic learning theory
(e.g., the theory of descriptive patterns for finite sets of words [43,2,14]).

Match is NP-complete [2], in general. In fact, a detailed analysis [37,42,16,17,15,39]
of the matching problem has provided a better understanding of the parameter-
ized complexity of this problem, highlighting, in particular, several subclasses of
patterns for which the matching problem is polynomial, when various structural
parameters of patterns are bounded by constants. Prominent examples in this
direction are patterns with a bounded number of repeated variables, patterns
with bounded scope coincidence degree [37], patterns with bounded locality [12],
or patterns with a bounded treewidth [37]. See [15,12,37] for efficient algorithms
solving MatchP restricted to (or, in other words, parameterized by) to such
classes P of patterns. In general, each of the structural parameters defining such
classes P is a number k characterizing in some way the structure of the patterns
of the class P and the matching algorithms for the respective class of patterns
runs in O(nck) for some constant c. Moreover, these restricted matching prob-
lems are usually shown to be W [1]-hard w.r.t. the respective parameters.

In [23], the study of efficient matching algorithms for patterns with vari-
ables was extended to an approximate setting. More precisely, the problem of
deciding, for a pattern α from a class of patterns P (defined by structural restric-
tions), a word w, and a non-negative integer ∆, whether there exists a substitu-
tion h such that the Hamming distance dHAM(h(α), w) between h(α) and w is at
most ∆ was investigated. The corresponding minimization problem of computing
dHAM(α,w) = min{dHAM(h(α), w) | h is a substitution of the variables of α} was also
considered. The main results of [23] were rectangular time algorithms and match-
ing conditional lower bounds for the class of regular patterns Reg (which contain
at most one occurrence of any variable). Moreover, polynomial time algorithms
were obtained for unary patterns (also known as one-variable patterns, which
consist in one or more occurrences of a single variable, potentially interleaved
with terminal strings) or non-cross patterns (which consist in concatenations of
unary patterns, whose variables are pairwise distinct). However, as soon as the
patterns may contain multiple variables, whose occurrences are interleaved, the
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problems became NP-hard, even if only one of the variables occurs more than
once. As such, unlike the case of exact matching, the approximate matching
problem under Hamming distance is NP-hard even if some of the aforementioned
parameters (number of repeated variables, scope coincidence degree, treewidth,
but, interestingly, not locality) were upper bounded by small constants.

Our Contribution. In this paper, inspired by, e.g., [28,10,5,34,4,9,8,35]
where various stringology patterns are considered in an approximate setting un-
der edit distance [30,29], and as a natural extension of the results of [23], we con-
sider the aforementioned approximate matching problems (parameterized by a
class of patterns P ) for the edit distance dED(·, ·), instead of Hamming Distance:

Approximate Matching Decision Problem for MisMatchP
Input: A pattern α ∈ P , with |α| = m, a word w, with |w| = n, an

integer ∆ ≤ m.
Question: Is dED(α,w) ≤ ∆?

Approximate Matching Minimisation Problem for MinMisMatchP
Input: A pattern α ∈ P , with |α| = m, a word w, with |w| = n.
Question: Compute dED(α,w).

Our paper presents two main results, which allow us to paint a rather com-
prehensive picture of the approximate matching problem under edit distance.

Firstly, we consider the class of regular patterns, and show that MisMatchReg
and MinMisMatchReg can be solved in O(n∆) time (where, for MinMisMatch, ∆
is the computed result); a matching conditional lower bound follows from the
literature [3]. This is particularly interesting because the problem of computing
dED(α,w) for α = w0x1w1 . . . xkwk can be seen as the problem of computing the
minimal edit distance between any string in which w1, . . . , wk occur, without
overlaps, in this exact order and the word w.

Secondly, we show that, unlike the case of matching under Hamming distance,
MisMatchP becomes W [1]-hard already for P being the class of unary patterns,
with respect to the number of occurrences of the single variable. So, interest-
ingly, the problem of matching patterns with variables under edit distance is
computationally hard for all the classes (that we are aware of) of structurally
restricted patterns with polynomial exact matching problem, as soon as at least
one variable is allowed to occur an unbounded number of times.

To complement the results presented in this paper, we note that, for the
classes of patterns considered in [15,12,37,23], which admit polynomial-time ex-
act matching algorithms, one can straightforwardly adapt those algorithms to
work in polynomial time in the case of matching under edit distance, when a con-
stant upper bound k1 on the number of occurrences of each variable exists. The
complexity of these algorithms is usually O(nf(k1,k2)), for a polynomial function
f and for k2 being a constant upper bound for the value of the structural param-
eter considered when defining these classes (locality, scope coincidence degree,
treewidth, etc.). If no restriction is imposed on the structure of the pattern,
Match (and, as such, the matching under both Hamming and edit distances) is
NP-hard even if there are at most two occurrences of each variable [16].
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2 Preliminaries

Some basic notations and definitions regarding strings and patterns with vari-
ables were already given in the introduction and, for more details, we also refer
to [33,23]. We only recall here some further notations. The set of all patterns,
over all terminal-alphabets Σ, is denoted PAT =

⋃

Σ PATΣ. Given a word or
pattern γ, we denote by alph(γ) = B the smallest set (w.r.t. inclusion) B ⊆ Σ
and by var(γ) = Y the smallest set Y ⊆ X such that γ ∈ (B ∪ Y )⋆. For any
symbol t ∈ Σ ∪ X and α ∈ PATΣ , |α|t denotes the total number of occur-
rences of the symbol t in α. For a pattern α = w0x1w1 . . . wkxk, we denote by
term(α) = w0w1 . . . wk the projection of α on the terminal alphabet Σ.

For words u,w ∈ Σ⋆, the edit distance [30,29] between u and w is defined as
the minimal number dED(u,w) of letter insertions, letter deletions, and letter to
letter substitutions which one has to apply to u to obtain w .

We recall some basic facts about the edit distance. Assume that u is trans-
formed into w by a sequence of edits γ (i.e., u is aligned to w by γ). We can
assume without losing generality that the edits in γ are ordered left to right
with respect to the position of u where they are applied. Then, for each factor-
ization u = u1 . . . uk of u, there exists a factorization w = w1 . . . wk of w such
that wi is obtained from ui when applying the edits of γ which correspond to
the positions of ui, for i ∈ {1, . . . , k}. Note that this factorization of w is not
unique: we assume that the insertions applied at the beginning of u correspond
to positions of u1, the insertions applied at the end of u correspond to positions
of uk, but the insertions applied between ui−1 and ui can be split arbitrarily in
two parts: when considering them in the order in which they occur in γ (so left
to right w.r.t. the positions of u where they are applied) we assume to first have
a (possibly empty) set of insertions which correspond to positions of ui−1 and
then a (possibly empty) set of insertions which correspond to positions of ui.
On the other hand, if w = w1w2, we can uniquely identify the shortest prefix u1

(respectively, the longest prefix u′
1) of u from which, when applying the edits of

γ we obtain the prefix w1 of w.
Now, for a pattern α and a word w, we can define the edit distance between α

and w as dED(α,w) = min{dED(h(α), w) | h is a substitution of the variables of α}.
It is worth noting that dED(α,w) ≤ |w|+ |term(α)|.

With these definitions, we can consider the two pattern matching problems
for families of patterns P ⊆ PAT , as already defined in the introduction. In
the first problem MisMatchP , which extends MatchP , we allow for a certain edit
distance ∆ between the image h(α) of α under a substitution h and the target
word w instead of searching for an exact matching. In the second problem,
MinMisMatchP , we are interested in finding the substitution h for which the edit
distance between h(α) and the word w is minimal, over all possible choices of h.

As a remark, based on our general comments regarding the edit distance, the
following theorem follows.

Theorem 1. MisMatchPAT and MinMisMatchPAT can be solved in O(n2k2+k1)
time, where k1 is the maximum number of occurrences of any variable in the
input pattern α and k2 is the total number of occurrences of variables in α.
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As mentioned in the Introduction, the result of the previous Theorem can
be improved if we consider the two problems for classes of patterns with re-
stricted structure, where we obtain algorithms whose complexity depends on
the structural parameter associated to that class, rather than the total number
of occurrences of variables.

