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Abstract. In this paper, we propose a constrained heterogeneous facil-
ity location model where a set of alternative locations are feasible for
building facilities and the number of facilities built at each location is
limited. Supposing that a set of agents on the real line can strategically
report their locations and each agent’s cost is her distance to the further
facility that she is interested in, we study deterministic mechanism de-
sign without money for constrained heterogeneous two-facility location
games.
Depending on whether agents have optional preference, the problem is
considered in two settings: the compulsory setting and the optional set-
ting. In the compulsory setting where each agent is served by the two
heterogeneous facilities, we provide a 3-approximate deterministic group
strategyproof mechanism for the sum/maximum cost objective respec-
tively, which is also the best deterministic strategyproof mechanism un-
der the corresponding social objective. In the optional setting where each
agent can be interested in one of the two facilities or both, we propose a
deterministic group strategyproof mechanism with approximation ratio
of at most 2n + 1 for the sum cost objective and a deterministic group
strategyproof mechanism with approximation ratio of at most 9 for the
maximum cost objective.

Keywords: Mechanism design · Facility location · Strategyproof · Con-
strained

1 Introduction

In the origin mechanism design problem for heterogeneous facility location games,
there are a set of strategic agents who are required to report their private infor-
mation and a social planner intends to locate several heterogeneous facilities by
a mechanism based on the reported information, with the purpose of optimizing
some social objective. In this paper, we study the problem of locating two hetero-
geneous facilities under a constrained setting, which means a set of alternative
locations are feasible for building facilities and the number of facilities built at
each location is limited.

⋆ The corresponding author.
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Compared with the origin setting where facilities can be built anywhere in
a specific metric space and there is no limit on the number of facilities at each
location, our constrained setting models well many practical applications. For
example, in the realistic urban planning, facilities can only be built at designated
sites and the number of facilities at each site is limited. To accommodate these
constraints, we propose a multiset of feasible locations and at most one facility
is permitted to build at each location. Further, we focus on the Max-variant
where the cost of each agent depends on her distance to the farthest one if she
is served by two or more heterogeneous facilities. The Max-variant can be found
applications in natural scenarios [26]. For example, a local authority plans to
locate different raw material warehouses for several processing plants. Assuming
each plant has multiple transport trucks having the same speed, the time that
the plant has to wait depends on its distance to the farthest one if it requires
raw materials from different sites.

We discuss the mechanism design problem for constrained heterogeneous
two-facility location games with Max-variant cost in two settings: the first is
the compulsory setting, where each agent is served by the two heterogeneous
facilities; the second is the optional setting, where each agent is served by either
one of the two facilities or both. Considering that agents may manipulate the
facility locations by misreporting their private information, we concentrate on
mechanisms that can perform well under some social objective (e.g., minimizing
the sum/maximum cost) while guaranteeing truthful report from agents (i.e.,
strategyproof or group strategyproof).

1.1 Our Contribution

This paper studies deterministic mechanism design without money for con-
strained heterogeneous two-facility location games with Max-variant cost under
the objective of minimizing the sum/maximum cost.

Our key innovations and results are summarized as follows.
In Section 2, we formulate the constrained heterogeneous facility location

game with Max-variant cost. We propose a finite multiset of alternative locations
which are feasible for building facilities and require that at most one facility can
be built at each location. Thus, by adjusting the number of same elements in
the multiset, the model can accommodate different scenarios where the number
of facilities at the same location is limited.

In Section 3, we focus on deterministic mechanism design in the compul-
sory setting. We propose a set of adjacent alternative location pairs, which all
agents have single peaked preferences over and the optimal solution under the
sum/maximum cost objective can always be found in. We prove that any deter-
ministic strategyproof mechanism has an approximation ratio of at least 3 under
the sum/maximum cost objective. In addition, we present 3-approximate deter-
ministic group strategyproof mechanisms for both social objectives, which im-
plies that the best deterministic strategyproof mechanisms have been obtained.

In Section 4, we discuss the optional setting. For the sum cost objective,
we propose a deterministic group strategyproof mechanism with approximation
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ratio of at most 2n+1. For the maximum cost objective, we design a deterministic
group strategyproof mechanism with approximation ratio of at most 9.

1.2 Related Work

Mechanism design without money for facility location games has been exten-
sively studied in recent years. Early studies focused on the characterization of
strategyproof mechanisms. Moulin [19] identified all the possible strategyproof
mechanisms for one-facility location on the line with single peaked preferences,
whose results were extended by Schummer & Vohra [21] and Dokow et al. [9] to
tree and cycle networks.

Approximate mechanism design without money was initiated by Procaccia &
Tennenholtz [20], who studied deterministic and randomized strategyproof mech-
anisms with constant approximation ratio for facility location games under the
sum cost and the maximum cost in three settings: one-facility, two-facility and
multiple facilities per agent. Following this research agenda, numerous studies
have emerged, including improvements on the lower/upper bound of approxima-
tion [17,14] and further variants.

Cheng et al. [7] introduced approximate mechanism design for obnoxious
facility location games where the facility is not desirable to each agent. Zou &
Li [29] studied the dual preference setting where the facility can be desirable or
undesirable for different agents. Zhang & Li [27] introduced weights to agents
and Filos-Ratsikas et al. [12] studied one-facility location problem with double-
peaked preferences. Serafino & Ventre [22] introduced heterogeneous two-facility
location games where each agent cares about either one facility or both and her
cost depends on the sum of distances to her interested facilities (referred to as
the Sum-variant). Later, Yuan et al. [26] considered the Min-variant and Max-
variant instead and Anastasiadis & Deligkas [1] studied heterogeneous k-facility
setting with Min-variant. Besides, various individual and social objectives were
also studied. Mei et al. [18] introduced a happiness factor to measure each agent’s
individual utility. Feigenbaum & Sethuraman [10] considered the Lp-form of the
vector of agent-costs instead of the classic sum cost. Cai et al. [4] and Chen
et al. [5] studied facility location problems under the objective of minimizing
the maximum envy. Ding et al. [8] and Liu et al. [16] considered the envy ratio
objective. Zhou et al. [28] studied group-fair facility location problems.

