)

Check for
updates

A Systematic Mapping Study of Empirical
Research Methods in Software Ecosystems

Larry Abdullai!, Hatef Shamshiri!, Hasan Mahmud!, Muhammad Hamza!,
Essi Aittamaal, Jaakko Vuolasto!, Mikhail O. Adisal, Roope Luukkainen!,
Sonja M. Hyrynsalmi!, Niina Misseli!, Nasreen Azad', Bahalul Haque!,
Juha-Pekka Joutsenlahti!, Wondemeneh Legessel, Ahmed Abdelsalam?,
Anastasiia Gurzhii!, Jouni Ikonen!, Slinger J ansenl’z,

and Casper van Schothorst?®9

lrur University, Lappeenranta, Finland
2 Utrecht University, Utrecht, The Netherlands
casper@vanschothorst.com

Abstract. The field of software ecosystems is rapidly maturing and significant
numbers of articles are published each year to further develop our understanding
of this concept and support innovation through it. The growth of the field also
brings along challenges, such as findability and reusability of research results,
coordination of research initiatives, and significant review pressure on members
of the community. In this mapping study of empirical research methods in the field,
we show that few studies do a good job of reporting their research methods and
results. Using data from the study, we provide guidelines for performing empirical
research in software ecosystems.

Keywords: Empirical research - Software ecosystems - Software engineering -
Platform management - Research validity

1 Introduction

Technology has a profound impact on business models and the way companies are
successful. As stated by Jacobides [8] companies are no longer “independent strategic
actors” but they depend for their success on collaboration with other companies in an
ecosystem spanning multiple sectors. The virtual character of software have enabled
these developments even more profound in the software industry. While in the early
days of software engineering a software product was the result of effort of an indepen-
dent software vendor to create a monolith product, modern software strongly relies on
components and infrastructure from third-party vendors or open source suppliers [9].
Software ecosystems, defined as a set of actors that functions as a unit and collectively
serve a market for services and software, usually based around a platform or technology
[14] have become a key component in the success of companies in the software industry.
Even companies that compete with each other in the same market, also collaborate for

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Carroll et al. (Eds.): ICSOB 2022, LNBIP 463, pp. 182-195, 2022.
https://doi.org/10.1007/978-3-031-20706-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20706-8_13&domain=pdf
http://orcid.org/0000-0002-4613-7358
https://doi.org/10.1007/978-3-031-20706-8_13

A Systematic Mapping Study of Empirical Research Methods 183

example on development projects. This hybrid behavior comprising competition and
cooperation has been named coopetition [20].

With these developments the importance of understanding how to set-up and man-
age software ecosystems has increased. It becomes of vital importance that high quality
knowledge is developed through solid academic research and reported in transparent
ways. There is a growing body of research papers and SLR’s covering Software Ecosys-
tems but there is still clear upside in improving the quality the research standards and
methods. In a mapping of systematic literature studies Garcia et al. [7] conclude that the
mapping shows that the research of software ecosystems is in its infancy. They refer to
Manikas [d] whose SLR on software ecosystems is a leading paper, being cited more
than 600 times and who is agreeing with this statement. But the SLR of Manikas is being
criticized by Wohlin et al. [24] for being the Manikas the sole author while their research
shows that having more than one researcher is very valuable.

Researchers in the software ecosystem domain use, among others, empirical research
methods to understand how these networks of companies and individuals produce and
maintain complex, continuously developing software systems. The objective of our study
is to explore how software ecosystem researchers use empirical research methods in their
work, with the larger goal of maturing the field. We hypothesize that, similarly to other
young domains such as software engineering research [4], researchers can become better
at executing and reporting their findings and conclusions. The research question that
drove this research is: how do software ecosystem researchers use empirical research
methods?

This paper reports on early findings of a mapping study of the empirical research
methods observed in literature on software ecosystems. We have initially zoomed in
on case studies, as that appear to be the prevalent method. The rest of the paper is
organized as: Sect. 2 outlines the systematic mapping study research method, Sect. 3
outlines the result analysis of the extracted dataset, Sect. 4 describes the top 4 papers
having the highest value in meeting the ACM SIGSOFT empirical standards for software
engineering, Sect. 5 represents the recommendation of the authors after the analysis,
Sect. 7 concludes the paper and outlines the future research directions.

2 Systematic Mapping Study Research Method

To arrive at a representative and quality sample of studies from the field of software
ecosystems, we commenced our systematic mapping study following the guidelines
proposed by Kitchenham et al. [11] and Petersen et al. [15]. We started with defining
our research question and designing our mapping studies protocols. Since the ecosystem
terminology is used divers definitions in different ways, we chose keywords that would
limited the search to finding scientific articles relating to software ecosystems, rather
than any other forms of business ecosystems or ecological ecosystems.