3 Our Results

The first main result of our paper is about the class of regular patterns. A
pattern α over the terminal alphabet Σ is regular if α = w0(Π

k
i=1xiwi) where,

for i ∈ {1, . . . , k}, wi ∈ Σ∗ and xi is a variable, and xi 6= xj for all i 6= j. The
class of regular patterns is denoted by Reg. We can show the following theorem.

Theorem 2. MisMatchReg can be solved in O(n∆) time. For an accepted in-
stance w,α,∆ of MisMatchReg we also compute dED(α,w) (which is at most ∆).

Proof. Preliminaries and setting. We begin with an observation. For α =
w0(Π

k
i=1xiwi), we can assume w.l.o.g. that wi ∈ Σ+ for all i ≤ k as otherwise

we would have neighboring variables that could be replaced by a single vari-
able; thus, k ≤ |term(α)|. To avoid some corner cases, we can assume w.l.o.g.
that α and w start with the same terminal symbol (this can be achieved by
adding a fresh letter $ in front of both α and w). While not fundamental, these
simplifications make the exposure of the following algorithm easier to follow.

Before starting the presentation of the algorithm, we note that a solution for
MisMatchReg with distance ∆ = 0 is a solution to MatchReg and can be solved in
O(n) by a greedy approach (as shown, for instance, in [15]). Further, the special
case x1w1x2 can be solved by an algorithm due to Landau and Vishkin [28] in
O(n∆) time. In the following, we are going to achieve the same complexity for
the general case of MisMatchReg by extending the ideas of this algorithm to ac-
commodate the existence of an unbounded number of pairwise-distinct variables.

One important idea which we use in the context of computing the edit dis-
tance between an arbitrary regular pattern and a word is to interpret each reg-
ular variable as an arbitrary amount of “free” insertions on that position, where
“free” means that they will not be counted as part of the actual distance (in
other words, they do not increase this distance). Indeed, we can see that the
factor which substitutes a variable should always be equal to the factor to which
it is aligned (after all the edits are performed) from the target word, hence does
not add anything to the overall distance (and, therefore, it is “free”). As such,
this factor can be seen as being obtained via an arbitrary amount of letter inser-
tions. Now, using this observation, it is easier to design an O(nm)-time algorithm
which computes the edit distance between the terminal words β = term(α) (in-
stead of the pattern α) and w with the additional property that, for the positions
Fg = |(Πg

i=0|wi|)| for 0 ≤ g ≤ k−1, we have that the insertions done between po-
sitions β[Fg ] and β[Fg +1] when editing β to obtain w do not count towards the
total edit distance between β and w. For simplicity, we denote the set {Fg|0 ≤
g ≤ k − 1} by F , we set Fk = +∞, and note that |β| = m− k (so β ∈ Θ(m)).



6 Paweł Gawrychowski, Florin Manea, Stefan Siemer

The description of our algorithm is done in two phases. We first explain how
MisMatchReg can be solved by dynamic programming in O(nm) time. Then, we
refine this approach to an algorithm which fulfills the statement of the theorem.

When presenting our algorithms, we refer to an alignment of prefixes β[1 : j]
of β and w[1 : ℓ] of w, which simply means editing β[1 : j] to obtain w[1 : ℓ].

First phase: a classical dynamic programming solution. We define
the (|β| + 1)× (n+ 1) matrix D[·][·], where D[j][ℓ] is the edit distance between
the prefixes β[1 : j], with 0 ≤ j ≤ |β|, and w[1 : ℓ], with 0 ≤ ℓ ≤ n, with the
additional important property that the insertions done between positions β[Fg ]
and β[Fg + 1], for Fg ≤ j, are not counted in this distance (they correspond
to variables in the pattern α). As soon as this matrix is computed, we can re-
trieve the edit distance between α and w from the element D[m− k][n]. Clearly,
now the instance (α,w,∆) of MisMatchReg is answered positively if and only if
D[m− k][n] ≤ ∆. So, let us focus on an algorithm computing this matrix.

The elements of the matrix D[·][·] can be computed by dynamic programming
in O(mn) time (see Appendix). Moreover, by tracing back the computation of
D[m−k][n], we obtain a path consisting in elements of the matrix, leading from
D[0][0] to D[m−k][n], which encodes the edits needed to transform β into w. An
edge between D[j−1][ℓ] and D[j][ℓ] corresponds to the deletion of β[j]; and edge
between D[j−1][ℓ−1] and D[j][ℓ] corresponds to a substitution of β[j] by w[ℓ], or
to the case where β[j] and w[ℓ] are left unchanged, and will be aligned in the end.
Moreover, an edge between D[j][ℓ− 1] and D[j][ℓ] corresponds to an insertion of
w[ℓ] after position j in β; this can be a free insertion too (and part of the image of
a variable of α), but only when j ∈ F . This concludes the first phase of our proof.

Second phase: a succinct representation and more efficient com-
putation of the dynamic programming table. In the second phase of our
proof, we will focus on how to solve MisMatchReg more efficiently. The idea is to
avoid computing all the elements of the matrix D[·][·], and compute, instead, only
the relevant elements of this matrix, following the ideas of the algorithm by Lan-
dau and Vishkin [28]. The main difference between the setting of that algorithm
(which can be directly used to compute the edit distance between two terminal
words or between a word w and a pattern α of the form xuy, xu, or uy, where x
and y are variables and u is a terminal word) and ours is that, in our case, the di-
agonals of the matrix D[·][·] are not non-decreasing (when traversed in increasing
order of the rows intersected by the respective diagonal), as we now also have free
insertions which may occur at various positions in β (not only at the beginning
and end). This is a significant complication, which we will address next.

The main idea of the optimization done in this second phase is that we could
actually compute and represent the matrix D[·][·] more succinctly, by only com-
puting and keeping track of at most ∆ relevant elements on each diagonal of this
matrix, where relevant means that we cannot explicitly rule out the existence of
a path leading from D[0][0] to D[m− k][n] which goes through that element.

For the clarity of exposure, we recall that the diagonal d of the matrix D[·][·]
is defined as the array of elements D[j][ℓ] where ℓ− j = d (ordered in increasing
order w.r.t. the first component j), where −|β|+1 ≤ d ≤ n. Very importantly, for
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a diagonal d, we have that if D[j][j+d] ≤ D[j+1][j+1+d] then D[j+1][j+1+d]−
D[j][j+d] ≤ 1; however, it might also be the case that D[j][j+d] > D[j+1][j+
1+d], when D[j+1][j+1+d] is obtained from D[j+1][j+d] by a free insertion.

Analysis of the diagonals, definition of Md[δ] and its usage. Now, for
each diagonal d, with −|β|+ 1 ≤ d ≤ n, and δ ≤ ∆, we define Md[δ] = max{j |
D[j][j+d] = δ, and D[j′][j′+d] > δ for all j′ > j} (by convention, Md[δ] = −∞,
if {j | D[j][j + d] = δ, and D[j′][j′ + d] > δ for all j′ > j} = ∅). That is, Md[δ]
is the greatest row where we find the value δ on the diagonal d and, moreover,
all the elements appearing on greater rows on that diagonal are strictly greater
than δ (or Md[δ] = −∞ if such a row does not exist).

Note that if a value δ appears on diagonal d and there exists some j′ such
that D[j][j+d] ≥ δ for all j ≥ j′, then, due to the only relations which may occur
between two consecutive elements of d, we have that Md[δ] 6= −∞. In particular,
if a value δ appears on diagonal d then Md[δ] 6= −∞ if and only if D[|β|][|β|+d] ≥
δ. Consequently, if there exists k > 0 such that Md[δ−k] = |β| then Md[δ] = −∞.