Further, motivated by real-world applications, researchers have begun to
study the mechanism design problem with constraints on the facilities. Aziz
et al. [2,3] studied facility location problems with capacity constraints. Chen
et al. [6] studied the two-opposite-facility location problem with maximum dis-
tance constraint by imposing a penalty. Xu et al. [25] studied minimum distance
requirement for the heterogeneous two-facility location problem. In addition,
considering that in reality the feasible locations that facilities could be built at
are usually limited, mechanism design for facility location games with limited
locations were also studied. Sui & Boutilier [23] studied approximately strate-
gyproof mechanisms for facility location games with constraints on the feasible
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placement of facilities. Feldman et al. [11] studied the one-facility location set-
ting under the sum cost objective in the context of voting embedded in some
underlying metric space. Tang et al. [24] further considered the maximum cost
objective and the two-facility setting. Li et al. [15] studied the heterogeneous
two-facility setting with optional preference, which is also the most related to
our work among all studies on the constrained heterogeneous facility location
problem. However, there are at least three differences between us: (1) our model
requires a limit on the number of facilities at each feasible location and [15] does
not; (2) each agent’s location is private and her preference on facilities is public
in our model while it is the opposite in [15]; (3) we consider the Max-variant
cost while [15] considers the Min-variant where the cost of each agent depends
on her distance to the closest facility within her acceptable set.

2 Model

Let N = {1, 2, . . . , n} be a set of agents located on the real line R and F =
{F1, F2} be the set of two heterogeneous facilities to be built. Each agent i ∈ N
has a location xi ∈ R and a facility preference pi ⊆ F , where xi is i’s private
information and pi is public. Denote x = (x1, x2, . . . , xn) and p = (p1, p2, . . . , pn)
as the n agents’ location profile and facility preference profile, respectively. For
i ∈ N , let x−i = (x1, . . . , xi−1, xi+1, . . . , xn) be the location profile without
agent i, then x = (xi,x−i). For S ⊆ N , denote xS = (xi)i∈S , pS = (pi)i∈S , and
x−S = (xi)i/∈S , then x = (xS ,x−S).

Let A = {a1, a2, . . . , am} ∈ Rm be a multiset of alternative locations which
are feasible for building facilities and at most one facility can be built at each
location. Assume without loss of generality that a1 ≤ a2 ≤ . . . ≤ am. Denote an
instance of the n agents by I(x,p, A) or simply by I without confusion.

Individual and Social Objectives. When locating F1, F2 at y1 ∈ A, y2 ∈
A\{y1} respectively, denote the facility location profile by y = (y1, y2). Under
Max-variant, the cost of agent i is denoted by ci(y, (xi, pi)) = maxFj∈pi

|yj−xi|.
While each agent seeks to minimize her individual cost, the social planner
aims to minimize the sum cost or maximum cost of the n agents. For a lo-
cation and facility preference profile (x,p) ∈ Rn ×

(

2F
)n

, the sum cost and
the maximum cost under y are denoted by sc(y, (x,p)) =

∑

i∈N ci(y, (xi, pi))
and mc(y, (x,p)) = maxi∈N ci(y, (xi, pi)), respectively. Let OPTsc(x,p) and
OPTmc(x,p) be the optimal solution under the sum cost and the maximum
cost, respectively.

Considering the limit on facility locations, the mechanism in our constrained
setting is defined as follows.

Definition 1. A deterministic mechanism f is a function that maps the n
agents’ location profile x and facility preference profile p to a location profile
of the two facilities, i.e., f(x,p) = y = (y1, y2), ∀(x,p) ∈ Rn ×

(

2F
)n

, where
y = (y1, y2) should satisfy y1 ∈ A and y2 ∈ A\{y1}.
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Given a mechanism f and a reported location profile x
′ ∈ Rn, the cost of

agent i ∈ N under f is ci(f(x
′,p), (xi, pi)). The sum cost and maximum cost of

f are sc(f(x′,p), (x,p)) =
∑

i∈N ci(f(x
′,p), (xi, pi)) and mc(f(x′,p), (x,p)) =

maxi∈N ci(f(x
′,p), (xi, pi)), respectively. Since agents may misreport their loca-

tions to benefit themselves, strategyproofness of mechanisms becomes necessary.

Definition 2. A mechanism f is strategyproof if each agent can never benefit
from misreporting her location, regardless of the others’ strategies, i.e., for every
location and facility preference profile (x,p) ∈ Rn ×

(

2F
)n

, every agent i ∈ N ,
and every x′

i ∈ R, ci(f(x,p), (xi, pi)) ≤ ci(f((x
′
i,x−i),p), (xi, pi)).

Definition 3. A mechanism f is group strategyproof if for any group of
agents misreporting their locations, at least one of them cannot benefit regard-
less of the others’ strategies, i.e., for every location and facility preference profile
(x,p) ∈ Rn ×

(

2F
)n

, every group of agents S ⊆ N and every x
′
S ∈ R|S|, there

exists i ∈ S such that ci(f(x,p), (xi, pi)) ≤ ci(f((x
′
S ,x−S),p), (xi, pi)).

We aim at deterministic strategyproof or group strategyproof mechanisms
that can perform well under the sum/maximum cost objective. The worst-case
approximation ratio is used to evaluate a mechanism’s performance. Without
confusion, denote sc(f(x′,p), (x,p)), sc (OPTsc(x,p), (x,p)), mc(f(x′,p), (x,p))
and mc (OPTmc(x,p), (x,p)) by sc(f, (x,p)), sc (OPT, (x,p)), mc(f, (x,p)) and
mc (OPT, (x,p)) respectively for simplicity. The approximation ratio under the
sum cost objective is defined as follows and it is similar under the maximum cost
objective.

Definition 4. A mechanism f is said to have an approximation ratio of
ρ(ρ ≥ 1) under the sum cost objective, if

ρ = sup
I(x,p,A)

sc(f, (x,p))

sc(OPT, (x,p))
. (1)

In this paper, we are interested in deterministic strategyproof or group strat-
egyproof mechanisms with small approximation ratio under the sum/maximum
cost objective.