This enabled us to extract keywords necessary to answering our research question
and using them as a basis to form our search string (“software” AND “ecosystem”
AND (“platform” OR “open source” OR “governance” OR “package”). We used some
of the orthodox guidelines in conducting systematic mapping. However, we applied
some exotic flavor in our strategy for selecting the literature as illustrated in Fig. 1 and
described in the following paragraphs.

184 L. Abdullai et al.

mapping

Defining protocol, Conducting Papler sFreenlpg & ACM SIGSOFT process
research question search e ec"of‘ using guidelines
& choice of A R inclusion & PRERN
database - / \\\ eXCLUSIon cnt?na /// \\

A
:]‘:'g]‘:' ‘ U
S stematlc —
4 Search Goo; Ie z= WOS
mapping Keywords ¢ g Paper Data
process string SChOIBr e Scopus { collection extraction Systematic Map

Fig. 1. Systematic mapping study design and execution process

We first chose Google scholar as our primary database search engine. Secondly we
divided the authors into groups of two and with the assignment per group to review 20
papers from a selected year from the period between 2011 and 2021. The two authors
per group should then discuss and agree between themselves the suitability of the paper
selected. We selected this strategy to ensure that relevant papers were evenly selected
from each year and to avoid sampling and selection bias.

During the search, it became evident that, due to the large number of papers that were
returned as the results of our query, it was not feasible to read every single article. The
authors therefore leveraged the “sort by relevance” feature of the Google Scholar search
engine to arrange the generated literature. Other databases such as Scopus and Web of
Science together with a set of more formal decision criteria were utilized to validate
that the most relevant papers were selected through Google Scholar. The following
set of exclusion and inclusion criteria were used: (i) Only studies relating to software
ecosystems with focus on platform, open source, governance, or package were selected.
(ii) Only papers with twenty or more citations were selected except for articles published
in 2020 and 2021, to ensure a minimum degree of quality. (iii) Only full papers were
selected. We define a full research paper as an articles with not less than seven pages.
(iv) Only open access literature or those that could be accessed through legal sources
were considered. Finally, (v) systematic review studies were excluded from the list.

After applying these inclusion and exclusion criteria, the final literature selection
process relied on the researchers’ thorough reading of the full paper since the data set
was arranged in order of relevance, to select ten papers per author each for analysis.
Overall, a total of 89 sample papers were included in the mapping study. Although there
is the likelihood that we might have missed some potentially relevant papers giving the
selection approach we adopted, we believe that our strategy allowed us to select papers
year by year evenly and fairly which is representative of the topic under investigation.

For the analysis of the research methods, we have used the ACM SIGSOFT standards
for empirical research in software engineering [17]'. This set of standards includes a
quality guide for a selected number of different research methods, e.g., case study, mixed
methods, or grounded theory. These empirical standards have been proposed to provide
generic standards for the evaluation of empirical research or research that uses data, as

I Latest standards https://github.com/acmsigsoft/EmpiricalStandards/.

https://github.com/acmsigsoft/EmpiricalStandards/

A Systematic Mapping Study of Empirical Research Methods 185

defined by ACM SIGSOFT [f]. The standards provide a checklist per research method
that is divided in essential, desirable and extraordinary attributes. For each article we
have used the checklists to compile a review that is consistent and seen as reasonable by
the SE community.

Additionally, the requirements set by the scientific community make it sensible to
follow the ACM SIGSOFT standards. Since we included scholarly peer-reviewed articles
(e.g.,journal papers) as well as conference proceedings, the predetermined criteria helped
us focus on the necessary components that the chosen papers should contain. We used
19 criteria (e.g., justification for the choice of case(s) or object(s) that have been studied,
description in rich detail, and presentation of the precise chain from observation to
findings, etc.) to evaluate the chosen research papers for further analysis.

3 Results

Using a two-step analysis, we started with the classification of used research methods
and secondly utilized the checklists of the ACM SIGSOFT Case Study standards. In
classification of used research methods, we initially identified the research method from
each selected paper and then counted the frequency of each research method type. In
ACM SIGSOFT Case Study standard analysis, we analyzed the selected case study
articles, including mixed method studies and repository mining case studies. Analysis
results are presented in following Sections.

3.1 A Classification of Used Research Methods

The term research method describes an approach of conducting research, specifically
the numerous sorts of activities used to systematically address the research problem that
is predicated on assumptions and provide a rationale for the decisions made. A research
methodology may use a variety of research methods which are the tools used to gather
and analyze data [27].

To determine the methodology adopted by the selected studies, a research method
analysis on a sample of the collected papers was conducted. The results of the performed
analysis can be seen in Fig. 2. It can be noticed that most researchers have conducted
case studies to conduct the research. Furthermore, the top three research methods used
are, in order:

Case Study. Case study research is an empirical method aimed at investigating contem-
porary phenomena in their context [18]. With characteristics of the flexible type, coping
with the complex and dynamic characteristics of real-world phenomena, like software
engineering, bases its conclusions on a clear chain of evidence, whether qualitative or
quantitative, collected from multiple sources in a planned and consistent manner, and
it adds to existing knowledge by being based on previously established theory, if such
exist, or by building theory.

Mixed Methods. Mixed methods research is a combination of multiple research meth-
ods. The method uses both quantitative and qualitative data collection and analysis

186 L. Abdullai et al.

strategies. The mixed methods research approach can be utilized if the researcher
desires a more robust, multifaceted viewpoint, one example could be using Interviews
to supplement statistical results from a survey [25].

Design Science. Design science research is a qualitative research methodology that
simultaneously produces knowledge about the process used to create an artifact and the
artifact itself, with the object of the study being the design process. Furthermore, design
science research seeks to provide information that is prescriptive for professionals in a
field and to share empirical leanings from studies of the prescriptions used in context
[16]. Such information is known as “design knowledge” since it aids practitioners in
creating solutions to their issues [5]. On the other hand, the least used methods are
exploratory studies, interviews, and repository mining.

Mixed methods
Design science
Survey
Longitudinal study

Experimental study

Research Methods

Exploratory study

Interview

S sn _

Repository mining

Frequency

Fig. 2. Classifiable and identifiable research methods within the articles of the study.

3.2 An Analysis of Utilized ACM SIGSOFT Case Study Standards

In Table 1 we present an in-depth analysis of the research methods encountered in the
case study articles that were part of the mapping study. We have analyzed 51 articles
that were either pure case studies, mixed method studies, or repository mining studies,
hence the number is larger than the number of pure case studies mentioned in Fig. 2.
When looking at the overall results, it is pleasing to observe that most studies check
the essential aspects. Most studies explain in rich detail the object of study and why the
case study was done. However, authors frequently neglect to mention the type of case
study (e.g., exploratory, or explanatory). More problematic is the lack of explanation of
how the case studies lead from observations to findings. While this in part can probably

A Systematic Mapping Study of Empirical Research Methods 187

be blamed on page limitations, it is nowadays increasingly common to also make the
case study report available, in which this chain of evidence could be provided.

When looking at the desirable aspects, things become more dire. While several
studies use triangulation and present evidence such as interview quotations (approx-
imately half), many do not. Furthermore, only approximately a fourth of studies use
cross-checking techniques for corroborating evidence. Also, fewer than half include an
in-depth discussion of the biases that the work potentially suffers from. If the field of
software ecosystems is to be matured, it is essential that more studies report on these
desirable aspects in the future.

Finally, the extraordinary attributes are rarely observed. While not problematic, these
are aspects that researchers in the future may have to include in future studies. The
authors of this work, for instance, have little experience with pre-publishing a case
protocol beforehand. While this practice may be common in other fields, we are still
maturing. One thing the field can pride itself with: we often publish multiple case studies
and perform cross case analysis. This may be a sign that the field is maturing, that case
studies are ample available, and that we may wish to create better access to case materials,
to encourage reuse and sharing of research assets.

4 Highlighting Four Studies from the Data Set

4.1 The Dynamics of Openness and the Role of User Communities A Case Study
in the Ecosystem of Open-Source Gaming Handhelds

Using the open-source handheld games ecosystem as a case study, the paper reveals the
influence of openness on games manufacturers’ interactions with their user communities
and customers’ changes in preference. By using a longitudinal approach, the paper
answered the two research questions: 1) how does the discrepancy between the openness
provided by firms and the openness demanded by a user community emerge? And 2) what
are the consequences for the ecosystem (especially the firms) when firms fail to address
such a discrepancy? For the first question the authors posit that often time, discrepancies
occurred when the level of openness provided by the firm fell below the expectation of
their targeted users’ community (a case of misaligned information releases). Position to
influence a firm’s openness levels users.

Regarding the second research question, the inability of a firm to effectively manage
the users’ demands for openness and emerging conflict can constitute a huge risk to the
firm’s survival, its competitiveness and may lose to an alternative user-initiated project
springing up in the ecosystem thereby making openness a dimension of competition. A
firm’s degree of openness, therefore, relies on its strategy as well as extra-organizational
actors (users and developers) [26].

Most firms are committed to achieving a symbiosis relationship with their users-
developers community in their openness by benefiting from the valuable contributions
offered by the external community contributors and reducing the possibility of incurring
negative outcomes that may jeopardize their productivity [20]. The study shows how
users’ empowerment through the online community put them in a particularly good.

The paper proposed a framework of the dynamics of openness built on the repeated
patterns illustrating the open-source game ecosystem. It highlighted the importance and

188 L. Abdullai et al.

Table 1. Scoring of 51 studies using the ACM SIGSOFT Standards

Quality factor case studies Out of 51
Essential

Justifies the selection of the case(s) or site(s) that was(were) studied 46
Describes the site(s) in rich detail 42
Reports the type of case study 31
Describes data sources (e.g., participants’ demographics and work roles) 38
Defines unit(s) of analysis or observation 43
Presents a clear chain of evidence from observations to findings 37
Desirable

Provides supplemental materials such as interview guide(s), coding schemes, 25

coding examples, decision rules, or extended chain-of-evidence tables

Triangulates across data sources, informants, or researchers 23

Cross-checks interviewee statements (e.g., against direct observation or archival | 16
records)

Uses participant observation (ethnography) or direct observation (non 18
ethnography) and clearly integrates these observations into results

Validates results using member checking, dialogical interviewing, feedback from |19
Non-participant practitioners or research audits of coding by advisors or other
researchers

Describes external events and other factors that may have affected the case or site | 25

Uses quotations to illustrate findings 19

EITHER: evaluates an a priori theory (or model, framework, taxonomy, etc.) using | 25
deductive coding with an a priori coding scheme based on the prior theory

OR: synthesizes results into a new, mature, fully developed and clearly articulated | 6
theory (or model, etc.) using some form of inductive coding
(Coding scheme generated from data)

Researchers reflect on their own biases 18

Extraordinary attributes

Multiple, deep, fully developed cases with cross-case triangulation 16

Uses a team-based approach, e.g., multiple raters with analysis of interrater 8
reliability (see the IRR/IRA Supplement)

Published a case study protocol beforehand and made it publicly accessible (See |2
the Registered Reports Supplement)

dynamism of openness as a dimension for competition. It also emphasizes the importance
of user-driven innovation over the manufacturer driven product lifecycle. Three examples
(Gamepark, GP Holdings, Project Ninja) of firms that failed to manage conflict arising
from openness are presented and one example (Open Pandora) that was able to manage

A Systematic Mapping Study of Empirical Research Methods 189

their users’ demand for openness and resulting conflict successfully. The Gamepark’s
failure is due to resentment from dissatisfied users’ community members who felt their
demands are being ignored while asserting that the Gamepark’s success is mostly from
the users’ contribution. This resulting conflict is a huge blow to the company as the users’
community eventually launched an alternative product which eventually dies due to the
same reason. Decisions regarding a firm’s openness strategy required adequate planning
and effective communication with the targeted users’ community as such decision is
often difficult to reverse [20].

The authors used multiple data sources (forums, expert interviews, and secondary
archival data) to validate and support their argument and used triangulation in the anal-
ysis. The proposed framework provides an abstract way of identifying and managing
discrepancies that emerge between openness offered by firms and openness demanded
by the user communities as well as the consequences arising thereafter. In addition, the
author cites real-life cases of Handheld gaming firms to support their findings and by
stating the research limitations, the authors provide useful direction for the future of the
research work. All the data presented also meets the FAIR principles, respectively.

The major weakness of the paper is the ecosystem selection, which limited the choice
to the handheld gaming industry ecosystem, thereby making it narrow and too specific.
The paper also failed to consider the contribution of ordinary users (non-developer)
during the semi structured interview process. Input from other related ecosystems as
well as other users would have helped to strengthen the findings.

The longitudinal case study approach focuses on the open-source gaming handheld
industry and helps to validate the evolution and the dynamics of firms, user communities,
and their interactions. We find that a suboptimal level of openness can pose a threat to a
firm’s very existence.

4.2 How Do Software Ecosystems Evolve? A Quantitative Assessment of the R
Ecosystem

Plakidas et al. [12] focus on the analysis of the emergence of software ecosystems by
examining the structure and emergence of the R ecosystem as a case study of the open-
source ecosystem. Package repository mining and statistical analysis method was used
to extract R package data over a period of 12 months. The paper reveals metrics that
help to identify and characterized a successful software ecosystem and compares it to
approaches from related ecosystems literature by creating and comparing the prediction
models based on package download frequency.

The software ecosystem consists of three main components namely: the software
platform, the community of users, and the marketplace(s) respectively. The R ecosys-
tem is classified into Platform Characteristics, Marketplace and Package Characteristics,
and Community Characteristics. The paper was structured to provide answers to three
research questions RQ1: How does the R software ecosystem evolve? The R ecosystem
still enjoys robust growth in sizes and varieties since its inception RQ2: How do the
community members collaborate, and how does this impact the software marketplace?
The stakeholders play a significant role in boosting the marketplace by providing sev-
eral packages that extend the functionality of the R core, with the active involvement
of “insiders” as well as the single-package contributors. RQ3: What makes a software

190 L. Abdullai et al.

ecosystem marketplace product successful? A strongly established community commit-
ment and frequently maintained package contributed by experienced authors constituted
a successful marketplace ecosystem [12].

The paper was well structured and clear answers were provided to the research
questions. The paper employed a quantitative analysis of the R ecosystem to assess
and quantify its emergence, and derive metrics on its core software components, the
marketplace as well as its community, in addition to validating existing theories from
the literature. The metrics and basic characteristics of the mined data are presented
and supported with related analysis. Threats to validity are discussed from multiple
perspectives and this help to strengthen the validity of the findings.’

One weakness identified from this research is the sourcing of data from Bioconduc-
tor (data downloaded were limited to the previous 12 months), which indicates incom-
plete versioning differentiation. A better approach would have been obtaining data from
multiple repositories like Github or the package homepage.

4.3 Knowledge Boundaries in Enterprise Software Platform Development:
Antecedents and Consequences for Platform Governance

The extant research on platforms has studied extensively the roles and actions of a
platform leader and complementors, whether it is about governance or technological
aspects. However, according to Foerderer et al. [6] “a comprehensive picture of knowl-
edge management in platform ecosystems did not yet exist.” This is important, because
complementors need knowledge about the platform functionality — what they can do
with it to provide add-on services or products — and about the design of interfaces — how
they can do it. A lot of the prior research has studied consumer-focused platforms, so the
authors decided to focus on enterprise software, which is considered complex by nature.
This complexity makes it non-trivial for the complementors to develop add-ons. The
authors discuss knowledge management as one of the strategic activities of a platform
owner, using and extending a knowledge boundary framework by Carlile [2]. The paper
presents reasons for what hinders knowledge from passing the firm boundaries within a
platform ecosystem, and what are its consequences.

The authors lay their foundations of the platform governance and knowledge man-
agement and show how they are related. From there they identify the research gap: what
are the causes for knowledge gaps when boundaries are crossed and how the platform
owners can try to manage the caps. Regarding the results, providing add-on services and
products is about technological issues, but at the same they are not enough. The authors
link technological properties of a platform — functional extent and interface design —
with knowledge boundaries. The paper presents a classification of platform owners’
approaches to managing knowledge boundaries: broadcasting, brokering, and bridging.
The research is a multiple case study with four platforms and interviewees from differ-
ent industries, emphasis on the complementors. Empirical standard of ACM SIGSOFT
for case study is matched well. Data triangulation is used: archival data complements
the interviews. The analysis phase utilizes grounded theory with both a priori scheme
and emerging codes. Inter-coder discussion and agreements was used. These tactics are
applied in a rigorous fashion in the context of enterprise software platforms to show how
knowledge boundaries come about and how they can be managed.

A Systematic Mapping Study of Empirical Research Methods 191

The multi-case approach and extensive data set provide a solid starting point. For
some grounded theory researchers, the use of a priori coding scheme could be an issue,
as grounded theory is about the emergence of concepts from the data. While the authors
used a priori coding as a starting point based on the theoretical background and then
allowed for the emergence of concepts related to knowledge boundary resources, it could
be asked if something was missed or emphasized incorrectly due to it. Another question
is related to the interviewees. The selection of CEOs and or CPOs was justified, but
would for example a product manager point of view enriched the results? However, the
interviewees had a chance to discuss and validate the research results, and according to
the authors this strengthened the internal and external validity of the study.

4.4 Technology Ecosystem Governance

The case study by Wareham, Fox, and Cano Giner [22] identifies and describes three
major tensions present in an enterprise software ecosystem: standard variety, control-
autonomy, and collective-individual. These tensions can lead to exclusive either-or
choices that actors must make, or they can manifest as complementary options. The
authors have two research questions, first: “How are the main tensions in technology
ecosystems addressed in technology ecosystem governance?”” and second “Tensions can
manifest themselves as either contradictory or complementary logics. Are contradic-
tory and complementary logics present in technology ecosystems? If so, how are they
governed?.” Based on the analysis of the tensions and their interactions the article then
provides advice for the design of an ecosystem governance.

The article presents foundations of ecosystems around platforms: community of
complementors, innovation, governance mechanisms, and generativity. It then focuses
on the management of complementors (or third-party partners/providers) and the para-
doxes between stability and evolvability that are present in the governance of modern
ecosystem. Conceptual development in the article starts from tensions and how they can
appear in three dimensions: outputs, actors, and identifications. They are studied in the
context of ERP software, and the selection of the case is justified well. The selected ERP
ecosystem provides a B2B setting with “severe heterogeneity across customers, comple-
mentors, and complements” — in other words, a real-life example. With their case study
the authors show evidence for the presence of the tensions in the ecosystem, describe
causes and effects, and finally present insights how to “harness tensions as enabling
forces that serve the overall needs of the platform.”

Strengths of the article include detailed representation of the case study and its
various attributes. Selection of the interviewees aims to handle the diversity present
in the ecosystem. Grounded theory is used as a method for analyzing the data and a
coding scheme is presented as well. Quotes from the interviews provide an exceptionally
good understanding. Additional data sources are used to supplement the interview data.
Finally, the results are summarized in a comprehensive implications section.

As the data set of the study is extensive and the analysis process was described as
iterative, a more detailed description of the analysis would have been interesting to read.
Cross validation or external factors that may have affected the data collection were not
described in detail. Any bias of the authors was not discussed, although the Methods
section mention that there were multiple validation incidents.

192 L. Abdullai et al.

5 Recommendations for Empirical Researchers

Following the ongoing discussions, it is apparent that researchers in Software Ecosys-
tems are adopting a variety of research methods, techniques, strategies, practices, and
tools to increase the quality of their research. Despite widespread interest in empirical
SECO studies [4], some researchers fail in presenting explicitly rigorous empirical evi-
dence of their research goals, research questions, research methods, and validity defense,
as we find in this preliminary study. Based on our findings, we make the following
recommendations presented in Table 2.

Firstly, we noticed that in many articles the research goal and research questions
are not explicitly stated but more generic, vague, and implicit. While some of these
studies are well cited, it is unclear what their direct contribution is to the field and
theory of software ecosystems. Similarly, scholars in [4] posit that, it is essential when
selecting an appropriate research method to first clarify the research question. Therefore,
as the first recommendation (R1), we recommend researchers to explicitly state the
research objective and research question, possibly even highlighting them for increased
readability.

Secondly and thirdly, it is striking to see how few articles are matching the essential
and desirable criteria in the ACM SIGSOFT empirical standards. We therefore encourage
researchers to ensure that their articles (R2) meet at least the essential the ACM SIGSOFT
standards for empirical software engineering research and when research setting allows
it, a study should also (R3) utilize the desirable standards. The ACM SIGSOFT standards
offer guidelines to improve the quality of empirical studies in SECO.

Fourthly, to provide possibility for external validation and future works it necessary
to get access to used data and extra materials, e.g., via appendix or link to external
data storage. Therefore, we recommend researchers to provide data and extra materials,
i.e., (R4) utilize FAIR data sharing principles [23] to make data findable, accessible,
interoperable, and reusable.

Table 2. Recommendations for SECO studies.

ID | Recommendation Reasoning

R1 | Explicitly state the research question and | Clarify and highlight the objective
research objective

R2 | Utilize at least minimum essential Improve and standardize the quality of
attributes from ACM SIGSOFT standards | empirical studies in SECO

R3 | Utilize desirable attributes from ACM Deepen the quality by verifying in more
SIGSOFT standards when research setting | detail what and why is made
allows it

R4 | Utilize FAIR data sharing principles Enable external validation and future work

by meeting principles of data findability,
accessibility, interoperability, and
reusability

A Systematic Mapping Study of Empirical Research Methods 193

Based on our observations in the studied articles, these recommendations can be
applied, e.g., for case studies. Therefore, in case study once the research question is
stated, attention should be paid to the case description (essential attribute): why it was
selected and what makes it suitable for the study. When performing interviews, the
triangulation of informants is an important phase (desirable attribute), i.e., selecting
interviewees from different work roles. The studies we highlighted in Sect. 4 had a
broad set of informants, intended to cover for the diversity. For example, interviewing
only CEO level may introduce a bias. We encourage the researchers to utilizing multiple
data sources (desirable attribute), as it is a feature that was present in many of the studies
that matched ACM SIGSOFT criteria well. Moreover, although validity checking and
validity discussion (desirable attributes) is by no means a novelty, it was surprising to
find studies that only touched the subject lightly or even omitted it. To meet desirable
attributes adding a section for validity discussion is advised.

6 Discussion

One could state that page limitations, for instance for conference publications, are a valid
reason for not being able to cover all aspects required for excellent reporting of empirical
research. We found it surprising to find few articles that refer to external data, such as
case reports, software repositories, and data publications. We hope that researchers in the
future start using options such as Mendeley Data, Arxiv, and other research repositories
for storing their reusable data. This would be beneficial for the quality of publications,
as they can focus on the essentials, but also for the reusability of research products.

An interesting question for discussion is the relative maturity of a research artifact.
One of the criteria in the ACM SIGSOFT states that the work “synthesizes results into
a new, mature, fully-developed and clearly articulated theory”, implying that work that
does not do this is not up to par. Such questions touch all topics of science, such as the
role of publication in the scientific process, the incrementality of the scientific process,
and the quality and expectations of research outlets. We could even wonder if novelty,
which is generally considered one of the main quality criteria for accepting papers, is
an essential aspect of scientific progress. Obviously, we cannot answer these questions
within this work, but we do recommend that authors attempt to add a significant increment
of understanding in any contribution to the field of software ecosystems.

7 Conclusions and Future Work

In this study, we have explored how do software ecosystem researchers use empirical
research methods, and which of the criteria of the ACM SIGSOFT empirical standards
were met in case studies. For this, we conducted a literature study, with a pragmatic
approach, to identify relevant literature in software ecosystem field, and it is likely that
some relevant articles are missing.

We analyzed empirical software ecosystem papers from the years 2011-2021 and
determined that case study is the most common research methods in empirical software
ecosystem research followed by mixed methods, design science and survey. The collected
articles were scored based on ACM SIGSOFT Case Study standards and we highlighted

194 L. Abdullai et al.

the four highest rated articles as examples of good articles according to aforementioned
standards.

The scoring of the articles revealed a vast variety in the research quality of the papers.
Therefore, to help researchers to improve the quality of their software ecosystem research
we provide four recommendations presented in Table 2.

In the future, we extend this study to include a more detailed description of the most
prevalent research methods besides case studies. Furthermore, we plan to highlight more
publications as exemplar for the field. As the mapping study is currently incomplete, we
only inductively deduce from the gathered data.

It has been insightful to perform the analyses of the articles against the ACM SIG-
SOFT standards; they provide a useful tool for assessing research quality and as a guide-
line for designing future studies. However, collecting data has been tedious. We also
recommend that reviewers in the future perform similar assessments with each review
and make this data publicly available. In this way, we can ensure that it becomes easier
to perform systematic mapping studies in the future.

The field of software ecosystems has always had a strong empirical background, in
part because of its origins in software engineering, but also because data is typically
abundantly available. However, for all kinds of reasons, and as the data in this work
shows, we observe that authors report their research results sloppily, insufficiently report
about their methods, and do not share their data in any public manner. For the field to
become more mature, this needs to significantly improve and this paper inherently holds
a call to action for better research (reporting).

Acknowledgements. We thank Kari Smolander for organizing the session that sprouted this
research.

References

1. Bosch, J.: From software product lines to software ecosystems. In: SPLC, vol. 9, pp. 111-119
(2009). https://doi.org/10.1145/1753235.1753251

2. Carlile, PR.: Transferring, translating, and transforming: an integrative framework for man-
aging knowledge across boundaries. Organ. Sci. 15(5), 555-568 (2004). https://doi.org/10.
1287/0ORSC.1040.0094

3. Decan, A., Mens, T.: What do package dependencies tell us about semantic versioning? IEEE
Trans. Softw. Eng. 47(6), 1226-1240 (2021). https://doi.org/10.1109/TSE.2019.2918315

4. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods for soft-
ware engineering research, pp. 285-311 (2008). https://doi.org/10.1007/978-1-84800-044-
5_11

5. Engstrom, E., Storey, M.A., Runeson, P., Host, M., Baldassarre, M.T.: How software engi-
neering research aligns with design science: a review 25, 2630-2660 (2020). https://doi.org/
10.48550/arXiv.1904.12742

6. Russpatrick, S.: Understanding platform ecosystems for development: enabling innovation
in digital global public goods software platforms. In: Bandi, R.K., Ranjini, C.R., Klein, S.,
Madon, S., Monteiro, E. (eds.) IFIPTWC 2020. IAICT, vol. 601, pp. 148—162. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64697-4_12

7. Garcia-Holgado, A., Garcia-Penalvo, F.J.: Mapping the systematic literature studies about
software ecosystems. In: TEEM 10-2018 (2018). https://doi.org/10.1145/3284179.3284330

https://doi.org/10.1145/1753235.1753251
https://doi.org/10.1287/ORSC.1040.0094
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.48550/arXiv.1904.12742
https://doi.org/10.1007/978-3-030-64697-4_12
https://doi.org/10.1145/3284179.3284330

12.

13.

14.