In general, all values Md[δ] which are equal to −∞ are not relevant to
our computation. To understand which other values Md[δ] are not relevant for
our algorithm, we note that if there exist some k > 0 and s ≥ 0 such that
Md+s[δ−k] = |β| then it is not needed to compute Md−g[δ+h], for any g, h ≥ 0,
at all, as any path going from D[0][0] to D[|β|][n], which corresponds to an op-
timal sequence of edits, does not go through D[Md−g[δ + h]][Md[δ + h] + d]. If
s = 0, then it is already clear that Md[δ] = −∞, and we do not need to compute
it. If s ≥ 1, it is enough to show our claim for h = 0 and g = 0. Indeed, assume
that the optimal sequence of edits transforming β into w corresponds to a path
from D[0][0] to D[|β|][n] going through D[Md[δ]][Md[δ] + d]. By the fact that
Md[δ] is the largest j for which D[j][j+d] ≤ δ, we get that this path would have
to intersect, after going through D[Md[δ]][Md[δ] + d], the path from D[0][0] to
D[Md+s[δ−k]][Md+s[δ−k]+d+s] = D[|β|][|β|+d+s] (which goes only through
elements ≤ δ − k). As k > 0, this is a contradiction, as the path from D[0][0]
to D[|β|][n] going through D[Md[δ]][Md[δ] + d] goes only through elements ≥ δ
after going through D[Md[δ]][Md[δ] + d]. So, Md[δ] is not relevant if there exist
k > 0 and s > 0 such that Md+s[δ − k] = m.

Once all relevant values Md[δ] are computed, for d diagonal and δ ≤ ∆, we
simply have to check if Mn−|β|[δ] = |β| (i.e., D[|β|][n] = δ) for some δ ≤ ∆.
So, we can focus, from now on, on how to compute the relevant elements Md[δ]
efficiently. In particular, all these elements are not equal to −∞.

Towards an algorithm: understanding the relations between ele-
ments on consecutive diagonals. Let us now understand under which condi-
tions D[j][ℓ] = δ holds, as this is useful to compute Md[δ]. In general, this means
that there exists a path leading from D[0][0] to D[j][ℓ] consisting only in elements
with value ≤ δ, and which ends with a series of edges belonging to the diagonal
d = ℓ− j, that correspond to substitutions or to letters being left unchanged. In
particular, if all the edges connecting D[j′][j′ + d] and D[j][ℓ] on this path cor-
respond to unchanged letters, then β[j′ : j] is a common prefix of β[j′ : |β|] and
w[j′+d : n]. Looking more into details, there are several cases when D[j][ℓ] = δ.
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If j /∈ F and β[j] 6= w[ℓ], then D[j−1][ℓ−1] ≥ δ−1 and D[j−1][ℓ] ≥ δ−1 and
D[j][ℓ−1] ≥ δ−1 and at least one of the previous inequalities is an equality (i.e.,
one of the following must hold: D[j][ℓ−1] = δ−1 or D[j−1][ℓ−1] = δ−1 or D[j−
1][ℓ] = δ−1). If j /∈ F and β[j] = w[ℓ], then D[j−1][ℓ−1] ≥ δ and D[j−1][ℓ] ≥ δ−
1 and D[j][ℓ−1] ≥ δ−1 and at least one of the previous inequalities is an equality.

If j ∈ F and β[j] 6= w[ℓ], then D[j − 1][ℓ− 1] ≥ δ− 1 and D[j − 1][ℓ] ≥ δ− 1
and D[j][ℓ − 1] ≥ δ and at least one of the previous inequalities is an equality.
If j ∈ F and β[j] = w[ℓ] then D[j − 1][ℓ − 1] ≥ δ and D[j − 1][ℓ] ≥ δ − 1 and
D[j][ℓ− 1] ≥ δ and at least one of the previous inequalities is an equality.

Moving forward, assume now that Md[δ] = j 6= −∞. This means that
D[j][ℓ] = δ, and D[j′′][j′′ + d] > δ for all j′′ > j. By the observations above,
there exists j′ ≤ j such that D[j′][j′ + d] = δ and the longest common prefix of
β[j′ : |β|] and w[j′ + d : n] has length j − j′ + 1, i.e., it equals β[j′ : j]. The last
part of this statement means that once we have aligned β[1 : j′] to w[1 : j′ + d],
we can extend this alignment to an alignment of β[1 : j] to w[1 : j+d] by simply
leaving the symbols of β[j′ + 1 : j] unchanged.

Let us see now what this means for the elements of diagonals d, d+1, and d−1.

Firstly, we consider the diagonal d. Here we have that j′ ≥ Md[δ − 1] + 1.
Note that if δ − 1 appears on diagonal d then Md[δ − 1] 6= −∞.

Secondly, we consider the diagonal d+1. Here, for all rows ℓ with j′ ≤ ℓ ≤ j,
we have that D[ℓ − 1][ℓ + d] ≥ δ − 1 and D[j′′ − 1][j′′ + d] > δ − 1, for all
j′′ with |β| ≥ j′′ > j. Therefore, if δ − 1 appears on diagonal d + 1, either
D[m][m+ d+ 1] ≤ d− 1 or Md+1[δ − 1] 6= −∞ and Md[δ − 1] + 1 ≤ j.

Finally, we consider the diagonal d− 1. Here, for all rows ℓ with j′ ≤ ℓ ≤ j,
we have that D[ℓ][ℓ + d − 1] ≥ δ − 1 and D[j′′][j′′ + d − 1] ≥ δ, for all j′′ with
m ≥ j′′ > j. Thus, either all elements on the diagonal d − 1 are ≥ δ, or δ − 1
occurs on diagonal d − 1 and Md−1[δ − 1] 6= −∞. In the second case, when
Md−1[δ − 1] 6= −∞, we have that j ≥ Md−1[δ − 1] as, otherwise, we would have
that D[Md−1[δ − 1]][Md−1[δ − 1] + d] ≤ δ and Md−1[δ − 1] > j, a contradiction.

Still on diagonal d − 1, if δ occurs on it, then Md[δ] 6= −∞ holds. So, for
g ≤ k − 1 with Fg ≤ Md−1[δ] < Fg+1, we have that Fg ≤ Md[δ]. Indeed,
otherwise we would have two possibilities. If the path connecting D[0][0] to
D[Md−1[δ]][Md−1[δ]+d−1] via elements ≤ d intersects row Fg on D[Fg ][Fg+d′]
for some d′ ≤ d, then D[Fg][Fg+d] ≤ D[Fg][Fg+d′] ≤ δ and Fg > j, a contradic-
tion. If the path connecting D[0][0] to D[Md−1[δ]][Md−1[δ]+d−1] via elements ≤
d intersects row Fg on D[Fg][Fg+d′] for some d′ > d, then the respective path will
also intersect diagonal d on a row > j before reaching Md−1[δ], a contradiction
with the fact that j is the last row on diagonal d where we have an element ≤ δ.

So, for Md[δ] to be relevant, we must have D[|β|][|β| + d + 1] ≥ δ (so there
exists no k > 0 such that Md+1[δ − k] = |β|). In this case, if Md[δ] = j, then
the following holds. The path (via elements ≤ d) from D[0][0] to D[j][j + d]
goes through an element D[g][g + d′] = δ − 1. If the last such element on the
respective path is on diagonal d, then it must be Md[δ − 1]. If it is on diagonal
d − 1, then either g = Md−1[δ − 1] (and then the path moves on diagonal d
via an edge corresponding to an insertion) or g < Md−1[δ − 1] (and then the
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path moves on diagonal d via an edge corresponding to an insertion); in this sec-
ond case, we could replace the considered path by a path connecting D[0][0] to
D[Md−1[δ− 1]][Md−1[δ− 1]+d− 1] (via elements ≤ δ− 1), which then moves on
diagonal d via an edge corresponding to an insertion, and continues along that
diagonal (with edges corresponding to letters left unchanged). If D[g][g+d′] is on
diagonal d+1 (i.e., d′ = d+1) then, just like in the previous case, we can simply
consider the path connecting D[0][0] to D[Md+1[δ− 1]][Md+1[δ− 1]+ d+1] (via
elements ≤ δ − 1), which then moves on diagonal d via an edge corresponding
to a deletion, and then continues along diagonal d (with edges corresponding to
letters left unchanged). If D[g][g + d′] is on none of the diagonals d− 1, d, d+ 1
then we reach diagonal d by edges corresponding to free insertions from some
diagonal d′′ < d. The respective path also intersects diagonal d−1 (when coming
from d′′ to d by free insertions), so diagonal d− 1 contains δ and Md−1[δ] 6= ∞,
and we might simply consider as path between D[0][0] and D[j][j + d] the path
reaching diagonal d− 1 on position D[Fg][Fg + d− 1] (via elements ≤ δ), where
Fg ≤ Md−1[δ] < Fg+1, which then moves on diagonal d by an edge correspond-
ing to a free insertion, and then continues along d (with edges corresponding to
letters left unchanged, as Fg is greater or equal to the row where the initial path
intersected diagonal d). This analysis covers all possible cases.