Notations. For a location profile x ∈ Rn, denote the median location in x

by med(x), the leftmost location in x by lt(x) = mini∈N{xi}, the rightmost

location by rt(x) = maxi∈N{xi}, and the center location by cen(x) = lt(x)+rt(x)
2 .

For a facility preference profile p ∈
(

2F
)n

, denote Nk = {i ∈ N | pi = {Fk}} for
k ∈ {1, 2}, and N1,2 = {i ∈ N | pi = {F1, F2}}.

3 Compulsory Setting

In this section, we study the compulsory setting where each agent is served
by the two heterogeneous facilities, i.e., pi = {F1, F2}, ∀i ∈ N . For simplicity,
we omit pi or p in this section. For example, replace (x,p) by x and the cost
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of agent i ∈ N under the facility location profile y = (y1, y2) is denoted by
ci(y, xi) = maxj∈{1,2} |yj − xi|.

For the multiset of alternative locations A = {a1, . . . , am} with a1 ≤ . . . ≤
am, denote AP = {(a1, a2), (a2, a3), . . . , (am−1, am)}. Then the real line can be
partitioned into m−1 zones where the kth zone (denoted by Zk, k = 1, . . . ,m−1)
represents the set of points whose favorite location pair in AP is (ak, ak+1). We
refer to Zk as the zone of location pair (ak, ak+1). Obviously, it holds that

Zk =



















(

−∞, ak+ak+2

2

]

, k = 1
(

ak−1+ak+1

2 ,
ak+ak+2

2

]

, 2 ≤ k ≤ m− 2
(

ak−1+ak+1

2 ,+∞
)

, k = m− 1

(2)

The preferences of all agents over AP are (not strictly) single peaked : for each
agent i ∈ N with location xi ∈ Zl, her peak (or favorite) in AP is (al, al+1) and
her cost under (ak, ak+1) monotonically increases as |k − l| increases. Based on
the single peaked preference, locating at the peak of x’s any ith statistic order
(denoted by x(i)) is group strategyproof.

Lemma 1. Given a location profile x, locating at the peak of x(i) in AP for any
i ∈ {1, 2, . . . , n} is group strategyproof.

Lemma 1 provides a class of group strategyproof mechanisms for the com-
pulsory setting where all agents are served by two facilities. Next we will select
proper mechanisms from this class for the sum/maximum cost objective respec-
tively.

3.1 Sum Cost

For the sum cost objective, we first show that there exists an optimal solution
where the two facilities are located at adjacent alternatives.

Lemma 2. Given a location profile x ∈ Rn, there exists an optimal solution in
AP under the sum cost objective.

Intuitively, each agent always prefers the two facilities located as close as
possible, since her cost depends on her distance to the farther one. By Lemma
2, an optimal solution (or mechanism) can always be found in m − 1 steps.
However, it may be not strategyproof. Consider an instance I(x, A) with x =
(0, 2), A = {−1 − 2ε,−1, 1 + 3ε} where ε > 0 is sufficiently small. It holds
that OPTsc(x) = (−1, 1 + 3ε), c1(OPTsc(x), x1) = 1 + 3ε. Replacing x1 = 0 by
x′
1 = −1, we have OPTsc(x

′) = (−1− 2ε,−1), c1(OPTsc(x
′), x1) = 1+2ε. Thus,

agent 1 with x1 = 0 can strictly decrease her cost by reporting x′
1 = −1.

Theorem 1. Under the sum cost objective, any deterministic strategyproof mech-
anism has an approximation ratio of at least 3.
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Mechanism 1. Given a location profile x ∈ Rn, output the peak of med(x) in
AP , i.e., the location pair (y1, y2) ∈ argmin

(s1,s2)∈AP

maxj∈{1,2} |sj−med(x)|, breaking

ties in any deterministic way.

Theorem 2. Mechanism 1 is group strategyproof and has an approximation ra-
tio of 3 under the sum cost objective.

3.2 Maximum Cost

Compared with the sum cost objective, there is a more precise statement on the
optimal solution under the maximum cost objective.

Lemma 3. Given a location profile x ∈ Rn, the peak of cen(x) in AP is exactly
an optimal solution under the maximum cost objective.

However, the optimal mechanism is not strategyproof. Consider an instance
I(x, A) with x = (−ε, ε) and A = {−1, 1, 1+ ε}. It holds that OPTmc = (−1, 1)
and c2(OPT (x), x2) = 1 + ε for sufficiently small ε > 0. Replacing x2 = ε by
x′
2 = 2, we have OPTsc(x

′) = (1, 1 + ε), c2(OPTsc(x
′), x2) = 1. Thus, agent 2

with x2 = ε can strictly decrease her cost by misreporting x′
2 = 2.

Theorem 3. Under the maximum cost objective, any deterministic strategyproof
mechanism has an approximation ratio of at least 3.

Mechanism 2. Given a location profile x ∈ Rn, output the peak of lt(x) in AP ,
i.e., the location pair (y1, y2) ∈ argmin

(s1,s2)∈AP

maxj∈{1,2} |sj − lt(x)|, breaking ties in

any deterministic way.

Theorem 4. Mechanism 2 is group strategy-proof and has an approximation
ratio of 3 under the maximum cost objective.

4 Optional Setting

In this section, we discuss the optional setting where each agent can be interested
in either one of the two heterogeneous facilities or both. The cost of agent i ∈ N
is ci(y, (xi, pi)) = maxFk∈pi

|yk − xi|.
Note that even in the optional setting, each agent i ∈ N has some kind of

single peaked preference: if pi = {F1} or {F2}, she has single peaked prefer-
ence over A; if pi = {F1, F2}, she has single peaked preference over AP . Our
mechanisms will be proposed based on the single peaked preference.

In the following subsections, two mechanisms for one-facility location games
will be used as subroutines in our mechanisms. Supposing that a set of n agents
have single peaked preference over the set of alternative locations A, the related
results are listed as follows.

SC-Mechanism [11]. Given x ∈ Rn and A, output y ∈ argmin
a∈A

|a − med(x)|,

breaking ties in any deterministic way.
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Proposition 1 ([11]). SC-Mechanism is group strategyproof and has an ap-
proximation ratio of 3 under the sum cost objective.

MC-Mechanism [24]. Given x ∈ Rn and A, output y ∈ argmin
a∈A

|a− lt(x)|, break-

ing ties in any deterministic way.

Proposition 2 ([24]). MC-Mechanism is group strategyproof and has an ap-
proximation ratio of 3 under the maximum cost objective.

4.1 Sum Cost

Mechanism 3. Given a location and facility preference profile (x,p) ∈ Rn ×
(

2F
)n

, output the facility location profile y = (y1, y2) as follows:

• if |N1,2| > 0, select (y1, y2) ∈ argmin
(s1,s2)∈AP

maxj∈{1,2}

∣

∣sj −med
(

xN1,2

)∣

∣, break-

ing ties in any deterministic way;

• if |N1,2| = 0 and |N1| ≥ |N2|, select y1 ∈ argmin
y∈A

|y −med (xN1
)|, and y2 ∈

argmin
y∈A\{y1}

|y −med (xN2
)| (if N2 6= ∅), breaking ties in any deterministic way;

• if |N1,2| = 0 and |N1| < |N2|, select y2 ∈ argmin
y∈A

|y −med (xN2
)|, and y1 ∈

argmin
y∈A\{y2}

|y −med (xN1
)| (if N1 6= ∅), breaking ties in any deterministic way.

Theorem 5. Mechanism 3 is group strategyproof and has an approximation ra-
tio of at most 2n+ 1 under the sum cost objective.

4.2 Maximum Cost

Mechanism 4. Given a location and facility preference profile (x,p) ∈ Rn ×
(

2F
)n

, output the facility location profile y = (y1, y2) as follows:

• if |N1,2| > 0, select (y1, y2) ∈ argmin
(s1,s2)∈AP

maxj∈{1,2}

∣

∣sj − lt
(

xN1,2

)
∣

∣, breaking

ties in any deterministic way;

• if |N1,2| = 0, select y1 ∈ argmin
y∈A

|y − lt (xN1
)| (if N1 6= ∅), and y2 ∈

argmin
y∈A\{y1}

|y − lt (xN2
)| (if N2 6= ∅), breaking ties in any deterministic way.

Theorem 6. Mechanism 4 is group strategyproof and has an approximation ra-
tio of at most 9 under the maximum cost objective.
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5 Conclusion

In this paper, we considered the mechanism design problem for constrained het-
erogeneous two-facility location games where a set of alternatives are feasible for
building facilities and the number of facilities built at each alternative is limited.
We studied deterministic mechanisms design without money under the Max-
variant cost where the cost of each agent depends on the distance to the further
facility. In the compulsory setting where each agent is served by two facilities, we
showed that the optimal solution under the sum/maximum cost objective is not
strategyproof and proposed a 3-approximate deterministic group strategyproof
mechanism which is also the best deterministic strategyproof mechanism for the
corresponding social objective. In the optional setting where each agent can be
interested in either one of the two facilities or both, we designed a deterministic
group strategyproof mechanism with approximation ratio with at most 2n + 1
for the sum cost objective and a deterministic group strategyproof mechanism
with approximation ratio with at most 9 for the maximum cost objective.

There are several directions for future research. First, the bounds for approx-
imation ratio of deterministic strategyproof mechanisms in the optional setting
do not match yet. Are there more desirable bounds in this setting? Second, ran-
domized mechanism design for constrained heterogeneous facility location games
remains an open question. Third, the cost of each agent served by two facilities
here is simply the sum of her distances from facilities. How about mechanism
design for constrained facility location games in more general settings, such as
agents having weighted preference for facilities [13]? Further, our model can be
extended to include more than two facilities or in more general metric spaces.

Acknowledgements. This research was supported in part by the National Nat-
ural Science Foundation of China (12171444, 11971447, 11871442), the Natural
Science Foundation of Shandong Province of China (ZR2019MA052).
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A.1 Proof of Lemma 1
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xj < x(i)}, R(i) = {j ∈ N | xj > x(i)}, and M(i) = {j ∈ N | xj = x(i)}.

To show group strategyproofness, we need to prove that for every nonempty
S ⊆ N with deviation x

′
S ∈ R|S|, there exists j ∈ S who cannot benefit from

the coalitional deviation. Denote x
′ = (x′

S ,x−S) and the mechanism by f .
Case 1: M(i) ∩ S 6= ∅. Then the cost of any agent j ∈ M(i) ∩ S cannot

decrease by the deviation since f(x) is her favorite.
Case 2: M(i)∩S = ∅. If x′
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(i) since xj > x(i), which implies that

agent j cannot benefit from the deviation. Similarly, if x′
(i) > x(i), there must

exist some agent j ∈ L(i) ∩ S who prefers the peak of x(i) to that of x′
(i) since

xj < x(i) and cannot benefit from the deviation.

A.2 Proof of Lemma 2

Proof. Let OPTsc(x) = (y⋆1 , y
⋆
2) be an optimal solution. Without loss of gen-

erality, assume that y⋆1 ≤ y⋆2 . Supposing there exists some a ∈ A such that
y⋆1 ≤ a ≤ y⋆2 , we only need to show that sc((y⋆1 , a),x) ≤ sc((y⋆1 , y

⋆
2),x).
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For each agent i ∈ N , ci((y
⋆
1 , a), xi) = max{|y⋆1−xi|, |a−xi|}, ci((y⋆1 , y

⋆
2), xi) =

max{|y⋆1−xi|, |y⋆2−xi|}. If xi ≤ (a+y⋆2)/2, obviously ci((y
⋆
1 , a), xi) ≤ ci((y

⋆
1 , y

⋆
2), xi);

otherwise, ci((y
⋆
1 , a), xi) = |y⋆1 − xi| = ci((y

⋆
1 , y

⋆
2), xi).

