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Abstract. The widespread use of machine learning algorithms in data-
driven decision-making systems has become increasingly popular. Recent
studies have raised concerns that this increasing popularity has exacer-
bated issues of unfairness and discrimination toward individuals. Re-
searchers in this field have proposed a wide variety of fairness-enhanced
classifiers and fairness matrices to address these issues, but very few
fairness techniques have been translated into the real-world practice of
data-driven decisions. This work focuses on individual fairness, where
similar individuals need to be treated similarly based on the similarity
of tasks. In this paper, we propose a novel model of individual fairness
that transforms features into high-level representations that conform to
the individual fairness and accuracy of the learning algorithms. The pro-
posed model produces equally deserving pairs of individuals who are
distinguished from other pairs in the records by data-driven similarity
measures between each individual in the transformed data. Such a de-
sign identifies the bias and mitigates it at the data preprocessing stage of
the machine learning pipeline to ensure individual fairness. Our method
is evaluated on three real-world datasets to demonstrate its effective-
ness: the credit card approval dataset, the adult census dataset, and the
recidivism dataset.

Keywords: Algorithmic bias · Algorithmic fairness · Fairness-aware ma-
chine learning · fairness in machine learning · Individual fairness.

1 Introduction

With the widespread use of machine learning algorithms in decision-making sys-
tems, concerns about trust in AI are growing in terms of its full adaptation.
The decisions in many decision-making systems are based upon the predictions
of the results of machine learning algorithms. The major challenge for policy-
makers, stakeholders, and companies in adopting AI is the black box nature of
AI-based decision-making systems [31]. Recently, some studies [23, 34] attempted
to open the black box of AI. The researchers have proposed new fundamental
pillars for trust in the AI system, including explainability, fairness, robustness,
and lineage[4, 26, 3].

Fairness is one of the fundamental principles of a trustworthy AI system [32].
Systematically understanding bias specifically against each individual as well as
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group members in the dataset defined by their protected attributes like age, gen-
der, race, and nationality is the first step to achieving fairness in decision-making
and building trust in AI in general. The protected attributes, concerned in this
paper follow the fairness guidelines given by the Information Commissioner’s
Office (ICO) in terms of Equality Law 2010 in the UK. Among these guidelines,
ICO proposes potentially protected attributes including age, disability, gender,
marital status, maternity, race, religion, sex, and sexual orientation. According
to a recent study, machine learning algorithms treat people or groups of people
who have the above-mentioned protected attributes unfairly. Our research at-
tempts to identify potential research gaps between existing fairness approaches
and possible techniques to address the fair classification of machine learning al-
gorithmic decision-making systems to contribute to building trust in AI. Many
studies have been done on group fairness (which is also called statistical par-
ity). This family of definitions fixes a small number of protected groups, such
as gender, race, and then approximate parity of some statistical measure across
all of these groups. Some of the popular measures include the false positive rate
and the false negative rate, which are also known as equalise odd and equal-
ity of opportunity [13, 19, 8, 9, 21, 18, 33], respectively, but fewer are concerned
with individual fairness. The group fairness approaches (e.g. statistical parity,
equal opportunity, and disparate mistreatment) are used to investigate discrimi-
nation against members of protected attributes such as age, gender, and race. A
fair classifier tries to achieve equality across the protected groups like statistical
parity [13], equalised false positive and false negative rates, and calibrations [6].

Most of the group fairness definitions are subjected to learning statistical con-
straints [10] or averaged over the protected groups to satisfy fairness definitions
[10, 16]. As group fairness is measured by aggregating over male or female or any
other protected attribute, this constraint-based definition may harm some of the
individuals within that group. Individual fairness is an alternative approach that
satisfies the constraints for specific pairs of individuals defined by their task sim-
ilarity. The notion of individual fairness is defined by ”similar individuals should
be treated similarly.” [13]. Here, similarity is defined in terms of task-specific
similarity metrics, where a classifier maps individuals to the probability distri-
bution of outcomes. For example, if xi and xj are similar to each other, then
their classification predictions yi and yj need to be the same.

In this paper, we address the individual notion of fairness based on the work
done in [13, 22, 34, 1], in the sense that we attempt to understand more funda-
mental questions about how an individual is classified as fair/unfair in task-
specific similarity. A model is identified to be fair to individuals if similar pairs
of individuals yield similar outcomes in prediction. The similarity of individuals
is determined by the closeness of distance between the data points in the input
space, which satisfies the Lipschitz property (i.e., distance preservation). The
model is unfair to individuals if similar individuals are treated discriminatorily
in their predictions. That is, for two similar individuals < xi, xj >, their classifi-
cation predictions are different, that is, yi ̸= yj . To estimate a model’s individual
unfairness, we can use a pool of similar individuals generated by a human spec-
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ified process from the original data and/or from the transformed data and their
discrimination in treatment among these individuals. In our proposed approach,
we revisit the notion of individual fairness proposed by Dwork et al [13], that
is, similar individuals are treated similarly on the same given task. We learn
to generalise a representation of the original data into a transformed represen-
tation. The transformed representation learnt by our model preserves fairness
awareness similarity among data points with multiple protected attributes con-
sidered rather than the single protected attribute used in much of the previous
individual fairness research work [30]. In this research, the words ”sensitive” and
”protected” are used interchangeably for the same purpose to specify the list of
possible attributes based on the individuals who can be treated discriminatorily
in their predictions.

Furthermore, in our work, we aim to identify and mitigate the bias presented
in the data by historical decisions. The pre-processing approach is enforced to
reduce discrimination and make the model fairer to individuals. We applied
pre-processing techniques on transformed data to identify and remove biased
data points. The process of removing biased data in our method is to modify
those outcome labels of similar pairs of individuals, where such pairs contribute
more to the model’s unfairness and leave all other data points and features
unchanged. Modifying the outcome values of similar pairs yields a less biased
dataset. A model is then trained on these less biased samples and produces a
fairer outcome with less individual discrimination than the model trained on
the original data. Our fairness model offers more adaptability and versatility to
data with multiple sensitive attributes. The experiments performed on three real-
world datasets with only individual fairness definitions are considered, excluding
the group fairness definitions. More specifically, the contributions of this paper
are summarised as follows:

– We propose a novel approach to improve individual fairness. To the best
of our knowledge, this is the first attempt to provide individual fairness by
considering multiple sensitive attributes to identify and mitigate biases in
the dataset.

– We develop an application-agnostic feature transformation approach by learn-
ing transformed representations of data points that restore individually fair
data and accuracy such that application-specific multi-valued multiple sensi-
tive attributes are considered, rather than single binary protected attributes
such as gender.

– Our method can identify and mitigate bias at the pre-processing stage of the
machine learning pipeline.

– Our method is evaluated on classification and regression tasks, showing that
strong individual fairness can indeed reconcile with a high utility on real-
world datasets: the adult census, credit card approval dataset and recidivism
dataset.
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2 Background and Related Work

2.1 Statistical Definitions of Fairness

Most of the research on fairness attempts to deal with two missions: 1) developing
methods to detect bias and discrimination in AI-based decision-making systems
and 2) developing methods to mitigate these biases by using different criteria to
improve fairness in AI-based systems. There are a wide variety of bias metrics and
fairness definitions proposed in the literature [31] [17][10][23][24][14]. The group
fairness [13] is a constraint-based approximation of parity across all groups with
a statistical measure. Suppose a and a′ are the classes of protected and unpro-
tected groups, and the group fairness constraint to satisfy equal probability of
prediction across these two groups is defined as P [Y |A = a] = P [Y |A = a′].
Here, bias metrics quantify system error in the context of fairness and bias sys-
tematically, which provides advantages to privileged groups over disadvantages
to unprivileged groups. Bias mitigation algorithms reduce unwanted bias in the
data. Conditional parity [11] [15][25] [31] and the inequality indices [29][5][28]
are the most commonly used statistical measures of fairness, where this defini-
tion satisfies the equal prediction of outcome in both protected and unprotected
groups controlled by legitimate factors. However, it is impossible to implement
all these definitions in practice as there is no guideline on which bias metrics
and bias mitigation algorithms should be used to address any specific definition
of fairness. Therefore, despite recent awareness of bias and fairness issues in AI
development and deployment, there is no systematic operation in practice.

2.2 Definitions of Individual Fairness

Alternatively, the individual notion of fairness is a constraint over pairs of in-
dividuals rather than an average over group members. Individual fairness en-
sures that members who are similar are treated similarly.Here, the similarity is
a task-specific similarity metric that must determine the basis of this notion of
definitions. Assume that metrics-based fairness defines similarity on variables
(i.e., input feature vectors) as follows: m : V × V → R m is a map function
which maps each individual to distribution of outcomes. Hence, metric fairness
for individuals with variable v, v′ ∈ V is a closeness in their decisions.

|f(v)− f(v′)| ≤ m(v, v′) (1)

This formulation is based on Lipschitz condition [13] [27].
The definitions of metrics in individual fairness change subsequently, au-

thors in [13] define the task-specific similarity metrics over individuals. In the
following research, metrics are defined over features, variables, and inputs to
classifiers [27]. A construction space was introduced in [16] in addition to the
observed space (OS) and decision space (DS) [22]. A construction space (CS) is
a metric space consisting of individuals and their distances. Whereas, Observed
space (OS) is a metric space which approximates metrics in CS with respect to
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task, assuming g : v → v′ that generates an entity v′ = g(v) from a person
v ∈ CS.