Computing Md[δ]. Therefore, if Md[δ] is relevant (and, as such, Md[δ] 6=
−∞), then Md[δ] can be computed as follows. Let g be such that Fg ≤ Md−1[δ] <
Fg+1 (and g = −1 and Fg = −∞ if Md−1[δ] = −∞). Let H = max{Md−1[δ −
1], Fg,Md[δ−1]+1,Md+1[δ−1]+1} (as explained, in the case we are discussing,
at least one of these values is not −∞). Then we have that j ≥ H and the longest
common prefix of β[H+1 : |β|] and w[H+d+1 : n] is exactly β[H+1 : j] (or we
could increase j). So, to compute j = Md[δ], we compute H and then we compute
the longest common prefix β[H + 1 : j] of β[H + 1 : |β|] and w[H + d+ 1 : n].

In general, Md[δ] is not relevant either because there exists some s ≥ 0 and
δ′ < δ such that Md+s[δ

′] = |β| or because all elements of diagonal d are strictly
greater than δ. In the second case, we note that all values Md−1[δ−1], Fg, Md[δ−
1], and Md+1[δ− 1] must be −∞ (as otherwise the diagonal d would contain an
element equal to δ), so our computation of Md[δ] returns −∞ (which is correct).

Now, based on these observations, we can see a way to compute the relevant
values Md[δ], for −|β| ≤ d ≤ n and δ ≤ ∆ (without computing the matrix D).

We first construct the word β and longest common prefix data structures for
the word βw, allowing us to compute LCP(β[h : |β|], w[h + d : n]), the length of
the longest common prefix of β[h : |β|] and w[h+ d : n] for all h and d.

Then, we will compute the values of Md[0] for all diagonals d. Basically, we
need to identify, if it exists, a path from D[0][0] to D[Md[0]][Md[0]+d] which con-
sists only of edges corresponding to letters left unchanged, or to free insertions.
By an analysis similar to the one done above, we can easily show that M0[0] is
LCP(β[1 : |β|], w[1 : n]) (which is ≥ 1, by our assumptions). Further, M [d][0] =
−∞ for d < 0 and, for d ≥ 0, Md[0] = Fg +LCP(β[Fg +1 : |β|], w[Fg +1+d : n]),
where Fg ∈ F is such that Fg ≤ Md−1[0] < Fg+1 (Md[0] = −∞ if such an
element Fg does not exist).
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Further, for δ from 1 to ∆ we compute all the values Md[δ], in order for d from
−|β|+1 to n. We first compute the largest diagonal d′ such that Md′ [δ−k] = |β|,
for some k > 0. We will only compute Md[δ], for d from d′ + 1 to n. For
each such diagonal d, we compute g such that Fg ≤ Md−1[δ] < Fg+1 and
H = max{Md−1[δ − 1], Fg,Md[δ − 1] + 1,Md+1[δ − 1] + 1}. Then we set Md[δ]
to be H + LCP(β[H + 1 : |β|], w[H + d+ 1 : n])− 1.

Conclusions. This algorithm, which computes all relevant values Md[δ],can
be implemented in O((n+m)∆) time, as discussed in the Appendix (where also
its pseudocode is given). As explained before, this allows us to solve MisMatchReg
for the input (α,w,∆). Moreover, if the instance can be answered positively, the
value δ for which Mn−|β|[δ] = |β| equals dED(α,w). ⊓⊔

The following result now follows.

Theorem 3. MinMisMatchReg can be solved in O(nΦ) time, where Φ = dED(α,w).

The upper bounds reported in Theorems 2 and 3 are complemented by the
following conditional lower bound, known from the literature [3, Thm. 3] (see
Appendix).

Theorem 4. MisMatchReg can not be solved in time O(|w|h∆g) (or O(|w|h|α|g))
where h+ g = 2− ǫ with ǫ > 0, unless the Orthogonal Vectors Conjecture fails.

It is worth noting that the lower bound from Theorem 4 already holds for
very restricted regular patterns, i.e., for α = xuy, where u is a string of terminals
and x and y are variables. Interestingly, a similar lower bound (for such restricted
patterns) does not hold in the case of the Hamming distance, covered in [23].

Our second main result addresses another class of restricted patterns. To
this end, we consider the class of unary (or one-variable) patterns 1Var, which
is defined as follows: α ∈ 1Var if there exists x ∈ X such that var(α) = {x}. An
example of unary pattern is α1 = abxabxxbaab.

We can show the following theorem.

Theorem 5. MisMatch1Var is W [1]-hard w.r.t. the number of occurrences of the
single variable x of the input pattern α.

Proof (Sketch). We begin by recalling the following problem:

Median String: MS
Input: k strings w1, . . . , wk ∈ σ∗ and an integer ∆.

Question: Does there exist a string s such that
∑k

i=1 dED(wi, s) ≤ ∆?

(The string s for which
∑k

i=1 dED(wi, s) is minimum is called the
median string of the strings {w1, . . . , wk}.)

Without loss of generality, we can assume that ∆ ≤
∑k

i=1 |wi| as, otherwise,

the answer is clearly yes (for instance, for s = ε we have that
∑k

i=1 dED(wi, ε) ≤
∑k

i=1 |wi|). Similarly, we can assume that |s| ≤ ∆ +max{|wi| | i ∈ {1, . . . , k}}.
In [36] it was shown that MS is NP-complete even for binary input strings and
W[1]-hard with respect to the parameter k, the number of input strings.
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We will reduce now MS to MisMatch1Var, such that an instance of MS with k in-
put strings is mapped to an instance of MisMatch1Var with exactly k occurrences
of the variable x (the single variable occurring in the pattern).

Thus, we consider an instance of MS which consists in the k binary strings
w1, . . . , wk ∈ {0, 1}∗ and the integer ∆ ≤

∑k

i=1 |wi|. The instance of MisMatch1Var
which we construct consists of a word w and a pattern α, such that α contains
exactly k occurrences of a variable x, and both strings are of polynomial size
w.r.t. the size of the MS-instance. Moreover, the bound on the dED(α,w) defined
in this instance of MisMatch1Var equals ∆. That is, if there exists a solution for
the MS-instance such that

∑k

i=1 dED(wi, s) ≤ ∆, then, and only then, we should
be able to find a solution of the MisMatch1Var-instance with dED(α,w) ≤ ∆. The
construction of the MisMatch1Var instance is realized in such a way that the word
w encodes the k input strings for MS, conveniently separated by some long strings
over two fresh symbols $,#, while α can be obtained from w by simply replacing
each of the words wi by a single occurrence of the variable x. Intuitively, in this
way, for dED(α,w) to be minimal, x should be mapped to the median string of
{w1, . . . , wk}. In this proof sketch, we just define the reduction. The proof of its
correctness is given in the Appendix.

For the strings w1, . . . wk ∈ {0, 1}∗, let S = 6(
∑k

i=1 |wi|); clearly, S ≥ 6∆.

Let w = w1($
S#S)Sw2($

S#S)S . . . wk($
S#S)S and α =

(

x($S#S)S
)k

.
The constructed instance of MisMatch1Var (i.e., α,w,∆) is of polynomial size

w.r.t. the size of the MS-instance (i.e., {w1, . . . , wk}, ∆). Therefore, it (and our
entire reduction) can be computed in polynomial time. Moreover, we can show
that the instance (w,α,∆) of MisMatch1Var is answered positively if and only
if the original instance of MS is answered positively. Finally, as the number of
occurrences of the variable x blocks in α is k, where k is the number of input
strings in the instance of MS, and MS is W [1]-hard with respect to this parameter,
it follows that MisMatch1Var is also W [1]-hard when the number of occurrences
of the variable x in α is considered as parameter. The statement follows. ⊓⊔

A simple corollary of Theorem 1 is the following:

Theorem 6. MisMatch1Var and MinMisMatch1Var can be solved in O(n3|α|x) time,
where x is the single variable occurring in α.

