Skip to main content

Multi-class Detection of Arrhythmia Conditions Through the Combination of Compressed Sensing and Machine Learning

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2021)

Abstract

Medical technologies in the form of wearable devices are an integral part of our daily lives. These devices are devoted to acquire physiological data to provide personal analytics and to assess the physical status of assisted individuals. Nowadays, thanks to the research effort and to the continuously evolving technologies, telemedecine plays a crucial role in healthcare. Electrocardiogram (ECG) is one of the source signal that has been widely involved in telemedicine and therefore the need for a quick and precise screening of ECG pathological conditions has become a priority for the scientific community. Based on the above motivation, we present a study aimed at evaluating the applicability of an highly accurate detector of arrhythmia conditions to be used in combination of a compressed version of the ECG signal. The advantage of using a technique of Compressed Sensing (CS) relies on a faster detection of the approach, due to the lower complexity of the method’s workflow. We conducted an experimental study to determine if such a detector, working on compressed ECG signal, can achieve comparable results with the original approach applied to the uncompressed signal. The results demonstrated that with a Compression Ratio equal to 16 it is possible to achieve classification metrics around 99\(\%\), therefore showing a high suitability of the approach to be involved in contexts of Compressed ECG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://archive.physionet.org/physiobank/database/mitdb/.

References

  1. Amft, O.: How wearable computing is shaping digital health. IEEE Pervasive Comput. 17(1), 92–98 (2018). https://doi.org/10.1109/MPRV.2018.011591067

    Article  Google Scholar 

  2. Amir, M., Mappangara, I., Setiadji, R., Zam, S.M.: Characteristics and prevalence of premature ventricular complex: a telemedicine study. Cardiol. Res. 10(5), 285 (2019)

    Article  Google Scholar 

  3. Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. Standard, Association for the Advancement of Medical Instrumentation, Arlington, VA (1998)

    Google Scholar 

  4. Atkins, J.M., Leshin, S.J., Blomqvist, G., Mullins, C.B.: Ventricular conduction blocks and sudden death in acute myocardial infarction: potential indications for pacing. N. Engl. J. Med. 288(6), 281–284 (1973)

    Article  Google Scholar 

  5. Baldasseroni, S., et al.: Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am. Heart J. 143(3), 398–405 (2002)

    Article  Google Scholar 

  6. Balestrieri, E., et al.: Research challenges in measurement for Internet of Things systems. ACTA IMEKO 7, 82–94 (2018). http://dx.doi.org/10.21014/acta_imeko.v7i4.675

  7. Balestrieri, E., et al.: The architecture of an innovative smart T-shirt based on the internet of medical things paradigm. In: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2019)

    Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intel. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  9. Cheng, Y., Hu, Y., Hou, M., Pan, T., He, W., Ye, Y.: Atrial fibrillation detection directly from compressed ECG with the prior of measurement matrix. Information 11(9) (2020). https://doi.org/10.3390/info11090436, https://www.mdpi.com/2078-2489/11/9/436

  10. Clark, A.L., Goode, K., Cleland, J.G.: The prevalence and incidence of left bundle branch block in ambulant patients with chronic heart failure. Eur. J. Heart Fail. 10(7), 696–702 (2008)

    Article  Google Scholar 

  11. Col, J.J., Weinberg, S.L.: The incidence and mortality of intraventricular conduction defects in acute myocardial infarction. Am. J. Cardiol. 29(3), 344–350 (1972)

    Article  Google Scholar 

  12. Cosoli, G., Spinsante, S., Scalise, L.: Wearable devices and diagnostic apps: beyond the borders of traditional medicine, but what about their accuracy and reliability? IEEE Instrum. Meas. Mag. 24(6), 89–94 (2021). https://doi.org/10.1109/MIM.2021.9513636

    Article  Google Scholar 

  13. Curone, D., et al.: Smart garments for emergency operators: the ProeTEX project. IEEE Trans. Inf Technol. Biomed. 14(3), 694–701 (2010)

    Article  Google Scholar 

  14. De Vito, L., et al.: An undershirt for monitoring of multi-lead ECG and respiration wave signals. In: 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0 &IoT), pp. 550–555. IEEE (2021)

    Google Scholar 

  15. Dias, D., Paulo Silva Cunha, J.: Wearable health devices-vital sign monitoring, systems and technologies. Sensors 18(8), 2414 (2018). https://doi.org/10.3390/s18082414