Thus, we have

sc((y⋆1 , a),x) =
∑

i∈N

ci((y
⋆
1 , a), xi) (3)

=
∑

i:xi≤(a+y⋆
2
)/2

ci((y
⋆
1 , a), xi) +

∑

i:xi>(a+y⋆
2
)/2

ci((y
⋆
1 , a), xi) (4)

≤
∑

i:xi≤(a+y⋆
2
)/2

ci((y
⋆
1 , y

⋆
2), xi) +

∑

i:xi>(a+y⋆
2
)/2

ci((y
⋆
1 , y

⋆
2), xi) (5)

= sc((y⋆1 , y
⋆
2),x) (6)

A.3 Proof of Theorem 1

Proof. Suppose f is a deterministic strategyproof mechanism with approxima-
tion ratio of 3− δ for some δ > 0.

Consider an instance I(x, A) with x = (−ε, ε) and A = {−1,−1, 1, 1}, where
ε > 0 is sufficiently small. f(x) can be (−1,−1), (1, 1), (−1, 1), or (1,−1)
and assume w.l.o.g. that f(x) = (1, 1) or (−1, 1). Then the cost of agent 1
is c1(f(x), x1) = 1 + ε.

For another instance I(x′, A) with x
′ = (−1, ε), it holds that OPTsc(x

′) =
(−1,−1) and sc(OPT,x′) = 1 + ε. If f(x′) = (1, 1), (−1, 1), or (1,−1), then
sc(f,x′) ≥ 3− ε. This implies that

sc(f,x′)

sc(OPT,x′)
≥

3− ε

1 + ε
> 3− δ (7)

for sufficiently small ε > 0, which is a contradiction. Thus, f(x′) = (−1,−1).
Note that c1(f(x

′), x1) = 1 − ε. This indicates that agent 1 can decrease
her cost by misreporting her location as x′

1 = −1, which contradicts f ’s strate-
gyproofness.

A.4 Proof of Theorem 2

Proof. By Lemma 1, Mechanism 1 is group strategyproof. We now turn to its
approximation ratio.

Given a location profile x ∈ Rn, let OPTsc(x) = (y⋆1 , y
⋆
2) ∈ AP be an optimal

solution. Denote Mechanism 1 by f and f(x) = (y1, y2).
Considering that both f(x) and OPTsc(x) are adjacent location pairs in AP ,

assume w.l.o.g. that (y⋆1 , y
⋆
2) is on the right of (y1, y2).

Let y′2 ∈ A be the location adjacent to the right of y2 and y′ = (y1+y′2)/2 be
the right border of the zone of (y1, y2). We first give two claims, then compare
sc(f,x) with sc(OPT,x).

Claim 1. |{i ∈ N | xi ≤ y′}| ≥ |{i ∈ N | xi > y′}|, since med(x) ≤ y′.



Title Suppressed Due to Excessive Length 13

Claim 2. For any agent i with xi ≤ y′, it holds that ci(f(x), xi) ≤ ci(OPTsc(x), xi),
since the peak of agent i in AP is (y1, y2) or to the left.

The sum cost of Mechanism 1 is

sc(f,x) =
∑

i∈N

ci ((y1, y2) , xi)) =
∑

i∈N

max
j∈{1,2}

|xi − yj | (8)

=
∑

xi≤y′

max
j∈{1,2}

|xi − yj |+
∑

xi>y′

max
j∈{1,2}

|xi − yj | , (9)

where the first term is denoted by α and the second by β.
The optimal sum cost is

sc(OPT,x) =
∑

i∈N

ci ((y
⋆
1 , y

⋆
2) , xi)) =

∑

i∈N

max
j∈{1,2}

∣

∣xi − y⋆j
∣

∣ (10)

=
∑

xi≤y′

max
j∈{1,2}

∣

∣xi − y⋆j
∣

∣+
∑

xi>y′

max
j∈{1,2}

∣

∣xi − y⋆j
∣

∣ , (11)

where the first term is denoted by γ and the second by δ.
Note that

β =
∑

xi>y′

max
j∈{1,2}

|xi − yj | ≤
∑

xi>y′

max
j∈{1,2}

{|xi − y⋆|+ |y⋆ − yj |} (12)

≤
∑

xi>y′

|xi − y⋆|+
∑

xi>y′

max
j∈{1,2}

|y⋆ − yj | (13)

≤
∑

xi>y′

|xi − y⋆|+
∑

xi≤y′

max
j∈{1,2}

|y⋆ − yj | (14)

≤
∑

xi>y′

|xi − y⋆|+
∑

xi≤y′

max
j∈{1,2}

{|y⋆ − xi|+ |xi − yj|} (15)

≤
∑

i∈N

|xi − y⋆|+
∑

xi≤y′

max
j∈{1,2}

|xi − yj | (16)

≤
∑

i∈N

max
j∈{1,2}

∣

∣xi − y⋆j
∣

∣+
∑

xi≤y′

max
j∈{1,2}

|xi − yj| = γ + δ + α. (17)

Here, the third inequality holds by Claim 1. Besides, we have α ≤ γ by Claim
2. Thus,

sc(f,x)

sc(OPT,x)
=

α+ β

γ + δ
≤

α+ γ + δ + α

γ + δ
≤

3γ + δ

γ + δ
≤ 3 (18)

Combining with Theorem 1, the approximation ratio of Mechanism 1 is 3.

A.5 Proof of Lemma 3

Proof. Let a = (ak, ak+1) be the peak of cen(x) in AP . If there exists s(∈ A) <
ak, then

(s+ ak+1)/2 ≤ (ak−1 + ak+1)/2 ≤ cen(x). (19)
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If there exists s(∈ A) > ak+1, then

(ak + s)/2 ≥ (ak + ak+2)/2 ≥ cen(x). (20)

Let y = (y1, y2) be any feasible solution that is different from (ak, ak+1).
Assume w.l.o.g. that y1 ≤ y2, then either y1 < ak or ak+1 < y2. By symmetry,
we only need to compare mc(y,x) with mc(a,x) through the following two cases.

Case 1: ak ≤ ak+1 ≤ cen(x). In this case, mc(a,x) = rt(x) − ak. If y1 < ak,
then

mc(y,x) ≥ rt(x)− y1 > rt(x)− ak = mc(a,x). (21)

If ak+1 < y2, then y2 − cen(x) ≥ cen(x) − ak by Eq. (20). Thus, we have

mc(y,x) ≥ y2 − lt(x) = y2 − cen(x) + cen(x) − lt(x) (22)

≥ cen(x) − ak + rt(x)− cen(x) = mc(a,x). (23)

Case 2: ak ≤ cen(x) < ak+1. In this case, mc(a,x) = max{rt(x)−ak, ak+1−
lt(x)}. If y1 < ak, then rt(x)− y1 > rt(x) − ak and by Eq. (19), it holds that

rt(x)− y1 = rt(x) − cen(x) + cen(x)− y1 (24)

≥ cen(x) − lt(x) + ak+1 − cen(x) = ak+1 − lt(x). (25)

Thus, we have mc(y,x) ≥ rt(x) − y1 ≥ mc(a,x). Similarly if ak+1 < y2, then
y2− lt(x) > ak+1− lt(x) and y2− lt(x) = y2−cen(x)+cen(x)− lt(x) ≥ cen(x)−
ak+rt(x)−cen(x) = rt(x)−ak. Thus, we have mc(y,x) ≥ y2− lt(x) ≥ mc(a,x).

A.6 Proof of Theorem 3

Proof. Suppose f is a deterministic strategyproof mechanism with approxima-
tion ratio of 3− δ for some δ > 0.

Consider an instance I(x, A) with x = (−ε, ε) and A = {−1,−1, 1, 1}, where
ε > 0 is sufficiently small. f(x) can be (−1,−1), (1, 1), (−1, 1), or (1,−1)
and assume w.l.o.g. that f(x) = (1, 1) or (−1, 1). Then the cost of agent 1
is c1(f(x), x1) = 1 + ε.

For another instance I(x′, A) with x
′ = (−2−ε, ε), it holds that OPTmc(x

′) =
(−1,−1) and mc(OPT,x′) = 1 + ε. If f(x′) = (1, 1), (−1, 1), or (1,−1), then
mc(f,x′) = 3 + ε. This implies that

mc(f,x′)

mc(OPT,x′)
=

3 + ε

1 + ε
> 3− δ (26)

for sufficiently small ε > 0, which is a contradiction. Thus, f(x′) = (−1,−1).

Considering that c1(f(x
′), x1) = 1− ε, agent 1 can decrease her cost by mis-

reporting her location as x′
1 = −2− ε, which contradicts f ’s strategyproofness.
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A.7 Proof of Theorem 4

Proof. By Lemma 1, Mechanism 2 is group strategyproof. We now turn to its
approximation ratio.

Given a location profile x ∈ Rn, let OPTmc(x) = (y⋆1 , y
⋆
2) be the peak of

cen(x) in AP which is also an optimal solution. Denote Mechanism 2 by f and
f(x) = (y1, y2). Assume without loss of generality that rt(x)− lt(x) = 1.

It is easy to see that mc(OPT,x) ≥ 1
2 , and

mc(OPT,x) ≥ max
j∈{1,2}

∣

∣lt(x)− y⋆j
∣

∣ ≥ max
j∈{1,2}

|lt(x)− yj | . (27)

We compare mc(f,x) with mc(OPT,x) through the following analysis.
Case 1: y1 ≤ y2 ≤ lt(x) ≤ rt(x), or y1 ≤ lt(x) ≤ y2 ≤ rt(x).

mc(f,x) = |rt(x)− y1| = 1 + |lt(x) − y1| ≤ 3mc(OPT,x). (28)

Case 2: lt(x) ≤ y1 ≤ y2 ≤ rt(x).

mc(f,x) ≤ 1 ≤ 2mc(OPT,x). (29)

Case 3: lt(x) ≤ y1 ≤ rt(x) ≤ y2, or lt(x) ≤ rt(x) ≤ y1 ≤ y2.
In this case, the right border of the zone of (y1, y2) is no less than (y1 +

y2)/2 ≥ cen(x) ≥ lt(x). Combining with the fact that lt(x) lies in the zone of
(y1, y2), it holds that cen(x) also lies in the zone of (y1, y2). This implies that
f(x) = OPTmc(x). Thus, we have

mc(f,x) = mc(OPT,x). (30)

Case 4: y1 ≤ lt(x) ≤ rt(x) ≤ y2. Note that

|lt(x)− y2| ≤ max
j∈{1,2}

|yj − lt(x)| ≤ max
j∈{1,2}

|y⋆j − lt(x)| ≤ mc(OPT,x), (31)

and

|rt(x)− y1| = 1 + |lt(x)− y1| ≤ 1 +mc(OPT,x) ≤ 3mc(OPT,x). (32)

Thus, it holds that

mc(f,x) = max {|lt(x) − y2| , |rt(x) − y1|} | ≤ 3mc(OPT,x). (33)

Above all, mc(f,x) ≤ 3mc(OPT,x). Combining with Theorem 3, Mechanism
2 has an approximation ratio of 3.

A.8 Proof of Theorem 5

Proof. Group strategyproofness. Given (x,p) ∈ Rn ×
(

2F
)n

, Mechanism
3 outputs the facility location profile according to the public information p.
To show group strategyproofness, we need to prove that for every nonempty
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S ⊆ N with deviation x
′
S ∈ R|S|, there exists j ∈ S who cannot benefit from the

coalitional deviation. Denote x
′ = (x′

S ,x−S), Mechanism 3 by f , Mechanism 1
by f1, and SC-Mechanism by f2.

Case 1: |N1,2| > 0, then f(x,p) = f1(xN1,2
) and f(x′,p) = f1(x

′
N1,2∩S ,xN1,2\S).

If N1,2 ∩S 6= ∅, any agent in N1,2 ∩S cannot benefit from the deviation x
′
N1,2∩S

by f1’s group strategyproofness. If N1,2 ∩ S = ∅, f(x′,p) = f3(xN1,2
), which

implies that any agent in S ⊆ N1 ∪N2 cannot benefit from the deviation.
Case 2: |N1,2| = 0 and |N1| ≥ |N2|. It holds that f(x,p) = (f2(xN1

), f2(xN2
))

and f(x′,p) = (f2(x
′
N1∩S,xN1\S), f2(x

′
N2∩S ,xN2\S)), with f2(xN2

) ∈ A\f2(xN1
)

and f2(x
′
N2∩S ,xN2\S) ∈ A\f2(x

′
N1∩S ,xN1\S). If N1∩S 6= ∅, any agent in N1∩S

cannot benefit from the deviation x
′
N1∩S by f2’s group strategyproofness. If

N1 ∩ S = ∅, f(x′,p) = (f2(xN1
), f2(x

′
N2∩S ,xN2\S)) with f2(x

′
N2∩S,xN2\S) ∈

A\f2(xN1
). Still by f2’s group strategyproofness, any agent in N2 ∩ S cannot

benefit from the deviation x
′
N2∩S .

Case 3: |N1,2| = 0 and |N1| < |N2|. This case is similar to Case 2.
Approximation ratio. Given (x,p) ∈ Rn×

(

2F
)n

, let OPTsc(x,p) = y
⋆ =

(y⋆1 , y
⋆
2) be an optimal solution and f(x,p) = y = (y1, y2). We now compare

sc(f, (x,p)) with sc(OPT, (x,p)).
Case 1: If |N1,2| > 0, the output of Mechanism 3 on I(x,p, A) equals to

that of Mechanism 1 on I
(

xN1,2
,pN1,2

, A
)

. Denote the optimal solution on

I
(

xN1,2
,pN1,2

, A
)

as y
opt.

By Theorem 2, it holds that
∑

i∈N1,2

ci (y, (xi, pi)) ≤ 3
∑

i∈N1,2

ci
(

y
opt, (xi, pi)

)

≤ 3
∑

i∈N1,2

ci (y
⋆, (xi, pi)) . (34)

Thus, we have

sc(f, (x,p)) =
∑

i∈N1∪N2∪N1,2

ci (y, (xi, pi)) (35)

≤
∑

i∈N1

|xi − y1|+
∑

i∈N2

|xi − y2|+ 3
∑

i∈N1,2

ci (y
⋆, (xi, pi)) (36)

≤
∑

i∈N1

|xi − y⋆1 |+
∑

i∈N2

|xi − y⋆2 |+ 3
∑

i∈N1,2

ci (y
⋆, (xi, pi)) (37)

+ |N1| · |y1 − y⋆1 |+ |N2| · |y2 − y⋆2 | (38)

≤ 3sc(OPT, (x,p)) + |N1 ∪N2| · 2sc(OPT, (x,p)) (39)

≤ (2n+ 1)sc(OPT, (x,p)). (40)

Here, the above third inequality holds because for j = 1, 2,
∣

∣yj − y⋆j
∣

∣ ≤
∣

∣yj −med
(

xN1,2

)
∣

∣+
∣

∣med
(

xN1,2

)

− y⋆j
∣

∣ (41)

≤ max
k∈{1,2}

∣

∣yk −med
(

xN1,2

)∣

∣+
∣

∣med
(

xN1,2

)

− y⋆j
∣

∣ (42)

≤ max
k∈{1,2}

∣

∣y⋆k −med
(

xN1,2

)∣

∣+
∣

∣med
(

xN1,2

)

− y⋆j
∣

∣ (43)

≤ 2sc(OPT, (x,p)). (44)
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Case 2: If |N1,2| = 0 and |N1| ≥ |N2|. Without loss of generality, as-
sume that N2 6= ∅. y1 equals to the output of SC-Mechanism on instance
I1 = I (xN1

,pN1
, A), and y2 equals to the output of SC-Mechanism on instance

I2 = I (xN2
,pN2

, A\{y1}). Denote by yopt1 the optimal solution on instance I1
and yopt2 the optimal solution on instance I2.

For k = 1, 2, let sc(y, Ik) =
∑

i∈Nk
|xi − y|, then

sc(OPT, (x,p)) =
∑

i∈N1

|xi − y⋆1 |+
∑

i∈N2

|xi − y⋆2 | = sc (y⋆1 , I1) + sc (y⋆2 , I2)(45)

sc(f, (x,p)) =
∑

i∈N1

|xi − y1|+
∑

i∈N2

|xi − y2| = sc (y1, I1) + sc (y2, I2) .(46)

For I1, by Proposition 1, it holds that

sc (y1, I1) ≤ 3sc
(

yopt1 , I1
)

≤ 3sc (y⋆1 , I1) (47)

For I2, we consider the following two cases.
Case 2.1: If y⋆2 ∈ A\ {y1}, by Proposition 1, it holds that

sc (y2, I2) ≤ 3sc
(

yopt2 , I2
)

≤ 3sc (y⋆2 , I2) (48)

Case 2.2: y⋆2 /∈ A\ {y1}, then y1 = y⋆2 and y⋆1 ∈ A\ {y1}. On the one hand,
by Proposition 1, we have

sc (y2, I2) ≤ 3sc
(

yopt2 , I2
)

≤ 3sc (y⋆1 , I2) . (49)

On the other hand,

sc (y⋆1 , I2) =
∑

i∈N2

|xi − y⋆1 | ≤
∑

i∈N2

|xi − y⋆2 |+
∑

i∈N1

|y⋆2 − y⋆1 | (50)

≤
∑

i∈N2

|xi − y⋆2 |+
∑

i∈N1

|y1 − xi|+
∑

i∈N1

|xi − y⋆1 | (51)

= sc (y⋆2 , I2) + sc (y1, I1) + sc (y⋆1 , I1) (52)

≤ sc (y⋆2 , I2) + 4sc (y⋆1 , I1) , (53)

where the first inequality holds because |N1| ≥ |N2| and the third holds by Eq.
(47).

Combining Eq. (49) and Eq. (53), we have

sc (y2, I2) ≤ 3sc (y⋆2 , I2) + 12sc (y⋆1 , I1) (54)

Thus, by Eq. (47) and Eq. (54), it holds that

sc(f, (x,p)) = sc (y1, I1) + sc (y2, I2) (55)

≤ 3sc (y⋆1 , I1) + 3sc (y⋆2 , I2) + 12sc (y⋆1 , I1) (56)

≤ 15sc(OPT, (x,p)) (57)

Case 3: |N1,2| = 0 and |N1| < |N2|. This case is similar to Case 2.
Above all, Mechanism 3 has an approximation ratio of at most 2n+ 1.
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A.9 Proof of Theorem 6

Proof. The proof of Mechanism 4 ’s group strategyproofness is similar to that
of Mechanism 3 ’s, which is omitted here. Now we focus on the approximation
ratio of Mechanism 4.

Denote Mechanism 4 by f . Given (x,p) ∈ Rn ×
(

2F
)n

, let OPTmc(x,p) =
y
⋆ = (y⋆1 , y

⋆
2) be an optimal solution and f(x,p) = y = (y1, y2). We now compare

mc(f, (x,p)) with mc(OPT, (x,p)).
Case 1: If |N1,2| > 0, the output of Mechanism 4 on I(x,p, A) equals to that

of Mechanism 2 on I
(

xN1,2
,pN1,2

, A
)

. Denote by y
opt = (yopt1 , yopt2 ) the optimal

solution on I
(

xN1,2
,pN1,2

, A
)

.
By Theorem 4, it holds that

max
i∈N1,2

ci (y, (xi, pi)) ≤ 3 max
i∈N1,2

ci
(

y
opt, (xi, pi)

)

≤ 3 max
i∈N1,2

ci (y
⋆, (xi, pi)) . (58)

Thus, we have

mc(f, (x,p)) (59)

= max
i∈N1∪N2∪N1,2

{ci (y, (xi, pi))} (60)

= max

{

max
i∈N1

{|y1 − xi|} ,max
i∈N2

{|y2 − xi|} , max
i∈N1,2

{ci(y, (xi, pi))}

}

(61)

≤ max

{

max
i∈N1

{|y⋆1 − xi|+ |y1 − y⋆1 |} ,max
i∈N2

{|y⋆2 − xi| (62)

+ |y2 − y⋆2 |} , 3 max
i∈N1,2

ci (y
⋆, (xi, pi))

}

(63)

≤ max

{

max
i∈N1

{|y⋆1 − xi|+ 2mc(OPT, (x,p))} ,max
i∈N2

{|y⋆2 − xi| (64)

+2mc(OPT, (x,p))}, 3 max
i∈N1,2

ci (y
⋆, (xi, pi))

}

(65)

≤ 3mc(OPT, (x,p)). (66)

Here, the above second inequality holds because for j = 1, 2,

∣

∣yj − y⋆j
∣

∣ ≤
∣

∣yj − lt
(

xN1,2

)∣

∣+
∣

∣lt
(

xN1,2

)

− y⋆j
∣

∣ (67)

≤ max
k∈{1,2}

∣

∣yk − lt
(

xN1,2

)∣

∣+
∣

∣lt
(

xN1,2

)

− y⋆j
∣

∣ (68)

≤ max
k∈{1,2}

∣

∣y⋆k − lt
(

xN1,2

)
∣

∣+
∣

∣lt
(

xN1,2

)

− y⋆j
∣

∣ (69)

≤ 2mc(OPT, (x,p)). (70)

Case 2: |N1,2| = 0. Assume w.l.o.g. that N1 6= ∅, N2 6= ∅. y1 equals to the
output of MC-Mechanism on instance I1 = I (xN1

,pN1
, A), and y2 equals to the

output of MC-Mechanism on instance I2 = I (xN2
,pN2

, A\{y1}). Denote by yopt1

the optimal solution on instance I1 and yopt2 the optimal solution on instance I2.
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For k = 1, 2, let mc(y, Ik) = maxi∈Nk
|xi − y|, then

mc(OPT, (x,p)) = max

{

max
i∈N1

|xi − y⋆1 | ,max
i∈N2

|xi − y⋆2 |

}

(71)

= max {mc (y⋆1 , I1) ,mc (y⋆2 , I2)} (72)

mc(f, (x,p)) = max {mc (y1, I1) ,mc (y2, I2)} (73)

For I1, by Proposition 2, it holds that

mc (y1, I1) ≤ 3mc
(

yopt1 , I1
)

≤ 3mc (y⋆1 , I1) (74)

For I2, we consider the following two cases.
Case 2.1: If y⋆2 ∈ A\ {y1}, by Proposition 2, it holds that

mc (y2, I2) ≤ 3mc
(

yopt2 , I2
)

≤ 3mc (y⋆2 , I2) (75)

Case 2.2: y⋆2 /∈ A\ {y1}, then y1 = y⋆2 and y⋆1 ∈ A\ {y1}. On the one hand,
by Proposition 2, we have

mc (y2, I2) ≤ 3mc
(

yopt2 , I2
)

≤ 3mc (y⋆1 , I2) . (76)

On the other hand,

mc (y⋆1 , I2) = max
i∈N2

|y⋆1 − xi| ≤ max
i∈N2

|y⋆2 − xi|+ |y⋆1 − y1| (77)

≤ max
i∈N2

|y⋆2 − xi|+ |y⋆1 − lt (xN1
)|+ |lt (xN1

)− y1| (78)

≤ mc (y⋆2 , I2) + 2mc (y⋆1 , I1) (79)

Combining Eq. (76) and Eq. (79), we have

mc (y2, I2) ≤ 3mc (y⋆2 , I2) + 6mc (y⋆1 , I1) (80)

Thus, by Eq. (74) and Eq. (80), it holds that

mc(f, (x,p)) = max {mc (y1, I1) ,mc (y2, I2)} (81)

≤ max {3mc (y⋆1 , I1) , 3mc (y⋆2 , I2) + 6mc (y⋆1 , I1)} (82)

≤ 9mc(OPT, (x,p)) (83)

Above all, Mechanism 4 has an approximation ratio of at most 9.
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