Clearly, finding a polynomial time algorithm for MisMatch1Var, for which the
degree of the polynomial does not depend on |α|x, would be ideal. Such an algo-
rithm would be, however, an FPT-algorithm for MisMatch1Var, parameterized by
|α|x, and, by Theorem 5 and common parameterized complexity assumptions,
the existence of such an algorithm is unlikely. This makes the straightforward
result reported in Theorem 6 relevant, to a certain extent.

4 Conclusion

Our results regarding the problem MisMatch for various classes of patterns are
summarized in Table 1, which highlights the differences to the case of exact
matching and to the case of approximate matching under Hamming distance.
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Table 1: Our new results are listed in column 4. The results overviewed in column 3
were all shown in [23]. We assume |w| = n and |α| = m.

Class Match(w,α) MisMatch(w,α,∆) MisMatch(w,α,∆)
for dHAM(·, ·) for dED(·, ·)

Reg O(n) [folklore] O(n∆), matching O(n∆), matching
cond. lower bound cond. lower bound

1Var O(n) [folklore] O(n) O(n3|α|x )
(var(α) = {x}) W[1]-hard w.r.t. |α|x
NonCross O(nm logn) [15] O(n3p) NP-hard

1RepVar O(n2) [15] O(nk+2m) NP-hard for k ≥ 1
k=# x-blocks W[1]-hard w.r.t. k

kLOC O(mkn2k+1) [12] O(n2k+2m) NP-hard for k ≥ 1
W[1]-hard w.r.t. k W[1]-hard w.r.t. k

kSCD O(m2n2k) [15] NP-hard for k ≥ 2 NP-hard for k ≥ 1
W[1]-hard w.r.t. k

kRepVar O(n2k) [15] NP-hard for k ≥ 1 NP-hard for k ≥ 1
W[1]-hard w.r.t. k

k-bounded O(n2k+4) [37] NP-hard for k ≥ 3 NP-hard for k ≥ 1
treewidth W[1]-hard w.r.t. k

Note that the results reported in the first row of the rightmost column of
this table are based on Theorem 2 (the upper bound) and Theorem 4 (the lower
bound). The rest of the cells of that rightmost column are all consequences of
the result of Theorem 5. Indeed, the classes of patterns covered in this table,
which are presented in detail in [23], are defined based on a common idea. In
the pattern α, we identify for each variable x the x-blocks: maximal factors of
α (w.r.t. length) which contain only the variable x and terminals, and start
and end with x. Then, classes of patterns are defined based on the way the
blocks defined for all variables occurring in α are interleaved. However, in the
patterns of all these classes, there may exist at least one variable which occurs
an unbounded number of times, i.e., they all include the class of unary patterns.
Therefore, the hardness result proved for unary patterns carries over and, as the
structural parameters used to define those classes do not take into account the
overall number of occurrences of a variable, but rather the number of blocks
for the variables (or the way they are interleaved), we obtain NP-hardness for
MisMatch for that class, even if the structural parameters are trivial.

While our results, together with those reported in [23], seem to completely
characterize the complexity of MisMatch and MinMisMatch under both Hamming
and edit distances, there are still some directions for future work. Firstly, in [24]
the fine-grained complexity of computing the median string under edit distance
for k input strings is discussed. Their main result, a lower bound, was only shown
for inputs over unbounded alphabets; it would be interesting to see if it still holds
for alphabets of constant size. Moreover, it would be interesting to obtain similar
lower bounds for MisMatch1Var, as the two problem seem strongly related. To that
end, it would be interesting if the upper bound of Theorem 6 can be improved,
and brought closer to the one reported for median string in [38]. Secondly, an-
other interesting problem is related to Theorem 4. The lower bound we reported
in that theorem holds for regular patterns with a constant number of variables
(e.g., two variables). It is still open what is the complexity of MisMatch for
regular patterns with a constant number of variables under Hamming distance.
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A Computational Model

The computational model we use to describe our results is the standard unit-
cost RAM with logarithmic word size: for an input of size n, each memory word
can hold logn bits. Arithmetic and bitwise operations with numbers in [1 : n]
are, thus, assumed to take O(1) time. Numbers larger than n, with ℓ bits, are
represented in O(ℓ/ logn) memory words, and working with them takes time
proportional to the number of memory words on which they are represented.
In all the problems, we assume that we are given a word w and a pattern α,
with |w| = n and |α| = m, over a terminal-alphabet Σ = {1, 2, . . . , σ}, with
|Σ| = σ ≤ n +m. The variables are chosen from the set {x1, . . . , xm} and can
be encoded as integers between n + 1 and n +m. That is, we assume that the
processed words are sequences of integers (called letters or symbols), each fitting
in O(1) memory words. This is a common assumption in string algorithms:
the input alphabet is said to be an integer alphabet. For instance, the same
assumption was also used for developing efficient algorithms for Match in [14,23].
For a more detailed general discussion on this computational model see, e.g., [11].

B Longest Common Prefix data structure (LCP)

Given a word w, of length n, we can construct in O(n)-time longest com-
mon prefix-data structures which allow us to return in O(1)-time the value
LCPw(i, j) = max{|v| | v is a prefix of both w[i : n] and w[j : n]}. See [25,26]
and the references therein. Now, given a word w, of length n, and a word β, of
length m, we can construct in O(n+m)-time data structures which allow us to
return in O(1)-time the value LCP(w[i : n], β[j : m]), the length of the longest
common prefix of the strings β[j : m] and w[i : n] for all j and i. In other words,
LCP(w[i : n], β[j : m]) = max{|v| | v is a prefix of both w[i : n] and β[j : m]}.
This is achieved by constructing LCPwβ-data structures for the word wβ, as
above, and noting that LCP(w[i : n], β[j : m]) = min(LCPwβ(i, n+ j), n− i).

C Proofs

Proof of Theorem 1

Theorem 1. MisMatchPAT and MinMisMatchPAT can be solved in O(n2k2+k1)
time, where k1 is the maximum number of occurrences of any variable in the
input pattern α and k2 is the total number of occurrences of variables in α.

Proof. We only give the proof for MinMisMatchPAT .
Assume the input pattern is α = u0x1u1 . . . xk2

uk2
from PATΣ , where xi is

a variable, for i ∈ {1, . . . , k2}, and wi ∈ Σ∗ a terminal word, for i ∈ {0, . . . , k2}.
Note that there might be the case that xi = xj for some i 6= j, as there are no
restrictions on the structure of the pattern α.

We make several observations.
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Let h be a substitution of the variables from α, such that h(xi) = ti, for i ∈
{1, . . . , k2}. Then, h(α) = u0t1u1 . . . tk2

uk2
. When computing the edit distance

dED(h(α), w), one obtains a factorization of w = w0w
′
1w1 . . . w

′
k2
wk2

such that
the optimal sequence of edits transforming h(α) into w transforms ui into wi,
for i ∈ {0, . . . , k2}, and t′i into wi, for i ∈ {1, . . . , k2}.

Now, let Vx = {i ∈ {1, . . . , k2} | xi = x} and assume h is a substitution of the
variables from α such that dED(h(α), w) is minimal w.r.t. all possible substitutions
of the variables of α. Moreover, let h(xi) = ti for i ∈ {1, . . . , k2}. As before, there
exists a factorization of w = w0w

′
1w1 . . . w

′
k2
wk2

such that the optimal sequence
of edits transforming h(α) into w transforms ui into wi, for i ∈ {0, . . . , k2}, and
t′i into wi, for i ∈ {1, . . . , k2}. In this case, from the fact that h is optimal, it is
immediate that h(x) = sx where sx is the median string of {w′

i | i ∈ Vx}.

Based on these observations, we can use the following algorithm solving
MinMisMatchPAT .

For each x ∈ var(α), define Vx = {i ∈ {1, . . . , k2} | xi = x}. For each
factorization f of w = w0w

′
1w1 . . . w

′
k2
wk2

and for each variable x: compute the
median string sx of {w′

i | i ∈ Vx}; define the substitution hf which maps x
to sx for all x; compute the edit distance dED(hf (α), w). After considering each
possible factorization f , return the substitution hf for which dED(hf (α), w) is
minimal.