15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A Systematic Mapping Study of Empirical Research Methods 195

. Jacobides, M.G.: In the Ecosystem Economy, What’s Your Strategy? September 2019. https://

hbr.org/2019/09/in-the-ecosystem-economy-whats-your-strategy

. Jansen, S., Cusumano, M.A.: Defining software ecosystem: a survey of software platforms

and business network governance (2013). https://doi.org/10.4337/9781781955628.00008

. Jansen, S., Cusumano, M.A., Brinkkemper, S.: Software Ecosystems: Analyzing and Man-

aging Business Networks in the Software Industry. Edward Elgar (2013). https://doi.org/10.
4337/9781781955628.00008

. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in

software engineering 2, 66 (2007). https://doi.org/10.1016/j.infsof.2008.09.009

Kuhn, T.S.: The Structure of Scientific Revolutions, vol. 111. University of Chicago Press,
Chicago, January 1970

Manikas, K.: Software ecosystems - a systematic literature review. J. Syst. Softw. (2013).
https://doi.org/10.1145/3284179.3284330

Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems—a concep-
tual framework proposal. In: Proceedings of the 5th International Workshop on Software
Ecosystems (IWSECO), pp. 33—44. Citeseer (2013)

Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping
studies in software engineering: an update. Inf. Softw. Technol. 64, 1-18 (2015). https://doi.
org/10.1016/j.infsof.2015.03.007

. Plakidas, K., Stevanetic, S., Schall, D., Ionescu, T.B., Zdun, U.: How do software ecosystems

evolve? A quantitative assessment of the r ecosystem. In: Proceedings of the 20th International
Systems and Software Product Line Conference, pp. 89-98 (2016). https://doi.org/10.1145/
2934466.2934488

. Ralph, P, et al.: Empirical standards for software engineering research (2020). https://arxiv.

org/abs/2010.03525. https://doi.org/10.48550/arXiv.2010.03525

Runeson, P., Host, M.: Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14 (2009). Article Number: 131. https://doi.org/10.1007/s10
664-008-9102-8

Tashakkori, A., Creswell, J.W.: The new era of mixed methods 01, 3—7 (2007). https://doi.
org/10.1177/2345678906293042

Teixeira, J., Robles, G., Gonzélez-Barahona, J.M.: Lessons learned from applying social
network analysis on an industrial Free/Libre/Open Source Software ecosystem. J. Internet
Serv. Appl. 6(1), 1-27 (2015). https://doi.org/10.1186/s13174-015-0028-2

Van Aken, J.E.: Management research as a design science: articulating the research products
of mode 2 knowledge production in management 16, 19-36 (2005). https://doi.org/10.1111/
j-1467-8551.2005.00437.x

Wareham, J., Fox, P.B., Cano Giner, J.L.: Technology ecosystem governance. Organiz. Sci.
25(4), 1195-1215 (2014). https://doi.org/10.2139/ssrn.2201688

Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and
stewardship. Sci. Data 3(1), 1-9 (2016). https://doi.org/10.1038/sdata.2016.18

Wohlin, C., Mendes, E., Romero Felizardo, K., Kalinowski, M.: Guidelines for the search
strategy to update systematic literature reviews in software engineering. J. Syst. Softw. (2020).
https://doi.org/10.1016/j.infsof.2020.106366

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesley, A.: Experimentation in
Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-290
44-2

Zaggl, M.A., Schweisfurth, T.G., Herstatt, C.: The dynamics of openness and the role of user
communities: a case study in the ecosystem of open-source gaming handhelds. IEEE Trans.
Eng. Manag. 67(3), 712-723 (2019). https://doi.org/10.1109/TEM.2019.2897900
Zelkowitz, M., Wallace, D.: Experimental models for validating technology 31, 23-31 (1998).
https://doi.org/10.1109/2.675630

https://hbr.org/2019/09/in-the-ecosystem-economy-whats-your-strategy
https://doi.org/10.4337/9781781955628.00008
https://doi.org/10.4337/9781781955628.00008
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1145/3284179.3284330
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1145/2934466.2934488
https://arxiv.org/abs/2010.03525
https://doi.org/10.48550/arXiv.2010.03525
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1177/2345678906293042
https://doi.org/10.1186/s13174-015-0028-2
https://doi.org/10.1111/j.1467-8551.2005.00437.x
https://doi.org/10.2139/ssrn.2201688
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1016/j.infsof.2020.106366
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/TEM.2019.2897900
https://doi.org/10.1109/2.675630

	A Systematic Mapping Study of Empirical Research Methods in Software Ecosystems
	1 Introduction
	2 Systematic Mapping Study Research Method
	3 Results
	3.1 A Classification of Used Research Methods
	3.2 An Analysis of Utilized ACM SIGSOFT Case Study Standards

	4 Highlighting Four Studies from the Data Set
	4.1 The Dynamics of Openness and the Role of User Communities A Case Study in the Ecosystem of Open-Source Gaming Handhelds
	4.2 How Do Software Ecosystems Evolve? A Quantitative Assessment of the R Ecosystem
	4.3 Knowledge Boundaries in Enterprise Software Platform Development: Antecedents and Consequences for Platform Governance
	4.4 Technology Ecosystem Governance

	5 Recommendations for Empirical Researchers
	6 Discussion
	7 Conclusions and Future Work
	References