  16. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 127, 52–63 (2016)

    Article  Google Scholar 

  17. Evans, A., Perez, I., Yu, G., Kalra, L.: Secondary stroke prevention in atrial fibrillation: lessons from clinical practice. Stroke 31(9), 2106–2111 (2000)

    Article  Google Scholar 

  18. Fahy, G.J., et al.: Natural history of isolated bundle branch block. Am. J. Cardiol. 77(14), 1185–1190 (1996)

    Article  Google Scholar 

  19. Figueroa-Triana, J.F., et al.: Acute myocardial infarction with right bundle branch block at presentation: prevalence and mortality. J. Electrocardiol. 66, 38–42 (2021)

    Article  Google Scholar 

  20. Franklin, R.G., Muthukumar, B.: Survey of heart disease prediction and identification using machine learning approaches. In: 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), pp. 553–557. IEEE (2020)

    Google Scholar 

  21. Friedlander, B., Porat, B.: The modified Yule-Walker method of ARMA spectral estimation. IEEE Trans. Aerosp. Electron. Syst. 2, 158–173 (1984)

    Article  MathSciNet  Google Scholar 

  22. Ghaemi, A., Rezaie-Balf, M., Adamowski, J., Kisi, O., Quilty, J.: On the applicability of maximum overlap discrete wavelet transform integrated with mars and M5 model tree for monthly pan evaporation prediction. Agric. For. Meteorol. 278, 107647 (2019)

    Article  Google Scholar 

  23. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Google Scholar 

  24. Haque, A., Ali, M.H., Kiber, M.A., Hasan, M.T., et al.: Detection of small variations of ECG features using wavelet. ARPN J. Eng. Appl. Sci. 4(6), 27–30 (2009)

    Google Scholar 

  25. Hart, R.G.: Atrial fibrillation and stroke prevention. N. Engl. J. Med. 349(11), 1015–1016 (2003)

    Article  Google Scholar 

  26. Hart, R.G., et al.: Lessons from the stroke prevention in atrial fibrillation trials. Ann. Intern. Med. 138(10), 831–838 (2003)

    Article  Google Scholar 

  27. Huarng, K.H., Yu, T.H.K., fang Lee, C.: Adoption model of healthcare wearable devices. Technol. Forecast. Soc. Chang. 174, 121286 (2022). https://doi.org/10.1016/j.techfore.2021.121286, https://www.sciencedirect.com/science/article/pii/S0040162521007204

  28. Imanishi, R., Seto, S., Ichimaru, S., Nakashima, E., Yano, K., Akahoshi, M.: Prognostic significance of incident complete left bundle branch block observed over a 40-year period. Am. J. Cardiol. 98(5), 644–648 (2006)

    Article  Google Scholar 

  29. Ip, J.E., Lerman, B.B.: Idiopathic malignant premature ventricular contractions. Trends Cardiovasc. Med. 28(4), 295–302 (2018)

    Article  Google Scholar 

  30. Isin, A., Ozdalili, S.: Cardiac arrhythmia detection using deep learning. Procedia Comput. Sci. 120, 268–275 (2017)

    Article  Google Scholar 

  31. Jaffard, S., Lashermes, B., Abry, P.: Wavelet leaders in multifractal analysis. In: Qian, T., Vai, M.I., Xu, Y. (eds.) Wavelet Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Basel, pp. 201–246. Springer (2006). https://doi.org/10.1007/978-3-7643-7778-6_17

  32. Julian, D.G., Valentine, P.A., Miller, G.G.: Disturbances of rate, rhythm and conduction in acute myocardial infarction: a prospective study of 100 consecutive unselected patients with the aid of electrocardiographic monitoring. Am. J. Med. 37(6), 915–927 (1964)

    Article  Google Scholar 

  33. Kleemann, T., et al.: Incidence and clinical impact of right bundle branch block in patients with acute myocardial infarction: ST elevation myocardial infarction versus non-ST elevation myocardial infarction. Am. Heart J. 156(2), 256–261 (2008)

    Article  Google Scholar 

  34. Kones, R., Phillips, J.: Bundle branch block in acute myocardial infarction. current concepts and indications. Acta Cardiol. 35(6), 469–478 (1980)