In the above algorithm, to compute the median string of {w′
i | i ∈ Vx}, we

use the algorithm of [38]. This algorithm runs in O(ℓ
|Vx|
x ), where ℓx = max{|w′

i| |
i ∈ Vx}. Therefore, the running time of our algorithm can be upper bounded by
O(n2k2nk1), so also by O(n2k2+k1). ⊓⊔

Algorithms from the proof of Theorem 2

Computing matrix D[·][·]. The elements of the matrix D[·][·] can be com-
puted by dynamic programming. The base cases are D[j][0] = j, for all j ≤ β
and D[0][ℓ] = ℓ. In the case of computing D[0][ℓ], we simply insert all the letters
of w[1 : ℓ] in β[1 : 0] = ε, while in the case of D[j][0] we are deleting all letters
from β[1 : j] (and, if we refer to the edits in α, where we also have variables, then
we substitute all the variables of the prefix of α which corresponds to β[1 : j] by
the empty word, as well).

The rest of the elements of D[·][·] are now computed according to two cases.

Firstly, we consider the computation of D[j][ℓ] for j /∈ F . In this case, we
cannot use the aforementioned free insertions, so the element D[j][ℓ] is computed
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as in the case of computing the usual edit distance between two strings.

D[j][ℓ] = min



























































D[j − 1][ℓ] + 1, β[j] is deleted in the alignment of β[1 : j]

to w[1 : ℓ];

D[j][ℓ − 1] + 1, w[ℓ] is inserted after position j of β in

the alignment of β[1 : j] to w[1 : ℓ];

D[j − 1][ℓ− 1] + 1, β[j] is substituted by w[j] in

the alignment of β[1 : j] to w[1 : ℓ];

D[j − 1][ℓ− 1], β[j] is left unchanged in the alignment

of β[1 : j] to w[1 : ℓ] because β[j] = w[ℓ].

The more interesting case is when j ∈ F and we can use free insertions. Nat-
urally, our starting point is still represented by the four possible cases based on
which we computed D[j][ℓ] when j /∈ F . However, the case corresponding to the
insertion of w[ℓ] to extend an alignment of β[1 : j] and w[1 : ℓ−1] to an alignment
of β[1 : j] and w[1 : ℓ] can now be obtained by a free insertion, instead of an inser-
tion of cost 1. This brings us to the main difference between the two cases. In this
case, an alignment between β[1 : j] and w[1 : ℓ] can be obtained as follows. We
first obtain an alignment of β[1 : j] to some prefix w[1 : ℓ− k] of w and then use
free insertions to append w[ℓ−k+1 : ℓ] to the edited pattern, and, as such, obtain
w[1 : ℓ]. But, this also means that we first obtain an alignment of β[1 : j] to some
prefix w[1 : ℓ−k] of w and then use free insertions to append w[ℓ−k+1 : ℓ−1] to
the edited pattern, and, as such, obtain an alignment of the pattern to w[1 : ℓ−1],
and then insert (again, without counting this towards the edit distance) w[ℓ] to
obtain w[ℓ−k+1 : ℓ]. Thus, in this case, an alignment between β[1 : j] and w[1 : ℓ]
which uses free insertions corresponding to the position j ∈ F is obtained from an
alignment between β[1 : j] and w[1 : ℓ−1] followed by an additional free insertion.
We obtain, as such, the following recurrence relation for D[j][ℓ], when j ∈ F :

D[j][ℓ] = min



















D[j − 1][ℓ] + 1, β[j] is deleted;

D[j − 1][ℓ− 1] + 1, β[j] is substituted by w[ℓ], if β[j] 6= w[ℓ];

D[j − 1][ℓ− 1], β[j] is left unchanged, if β[j] = w[ℓ];

D[j][ℓ− 1], w[ℓ] is inserted after position j, for free.

Using the two recurrence relation above, we can compute the elements of the
matrix D by dynamic programming (for j from 0 to m− k, for ℓ from 0 to n) in
O(nm) time.

Moreover, by tracing back the computation of D[m− k][n], we obtain a path
consisting of elements of the matrix, leading from D[0][0] to D[m− k][n], which
encodes the edits needed to transform β into w. An edge between D[j−1][ℓ] and
D[j][ℓ] corresponds to the deletion of β[j]; and edge between D[j − 1][ℓ− 1] and
D[j][ℓ] corresponds to a substitution of β[j] by w[ℓ], or to the case where β[j]
and w[ℓ] are left unchanged, and will be aligned in the end. Moreover, an edge
between D[j][ℓ− 1] and D[j][ℓ] corresponds to an insertion of w[ℓ] after position
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j in β; this can be a free insertion too (and part of the image of a variable of α),
but only when j ∈ F .

A listing of an algorithm computing D[·][·] is given in Figure 1.

Input: w,α

Output: minimal edit distance between α and w in O(nm)
1 compute β and the set F ;
2 for j ← [0 to |β|] do
3 D[j][0] ← j;
4 end
5 for ℓ← [0 to n] do
6 D[0][ℓ]← ℓ;
7 end
8 g ← 0
9 for j ← [0 to |β|] do

10 if j = Fg then
11 for ℓ← [0 to n] do
12

D[j][ℓ]← min



















D[j][ℓ − 1], free insertion

D[j − 1][ℓ] + 1, deletion

D[j − 1][ℓ − 1] + 1, substitution

D[j − 1][ℓ − 1], if w[ℓ] = β[j]

13 end
14 g ← g + 1

15 else
16 for ℓ← [0 to n] do
17

D[j][ℓ]← min



















D[j][ℓ − 1] + 1, insertion

D[j − 1][ℓ] + 1, deletion

D[j − 1][ℓ − 1] + 1, substitution

D[j − 1][ℓ − 1], if w[ℓ] = β[j]

18 end

19 end

20 end
21 return D[|β|][n]

Fig. 1: Algorithm to compute D[·][·] in O(nm) time.

Data structures for computing Md[δ]. We first use a linear time algorithm
for the computation of the longest common prefix data structures for β and w
(see the section of this Appendix about such data structures and [26]). Secondly,
we use an auxiliary array G of size |β|+1, which stores for each positive integer
i ≤ β the value G[i] = max{g | Fg ≤ i}, and can be computed in linear time.
This allows us to efficiently retrieve the values Fg. Finally, while computing the
values Md[δ], for d and δ, we can maintain the value d′ of the greatest diagonal
such that there exist k with Md′ [δ− k] = |β|: when we are done with computing
all the values Md[δ−1], for all d, we simply check if we need to update d′ because
we might have found some d′′ > d′ for which Md′′ [δ − 1] = |β|.
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Computing Md[δ]. The algorithm for computing the relevant values Md[∆]
and how these are used to solve Problem MisMatchReg is given in Figure 2.

Input: w,α

Output: minimal edit distance between α and w in O((n+m)∆)
1 construct β;
2 construct F ;
3 init g ← −1;
4 construct LCPβ,w;
5 for d← [−|β| to 0] do
6 Md[0]← −∞;
7 end
8 M0[0]← LCP (β[1 : |β|], w[1 : n]);
9 compute g such that Fg ≤M0[0] < Fg+1 (g ← −1 if F0 > M0[d]);

10 if g = −1 then
11 for d← [1 to n] do
12 Md[0]← −∞;
13 end

14 else
15 for d← [1 to n] do
16 Md[0]← Fg + LCP(β[Fg + 1 : |β|], w[Fg + 1 + d : n]);
17 update g such that Fg ≤Md[0] < Fg+1;

18 end

19 end
20 g ← −1;
21 compute d′ = min{d ≤ n |Md[0] = m};
22 for δ ← [1 to ∆] do
23 for d← [d′ + 1 to n] do
24 update g such that Fg ≤Md−1[δ] < Fg+1;
25

H ← max



















Md−1[δ − 1], diagonal below

Fg, for Fg with Fg ≤Md−1[δ] < Fg+1 ;

M [d][δ − 1] + 1, same diagonal

M [d+ 1][δ − 1] + 1, diagonal above

M [d][δ]← H + LCP(β[H + 1 : |β|], w[H + d+ 1 : n]) − 1;
26 if (d = n− |β|) ∧ (M [d][δ] = |β|) then
27 return δ;
28 end

29 end
30 maintain d′ = min{d′′ ≤ |β| |Md′′ [δ − s] = |β| for some s ≥ 0};

31 end
32 return No solution with ∆ edit operations.;

Fig. 2: Algorithm to compute the relevant values of M in O((n+m)∆) time.

Proof of Theorem 3

Theorem 3. MinMisMatchReg can be solved in O(nΦ) time, where Φ = dED(α,w).

Proof. We use the algorithm of Theorem 2 for ∆ = 2i, for increasing values of i
starting with 1 and repeating until the algorithm returns a positive answer and
computes Φ = dED(α,w). The algorithm is clearly correct. Moreover, the value
of i which was considered last is such that 2i−1 < Φ ≤ 2i. So i = ⌈log2 Φ⌉, and

the total complexity of our algorithm is O(n
∑⌈log2 Φ⌉

i=1 2i) = O(nΦ). ⊓⊔
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Lower bound for MisMatchReg

The results of Theorems 2 and 3 are complemented by the following lower bound,
known from the literature [3]. Firstly, we recall the OV problem.

Orthogonal Vectors (for short, OV)
Input: Two sets U, V consisting each of n vectors from {0, 1}d, where

d ∈ ω(logn).
Question: Do vectors u ∈ U, v ∈ V exist, such that u and v are orthogonal,

i.e., for all 1 ≤ k ≤ d, v[k]u[k] = 0 holds?

It is clear that, for input sets U and V as in the above definition, one can solve
OV trivially in O(n2d) time. The following conditional lower bound is known.

Lemma 1 (OV-Conjecture). OV can not be solved in O(n2−ǫdc) for any ǫ > 0
and constant c, unless the Strong Exponential Time Hypothesis (SETH) fails.

See [6,44] and the references therein for a detailed discussion regarding con-
ditional lower bounds related to OV. In this context, the following result is an
immediate consequence of [3, Thm. 3].

Theorem 4. MisMatchReg can not be solved in time O(|w|h∆g) (or O(|w|h|α|g))
where h+ g = 2− ǫ with ǫ > 0, unless the Orthogonal Vectors Conjecture fails.

Proof of Theorem 5

Theorem 5. MisMatch1Var is W [1]-hard w.r.t. the number of occurrences of the
single variable x of the input pattern α.

Before starting the proof of Theorem 5 we need the following technical lemma.

Lemma 2. Let $ and # be two letters and let S, g, and ℓ be integers. If g ≥ 0,
2g ≤ S, S

2 ≤ ℓ− g, and ℓ ≤ S then:

1. dED($
g($S#S)S−1$S#ℓ, ($S#S)S) = g + (S − ℓ);

2. dED($
ℓ#S($S#S)S−1#g, ($S#S)S) = g + (S − ℓ).

Proof. We only show the first claim, as the second follows identically (as it is
symmetrical).

Firstly, it is clear that g+(S−ℓ) edits suffice to transform $g($S#S)S−1$S#ℓ

into ($S#S)S .
Now, we will show that we cannot transform $g($S#S)S−1$S#ℓ into ($S#S)S

with fewer than S − ℓ+ g edits.
Note that from S

2 ≤ ℓ − g we get ℓ ≥ g + (S − ℓ). So, the suffix #S of
($S#S)S must be obtained by a series of edits from a suffix of the suffix $S#ℓ

of $g($S#S)S−1$S#ℓ. This means that at least S − ℓ edits must be performed
in the respective suffix to obtain S symbols #. This leaves us with at most g
edits remaining to obtain ($S#S)S−1$S. In particular, this means that the prefix
$S#S of ($S#S)S−1$S must be obtained from a prefix of the prefix $g$S#S of
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$g($S#S)S−1$S#ℓ. As, in the best case, g $ symbols need to be substituted
or removed, it follows that we need to use g edits to obtain the prefix $S#S

of ($S#S)S . As such, we already had to use g + (S − ℓ) edits to transform
$g($S#S)S−1$S#ℓ into ($S#S)S , so it cannot be done with fewer edits. The
conclusion follows. ⊓⊔

We can now proceed with the proof of Theorem 5.

Proof. Preliminaries. We begin by recalling the following problem:

Median String: MS
Input: k strings w1, . . . , wk ∈ Σ∗ and an integer ∆.

Question: Does there exist a string s such that
∑k

i=1 dED(wi, s) ≤ ∆?

(The string s for which
∑k

i=1 dED(wi, s) is minimum is called the
median string of the strings {w1, . . . , wk}.)

Without loss of generality, we can assume that ∆ ≤
∑k

i=1 |wi| as, otherwise,

the answer is clearly yes (for instance, for s = ε we have that
∑k

i=1 dED(wi, ε) ≤
∑k

i=1 |wi|). Similarly, we can assume that |s| ≤ ∆+max{|wi| | i ∈ {1, . . . , k}}.
In [36] it was shown that MS is NP-complete even for binary input strings

and W[1]-hard with respect to the parameter k, the number of input strings.

Reduction: intuition and definition. We will reduce MS to MisMatch1Var,
such that an instance of MS with k input strings is mapped to an instance of
MisMatch1Var with exactly k occurrences of the variable x (the single variable
occurring in the pattern).

Thus, we consider an instance of MS which consists in the k binary strings
w1, . . . , wk ∈ {0, 1}∗ and the integer ∆. As mentioned above, we can assume

that in this instance ∆ ≤
∑k

i=1 |wi|.
The instance of MisMatch1Var which we construct consists of a word w and

a pattern α, such that α contains exactly k occurrences of a variable x, and
both strings are of polynomial size w.r.t. the size of the MS-instance. Moreover,
the bound on the dED(α,w) defined in this instance equals ∆. That is, if there

exists a solution for the MS-instance such that
∑k

i=1 dED(wi, s) ≤ ∆, then, and
only then, we should be able to find a solution of the MisMatch1Var-instance with
dED(α,w) ≤ ∆.

The construction of the MisMatch1Var instance is realized in such a way that
the word w encodes the k input strings, conveniently separated by some long
strings over {$,#} (where $,# are two fresh symbols), while α can be obtained
from w by simply replacing each of the words wi by a single occurrence of the
variable x. Intuitively, in this way, for dED(α,w) to be minimal, x should be
mapped to the median string of {w1, . . . , wk}.

We can now formally define the reduction.

For the k binary strings w1, . . . wk ∈ {0, 1}∗defining the instance of MS, let S =

6(
∑k

i=1 |wi|); clearly S ≥ 6∆. Let now w = w1($
S#S)Sw2($

S#S)S . . . wk($
S#S)S

and α =
(

x($S#S)S
)k

.
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Reduction: correctness. We prove first the correctness of the reduction,
that is, the following claim: the instance of MS defined by w1, . . . , wk and ∆ is
answered positively if and only if the instance of MisMatch1Var defined by w,α,∆
is answered positively.

Assume first that the instance of MS defined by w1, . . . , wk and ∆ is answered
positively. Then, it is immediate to see that dED(α,w) ≤ ∆. Indeed, let w′ =
(

s($S#S)S
)k

be the word obtained from α by replacing x with the median
string s of w1, . . . , wk. Then, clearly, dED(w

′, w) ≤ ∆.

Now, assume that the instance of MisMatch1Var defined by w,α,∆ is answered
positively. This means that there exists some word t ∈ {0, 1, $,#}∗ such that

dED(u,w) ≤ ∆ for u =
(

t($S#S)S
)k

.

Therefore, there exists an optimal (w.r.t. length) sequence of edits γ which
transforms u into w, such that the length of γ is at most ∆. As explained in
the preliminaries, we can assume that the edits in the sequence γ are ordered
increasingly by the position of u to which they are applied (i.e., left to right).
Our road plan is to show that if such a sequence of edits γ exists, then there
exists a sequence δ of edits of equal length (so also optimal) transforming u into
w, such that the edits rewrite the ith occurrence of the factor t in w into wi, for
i from 1 to k, and leave the rest of the string u unchanged.

Let u1 be the shortest prefix of u from which we obtain the prefix w1($
S#S)S

of w when applying the edits of γ. Clearly, |w1($
S#S)S |−S ≤ |u1| ≤ |w1($

S#S)S |+
S (as the overall distance between u and w is upper bounded by ∆ ≤ S). Let
now u′

1 be the longest prefix of u1 from which we obtain w1 when applying the
edits of γ, and let u1 = u′

1u
′′
1 . Clearly, the edits of γ transform u′′

1 into ($S#S)S .
We are now performing a case analysis.

Case 1: |u′
1| ≤ |t|.

Case 1.1: u′′
1 = v($S#S)Ss, where v, s ∈ {0, 1,#, $}∗ and v is a suffix of t and

s a prefix of (t($S#S)S)k−1. As |u′′
1 | = 2S2+ |v|+ |s|, then at least |v|+ |s| edits

are needed to transform u′′
1 into ($S#S)S . We can modify γ such that these

operations are deletions of all symbols of v and s, and obtain a new sequence of
edits γ′.

Case 1.2: u′′
1 = v($S#S)S−1s, where v ∈ {0, 1,#, $}∗ is a suffix of t and

s = $S#ℓ for some ℓ ≥ S − ∆. We thus have t = u′
1v and |v| ≤ 2∆ (be-

cause
∣

∣|u′′
1 | − 2S2

∣

∣ ≤ ∆). Further, when applying the operations of γ, after
all the edits in u1 were performed, we obtain w2($

S#S)S . . . wk($
S#S)S from

#S−ℓ(t($S#S)S)k−1 optimally. Hence, from u′′
1 we obtain ($S#S)S so, after per-

forming the p edits corresponding to positions of v (excluding the potential in-
sertions on positions occurring to the right of the last symbol of v), we must
edit them into $ letters, so we must obtain a string $g($S#S)S−1$S#ℓ for some
0 ≤ g ≤ 2∆. It is immediate that p + g ≥ |v| (as when counting the p edit
operations, we count the symbols which were deleted from v, while all the sym-
bols which were substituted in v correspond to distinct positions of $g). Now, by
Lemma 2, since g ≤ 2∆, S−ℓ ≤ ∆, and S ≥ 6∆, we get that the minimum num-
ber of edits needed to transform #g($S#S)S−1#S$ℓ into ($S#S)S is g+(S− ℓ).
So, to transform u′′

1 into ($S#S)S we use p+ g + S − ℓ ≥ |v|+ S − ℓ edits. We
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can, therefore, modify γ to obtain a new sequence of edits γ′, which has at most
the same length as γ, in which we first apply all the edit operations from γ to
u′
1, then we delete all symbols of v, then we simply leave ($S#S)S alone, then

we insert #S−ℓ after ($S#S)S , and we continue by editing #S−ℓ(t($S#S)S)k−1

into w2($
S#S)S . . . wk($

S#S)S exactly as in γ. Clearly, we have just replaced
p+g+S− ℓ operations in γ by |v|+S− ℓ edits to obtain γ′. As γ was of optimal
length, and p+g+S− ℓ ≥ |v|+S− ℓ, we have that γ′ must be of optimal length
too.

Case 2: |u′
1| > |t|. Then u′

1 = t$S−ℓ, for some ℓ such that 0 < S − ℓ ≤ ∆.

Case 2.1: u′′
1 = $ℓ#S($S#S)S−2$S#S−g for some g such that (S − ℓ) + g ≤ ∆.

Moreover, when considering the sequence γ, we have that #g(t($S#S)S)k−1 is
transformed into w2($

S#S)S . . . wk($
S#S)S optimally after the edits in u1 are

performed. As |u′′
1 | = 2S2 − g − (S − ℓ), then at least S − ℓ+ g edits are needed

to transform u′′
1 into ($S#S)S . Now we can modify γ as follows. We first note

that, in γ, the suffix $S−ℓ of u′
1 has to be completely rewritten to obtain w1 (as

w1 does not contain $ symbols). Therefore, we transform t into w1 by simulating
the edits performed in the suffix $S−ℓ by only applying insertions after the last
symbol of t (instead of substitutions in $S−ℓ we do insertions, the insertions
are done as before, and the deletions from $S−ℓ are not needed anymore); the
number of these insertions is at most as big as the number of initial edits applied
to the suffix $S−ℓ of u′

1. Then, the factor ($S#S)S following the first t in u is not
edited, as it corresponds to the identical factor of w which follows w1, and then
we insert after the first factor ($S#S)S of u a factor #g, with g insertions, and
then continue editing #g(t($S#S)S)k−1 to obtain w2($

S#S)S . . . wk($
S#S)S as

in γ. The resulting sequence γ′ of edits is at least S − ℓ edits shorter than γ,
with S − ℓ > 0. As γ was optimal, this is a contradiction, so this case is not
possible.

Case 2.2: u′′
1 = $ℓ#S($S#S)S−1s where 0 < S − ℓ ≤ ∆ and s ∈ {0, 1,#, $}∗

is a prefix of (t($S#S)S)k−1. In this case, in γ, we have that the suffix u′ of u
occurring after u1 is transformed into w2($

S#S)S . . . wk($
S#S)S optimally after

the edits in u1 are performed. Now, the suffix s is transformed, by p edits into
#g for some g ≤ 2∆, and we have p + g ≥ |v| (similarly to the Case 1.2). By
Lemma 2, as in Case 1.2, we get that the minimum number of edits needed
to transform $ℓ#S($S#S)S−1#g into ($S#S)S is g + (S − ℓ). So, overall, the
number of edits needed to transform $ℓ#S($S#S)S−1s into ($S#S)S is (S−ℓ)+
g + p ≥ (S − ℓ) + |s|. Therefore, we can modify γ as follows to obtain a new
optimal sequence of edits γ′. As in Case 2.1 we simulate the edits in the suffix
$S−ℓ of u′

1 by insertions. Then, the factor ($S#S)S is left unchanged. Then we
simply delete the letters of s, and we continue by editing u′ as in γ to obtain
w2($

S#S)S . . . wk($
S#S)S . Clearly, in γ′ we have at least S − ℓ edits less than

in γ, with S− ℓ > 0. As γ was optimal, his is a contradiction, so this case is also
not possible.

This concludes our case analysis.

In all possible cases (1.1 and 1.2), in the newly obtained sequence γ′ of edits,
which has the same optimal length as γ, we have that the prefix t of u is trans-
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formed into w1 by a sequence of edits γ′
1 (which ends with the deletion of the suf-

fix v of t), the first factor ($S#S)S of u is then trivially transformed (by an empty
sequence of edits) into the first factor ($S#S)S of w, and then (t($S#S)S)k−1

is transformed into w2($
S#S)S . . . wk($

S#S)S by an optimal sequence of edits
γ′
2 (which starts, in Case 1.1, the deletion of the prefix s of (t($S#S)S)k−1 or,

in Case 1.2, with the insertion of a factor #S−ℓ before (t($S#S)S)k−1).
Now, we can apply the same reasoning, inductively, to the optimal sequence of

edits γ′
2 which transforms (t($S#S)S)k−1 into w2($

S#S)S . . . wk($
S#S)S , and,

we will ultimately obtain that there exists an optimal sequence of edits δ which
transforms u into w by transforming the ith factor t of u into wi, for all i from
1 to k, and leaving the rest of the symbols of u unchanged. As the length of δ
is at most ∆, this means that for the string t we have

∑k

i=1 dED(t, wi) leq∆, so
the instance defined by w1, . . . , wk and ∆ of MS can be answered positively. This
concludes the proof of our claim and, as such, the proof of the correctness of our
reduction.

Conclusion. The instance of MisMatch1Var (i.e., α,w,∆) is of polynomial size
w.r.t. the size of the MS-instance. Therefore, the instance of MinMisMatch1RepVar
can be computed in polynomial time, and our entire reduction is done in polyno-
mial time. Moreover, we have shown that the instance (w,α,∆) of MisMatch1Var
is answered positively if and only if the original instance of MS is answered pos-
itively. Finally, as the number of occurrences of the variable x blocks in α is k,
where k is the number of input strings in the instance of MS, and MS is W [1]-hard
with respect to this parameter, it follows that MisMatch1Var is also W [1]-hard
when the number of occurrences of the variable x in α is considered as parame-
ter. This completes the proof of our theorem. ⊓⊔
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