Another notion of individual fairness is proposed in [27] where the authors
approximate the metrics of fairness by marginalising a small probability of error
in the similarity between two individuals. This is an extension of metrics fairness
defined by Dwork et al. [13]. In this matrix approximate fairness [27] definition
two constants α, γ are used to approximate in addition to the similarity metrics
definition suggested by Dwork [13]. In AI Fairness360 [4], it implements indi-
vidual fairness mapping as the author proposed methods that measure similar
prediction of a given instance to its nearest neighbours [34]. Similarly, in average
individual fairness, [20] method is inspired by oracle-efficient algorithms.

3 Multi-Stage Individual Fairness

In this section, we explain the whole framework of our proposed method to
investigate unfairness in machine learning framework. After having a compre-
hensive literature review, our research contributions is mentioned in Section 1.
To address these research contributions, several novel techniques are proposed
in this research. The rest of this section describes the details of each stage and
its responsibilities.

Fig. 1. Flowchart with step in our individual fairness model.
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We consider that a fair algorithm should consider both protected and non-
protected attributes while making fair decisions, and existing approaches give
less attention to the multiple protected attributes in both group and individual
fairness. Our work will be a further step towards individual fairness [13], fair [22]
and perfect metrics fairness [27] with a focus on multiple protected attributes.
These methods measure similarity by Lipschits mapping between a pair of in-
dividuals in unknown distributions over the classified outcomes with distance
metrics. Perfect metrics fairness [27] is a generalised approach that approximates
individuals’ lying in both group and individual fairness. Here, Lipschits’ map-
ping conditions map task-specific similarity metrics. Our proposed framework
for individual fairness consists of detecting and mitigating bias at the prepro-
cessing stage of the machine learning pipeline. The term ”IndFair” is referred
to as our defined approach to individual fairness in the paper. The proposed
framework consists of five major components in the machine learning fairness
pipeline. These components are as follows: fair representation of data, similarity
measure, bias identification, mitigating identified bias, and the final unbiased
model output. In the first component, a fair representation of features is com-
puted using the transformation function detailed in this section. In the second
component, we measure the similarity between a pair of individuals by using the
Euclidean distance function. We identify a bias in the similarity measured data
in the third component. Fairness measures and bias mitigation are performed
in the preprocessing stage of the machine learning pipeline. A detailed descrip-
tion of the working principle behind each component is given in the rest of this
section.

3.1 Notations

We define the notations used in the proposed model in which the input data
X is represented as a m × n matrix where each individual in the populations
as Xi = 1, 2, 3, ..., n and m is the number of features. Each person xi has m
features (i.e. variables, input) xi ∈ X, where features m is a combination of
protected features p and non-protected features np. We assume the attributes
1...l protected attributes and the attributes l+1...m are non-protected. A binary
classification decision on each person is denoted as Ŷ = f(X,Y ), where f is a
function of variables known at decision time f : X −→ 0, 1. In binary prediction
based system a outcome variable (i.e. predictor) Ŷ for each person is unknown
at decision time and the actual outcome is denoted by Y = (y1, y2, ..., yn).

3.2 Transformed Representation Learning

We aim to transform features into fair representation by matrix multiplication
in the transform stage. Here, the intuition of matrix multiplication is vectors of
protected and non-protected attributes are multiplied by distributive property.
Each person xi has m features (i.e. variables, input) xi ∈ X, where features
m is a combination of protected features p and non-protected features np. We
assume the attributes 1...l protected attributes and the attributes l + 1...m are
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non-protected. Each xp is the vector representation of the protected attributes
for individual i, similarly xnp is vector of non-protected attributes. The result
of this transformation can be viewed as a low-level representation of individual
i with k = m− l− 2 dimensions vector size of attributes. We perform the above
operation for all data points. The mapping of xi → x̃ik is given below:

x̃ik =

l∑
p=1

xp(

m∑
np=l+1

xnp) (2)

3.3 Similarity Measure

The similarity measure is an important component to achieve individual fairness
in algorithmic decision making in the pre-processing stage. Similarity measure
can be achieved through a distance measure between two individual records in
the distribution of feature space. Mostly used distance functions are Euclidean
distance, Manhattan distance, and Minkowski distance. In this paper, we focus
on the euclidean distance function to measure the similarity between all pairs of
individuals.

d(xi, xj) =

√√√√ n∑
i,j=1

(xi–xj)2 (3)

The above distance functions d presented in Eq. (3) is applicable to original
records xi and transformed records x̃ikto measure the similarity among all pair
of records.

3.4 Fairness Measure

Mapping individual bias: The individual fairness is to preserve the fairness-
aware distances between a pair of individuals i and j in a given matrix space.
The mapping of individual bias in the given matrix space is measured as the
consistency of outcome between the pairwise similar individuals in transformed
data and original data. The matrices used to measure the individual bias captures
the intuition of individual similarity definition, that is, the similar individuals
should be treated similarly. For instance, if two individual records xi and xj

are similar, then we check the consistency of the output variable yi and ỹi.
We adapted the bias mapping metrics defined in iFair [22] and [34], where our
formula is different from the one used in iFair. The distance d is on a paired
records xi, xj of input data X, and the transformed data X̃ with each pair of

the records x̃i, x̃j whereas d̃ is pairwise distance on transformed records. The
mapping of bias in input data and transformed data is performed using fairness
loss Floss is as given below,

Floss(X, X̃) = 1−
n∑

i,j=1

(d(xi, xj)− d̃(x̃i − x̃j), (4)
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Mitigating Bias: The bias mapping seeks to identify any unfair distortion
in the original data, transformed data and output data for mitigating the bias
in the pre-processing stage. The equation 4 a fairness loss that is, Floss which
addresses a systematic or structural bias presented in the data. The intuition
to mitigate bias in fair individual classifications is based on the similarity of the
outcome of two individuals i and j. If the similarity distance function d(xi, xj)
indicates that individual records, i and j are similar in transformed data then
their outcome value yi and yj should be similar. If these individuals outcome is
not similar then we modify their outcome value to mitigate bias using the below
formula.

Yi, Yj = { 1 ,
1

n
(yi, yj = 1) ≥ 0.5; 0, otherwise (5)

In the above, yi, yj are the mitigated values for similar individuals. Here, the
intuition is for similar pair of individuals we take an average value of binary
outcome either 0 or 1. If this average values of outcome for individuals holding
positive outcome e.g., 1

nyi, yj = 1 ≥ 0.5 then the outcome of all these similar
individuals is replaced as 1 and 0 otherwise. We used the same bias mitigation
strategy in the pre− processing stage of fairness pipeline defined in [4].

3.5 Optimisation

Utility: The utility measured as accuracy (Acc) for each of the support vector
machine classifiers(SVM) and logistic regression(LR) for the classification task.
We adapted the utility measure from iFair [22], as given below:

Utility(Y, Ỹ ) =

n∑
i=1

(yi − ỹi)
2 (6)

Overall Objective Function: Combining the data loss i.e., utility 6 and the
fairness loss 4 yields our final objective function, the learned representation is
to minimise the objective function. The utility minimises data loss and the in-
dividual fairness is fairness-aware treatment in input and output space.:

Ltotal(Θ) = Utility(Y, Ỹ ) + Floss(X, X̃) (7)

4 Data And Experiment

4.1 Datasets

We evaluate our method on three real-world datasets, which are publicly avail-
able for researcher use. In this experiment, we examine the structural bias in the
three different datasets including Adult data[7], Recidivism data[2] and Credit
approval dataset [12] for fair individual classification.
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– Adult dataset is a census income data in the US [7] which consists of 48,842
records. In this dataset, a target variable Y is individual income with more
than 50 thousand dollars and the protected attributes that we used in our
framework are age, marital status, sex and race for the binary classification
task.

– Credit Approval dataset is a collection of 690 records in credit approval
application[12]. The binary outcome value Y represents if the individual is
default or not. The protected attributes that we used in our experiments are
sex, age, married, ethnicity and citizen.

– Recidivism dataset is a widely used test case in experiments on fairness
algorithms. We have used 11 attributes including 3 protected attributes,
namely age, sex and race. The target variable two years of recidivism is the
binary outcome value.

The data are randomly split into three parts: train set, test set and valida-
tion set to learn model parameters and the validation set is used for validation.
We use the same setting in our experiments and compare all methods. We train
and evaluate the data by using a support vector machine and logistic regres-
sion as classifiers and our individual fairness method (IndFair) and learning fair
representation[34]. In our setting, the data are used to compute the accuracy
and fairness at the pre-processing stage by using the above-mentioned machine
learning algorithms and individual fairness definitions. We have only considered
support vector machine classifier(SVM) and logistic regression(LR) in our exper-
iments and experiments using neural classifiers will be considered in the future
work. These setting of data are given in the Table 1 with attribute name Method
which contains original data, pre-processed, post-processed, and optimal. The
data setup is described in the following section.

Data Setup

– The original data consists of all the attributes including the protected at-
tributes and the non-protected attributes.

– The result of transformed data are Pre-processed data given in the Table 1.
The data is a transformed representation of original data which preserves
the fairness-aware distance between pairs of individuals learned by apply-
ing transformed representation learning. We then check the accuracy and
fairness of the data.

4.2 Evaluation Measures

– Utility: This is measured as accuracy (Acc) on tested classifiers, including
the support vector machine (SVM) and logistic regression (LR) where these
classifiers work on the binary classification tasks on three different setups of
the data as mentioned above.

– Individual Fairness: The individual fairness, that is IndFair, is measured
by the consistency of outcome for the individually fair pairs. This means if
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the pair of records are similar to each other based on the fact that the dis-
tance value is less than the given threshold, then the predicted classification
of similarly paired individuals should be the same. We categorise the similar
pair individuals into three parts based on their output value y for all the
individual records below the threshold distance. The first part of individuals
have both positive outcome that is yi, yj = [1, 1], in the second part both
individuals have a outcome values yi, yj = [0, 0], and the third part of indi-
viduals have either positive or negative but do not have same outcome value
for each pair of individuals such that yi, yj = [1, 0]or[0, 1]. The mapping of
individual fairness is given as follows:

IndFair(Y ) = 1−
n∑

i,j=1

(yi, yj)− (ỹiỹj) (8)

Fig. 2. Experiment result on three datasets with original and pre-processed data setting
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4.3 Experimental Results

In this section, we demonstrate the effectiveness of our proposed model on the
classification task. The Fig. 2 shows the results for all the methods on three
datasets, plotting the accuracy and individual fairness. We observe that there is
a considerable amount of unfairness in the original data, therefore the IndFair
accuracy is lower in all the datasets. However, the IndFair is significantly in-
creased in pre-processed data. The overall performance of IndFair is better than
representation learned by learning fair representation (LFR) in terms of identi-
fying bias and improving the individual fairness in the pre-processing stage of
the machine learning pipeline. Table 1 shows the results of the accuracy and
fairness trade-off of the machine learning classifier at three categories of data
distribution as well as their fairness measure using IndFair and LFR. The opti-
mal results are the harmonic mean of the results in all methods in the datasets
setup. The pre-processed method shows an improvement in fairness; however,
there is still a considerable size of unfairness hidden in the data.

Table 1. Experimental results for classification and individual Fairness task.

Dataset Method SVM ACC. LR Acc. IndFair LFR DisparateImpact

Original Data 0.76 0.80 0.69 0.81 0.51
Adult Data Pre-processed 0.74 0.74 0.79 0.80 0.44

Post-processed 0.74 0.74 0.76 0.80 0.65
Optimal 0.74 0.75 0.74 0.80 0.53

Original Data 0.62 0.62 0.66 0.65 0.88
Credit Pre-processed 0.57 0.83 0.71 0.63 0.91
Data Post-processed 0.60 0.81 0.69 0.63 0.87

Optimal 0.59 0.74 0.68 0.63 0.88

Original Data 0.56 0.72 0.50 0.65 0.74
Recidivism Pre-processed 0.54 0.55 0.65 0.63 0.68

Data Post-processed 0.54 0.55 0.63 0.63 0.62
Optimal 0.54 0.59 0.58 0.63 0.68

5 Conclusion

In this paper, we propose a generic and flexible method to achieve better individ-
ual fairness. It is framework to perform a transformation of data into individually
fair representations. Our method accommodates two important criteria. First,
we view fairness from an application-agnostic prospect, which allows us to in-
corporate it in a wide variety of tasks, including general classifiers. Second, we
consider multiple protected attributes along with the non-protected attributes
to facilitate fair treatments of individuals through transformed representation
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of data. Our proposed model is evaluated on three real-world datasets including
Adult income data, Credit data and Recidivism dataset, which demonstrates
that the consistency with utility and individual fairness can reach a promising
degree by using our model. With applying the representations of our individual
fair model on classifier, it leads that algorithmic decisions through our approach
are substantially more fairer than the decisions made on the original data.
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