    Google Scholar 

  35. Lashermes, B., Jaffard, S., Abry, P.: Wavelet leader based multifractal analysis. In: 2005 Proceedings (ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. iv–161. IEEE (2005)

    Google Scholar 

  36. Laudato, G., et al.: ATTICUS: ambient-intelligent tele-monitoring and telemetry for incepting and catering over hUman sustainability. Front. Hum. Dyn. 3 (2021). https://doi.org/10.3389/fhumd.2021.614309, https://www.frontiersin.org/article/10.3389/fhumd.2021.614309

  37. Laudato, G., et al.: Identification of R-peak occurrences in compressed ECG signals. In: 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2020)

    Google Scholar 

  38. Laudato, G., Picariello, F., Scalabrino, S., Tudosa, I., De Vito, L., Oliveto, R.: Morphological classification of heartbeats in compressed ECG. SciTePress (2021)

    Google Scholar 

  39. Laudato, G., et al.: MIPHAS: military performances and health analysis system. In: 2020 13th International Conference on Health Informatics, HEALTHINF 2020-Part of 13th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC, pp. 198–207. SciTePress (2020)

    Google Scholar 

  40. Leonarduzzi, R.F., Schlotthauer, G., Torres, M.E.: Wavelet leader based multifractal analysis of heart rate variability during myocardial ischaemia. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 110–113. IEEE (2010)

    Google Scholar 

  41. Li, T., Zhou, M.: ECG classification using wavelet packet entropy and random forests. Entropy 18(8), 285 (2016)

    Article  Google Scholar 

  42. Li, Z., Zhou, D., Wan, L., Li, J., Mou, W.: Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. J. Electrocardiol. 58, 105–112 (2020)

    Article  Google Scholar 

  43. Lin, C.Y., et al.: An observational study on the effect of premature ventricular complex burden on long-term outcome. Medicine 96(1), e5476 (2017)

    Article  Google Scholar 

  44. Matias, I., Pombo, N., Garcia, N.M.: Towards a fully automated bracelet for health emergency solution. In: IoTBDS, pp. 307–314 (2018)

    Google Scholar 

  45. Melgarejo-Moreno, A., et al.: Incidence, clinical characteristics, and prognostic significance of right bundle-branch block in acute myocardial infarction: a study in the thrombolytic era. Circulation 96(4), 1139–1144 (1997)

    Article  Google Scholar 

  46. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  47. Mullins, C.B., Atkins, J.M.: Prognoses and management of venticular conduction blocks in acute myocardial infarction. Mod. Concepts Cardiovasc. Dis. 45(10), 129–133 (1976)

    Google Scholar 

  48. Newby, K.H., Pisano, E., Krucoff, M.W., Green, C., Natale, A.: Incidence and clinical relevance of the occurrence of bundle-branch block in patients treated with thrombolytic therapy. Circulation 94(10), 2424–2428 (1996)

    Article  Google Scholar 

  49. Osowski, S., Hoai, L.T., Markiewicz, T.: Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51(4), 582–589 (2004)

    Article  Google Scholar 

  50. Pal, A., Srivastva, R., Singh, Y.N.: CardioNET: An efficient ECG arrhythmia classification system using transfer learning. Big Data Res. 26, 100271 (2021)

    Article  Google Scholar 

  51. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  52. Pandey, S.K., Janghel, R.R.: Automatic arrhythmia recognition from electrocardiogram signals using different feature methods with long short-term memory network model. Sign. Image Video Process. 14(6), 1255–1263 (2020). https://doi.org/10.1007/s11760-020-01666-8

    Article  Google Scholar 

  53. Picariello, F., Iadarola, G., Balestrieri, E., Tudosa, I., De Vito, L.: A novel compressive sampling method for ECG wearable measurement systems. Measurement 167, 108259 (2021). https://doi.org/10.1016/j.measurement.2020.108259, https://www.sciencedirect.com/science/article/pii/S0263224120307983

  54. Ravelomanantsoa, A., Rabah, H., Rouane, A.: Compressed sensing: a simple deterministic measurement matrix and a fast recovery algorithm. IEEE Trans. Instrum. Meas. 64(12), 3405–3413 (2015). https://doi.org/10.1109/TIM.2015.2459471

    Article  Google Scholar 

  55. Rizzon, P., Di Biase, M., Baissus, C.: Intraventricular conduction defects in acute myocardial infarction. Br. Heart J. 36(7), 660 (1974)

    Article  Google Scholar 

  56. Rosa, G., Laudato, G., Colavita, A.R., Scalabrino, S., Oliveto, R.: Automatic real-time beat-to-beat detection of arrhythmia conditions. In: HEALTHINF, pp. 212–222 (2021)

    Google Scholar 

  57. Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)

    Article  Google Scholar 

  58. Scalise, L., Cosoli, G.: Wearables for health and fitness: measurement characteristics and accuracy. In: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2018). https://doi.org/10.1109/I2MTC.2018.8409635

  59. Shenkman, H.J., et al.: Congestive heart failure and QRS duration: establishing prognosis study. Chest 122(2), 528–534 (2002)

    Article  Google Scholar 

  60. Shindler, D.M., Kostis, J.B.: Electrocardiographic technology of cardiac arrhythmias. In: Sleep Disorders Medicine, pp. 182–187. Elsevier (2009)

    Google Scholar 

  61. Simpson, R.J., Jr., Cascio, W.E., Schreiner, P.J., Crow, R.S., Rautaharju, P.M., Heiss, G.: Prevalence of premature ventricular contractions in a population of African American and white men and women: the atherosclerosis risk in communities (ARIC) study. Am. Heart J. 143(3), 535–540 (2002)

    Article  Google Scholar 

  62. Surantha, N., Atmaja, P., David, Wicaksono, M.: A review of wearable internet-of-things device for healthcare. Procedia Comput. Sci. 179, 936–943 (2021). https://doi.org/10.1016/j.procs.2021.01.083, https://www.sciencedirect.com/science/article/pii/S1877050921001149,. 5th International Conference on Computer Science and Computational Intelligence 2020

  63. Villar, R., Beltrame, T., Hughson, R.L.: Validation of the hexoskin wearable vest during lying, sitting, standing, and walking activities. Appl. Physiol. Nutr. Metab. 40(10), 1019–1024 (2015)

    Article  Google Scholar 

  64. Wallmann, D., Tüller, D., Kucher, N., Fuhrer, J., Arnold, M., Delacretaz, E.: Frequent atrial premature contractions as a surrogate marker for paroxysmal atrial fibrillation in patients with acute ischaemic stroke. Heart 89(10), 1247–1248 (2003)

    Article  Google Scholar 

  65. Wallmann, D., et al.: Frequent atrial premature beats predict paroxysmal atrial fibrillation in stroke patients: an opportunity for a new diagnostic strategy. Stroke 38(8), 2292–2294 (2007)

    Article  Google Scholar 

  66. van Walraven, C., Hart, R.G., Singer, D.E., Koudstaal, P.J., Connolly, S.: Oral anticoagulants vs. aspirin for stroke prevention in patients with non-valvular atrial fibrillation: the verdict is in. Card. Electrophysiol. Rev. 7(4), 374–378 (2003). https://doi.org/10.1023/B:CEPR.0000023143.98705.ee

    Article  Google Scholar 

  67. Xu, S.S., Mak, M.W., Cheung, C.C.: Towards end-to-end ECG classification with raw signal extraction and deep neural networks. IEEE J. Biomed. Health Inform. 23(4), 1574–1584 (2018)

    Article  Google Scholar 

  68. Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018)

    Article  Google Scholar 

  69. Yildirim, O., Baloglu, U.B., Tan, R.S., Ciaccio, E.J., Acharya, U.R.: A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput. Methods Programs Biomed. 176, 121–133 (2019)

    Article  Google Scholar 

  70. Zhao, Q., Zhang, L.: ECG feature extraction and classification using wavelet transform and support vector machines. In: 2005 International Conference on Neural Networks and Brain, vol. 2, pp. 1089–1092. IEEE (2005)

    Google Scholar 

  71. Zheng, Z., Chen, Z., Hu, F., Zhu, J., Tang, Q., Liang, Y.: An automatic diagnosis of arrhythmias using a combination of CNN and LSTM technology. Electronics 9(1), 121 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Laudato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosa, G. et al. (2022). Multi-class Detection of Arrhythmia Conditions Through the Combination of Compressed Sensing and Machine Learning. In: Gehin, C., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2021. Communications in Computer and Information Science, vol 1710. Springer, Cham. https://doi.org/10.1007/978-3-031-20664-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20664-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20663-4

  • Online ISBN: 978-3-031-20664-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics