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Abstract. Digital holography is an imaging process that encodes the
3D information of objects into a single intensity image. In recent years,
this technology has been used to detect and count various microscopic
objects and has been applied in submersible equipment to monitor the
in situ distribution of plankton. To count and classify plankton, con-
ventional methods require a holographic reconstruction step to decode
the hologram before identifying the objects. However, this iterative and
time-consuming step must be performed at each frame of a video, which
makes it difficult to support real-time processing. We propose a real-
time object detection based approach that simultaneously performs the
detection, classification and counting of all plankton within videos of raw
holograms. Experiments show that our pipeline based on YOLOv5 and
SORT is fast (44 FPS) and can accurately detect and identify the plank-
ton among 13 classes (97.6 % mAP@0.5, 92 % MOTA). Our method can
be implemented to detect and count other microscopic objects in raw
holograms.

Keywords: Object Detection · Multiple Object Tracking · Deep Learn-
ing · Plankton · Digital Holography.

1 Introduction

The observation, counts and classification of marine plankton are essential to
measure the health of our oceans. In recent years, several submersible equip-
ment [8] (ISIIS, LISST-Holo, eHoloCam) have been deployed as part of large-
scale campaigns to acquire in situ images of plankton. Some of these systems use
digital holography [14], a method that enable high resolution images acquisition
over a large water column and at high flow rates. Since a hologram encodes the
3D information of all plankton as a single intensity image, a decoding process,
called holographic reconstruction, is required to retrieve the sample image from
its hologram. Unfortunately, the methods used to process holograms and then
count and classify the species are still very time-consuming and manual.

With the multiplication of collected images, various efforts have been made to
accelerate and improve the holographic reconstruction, for instance, by adopting
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a convolutional neural network (CNN) to automatically find the focus [18] or to
reconstruct a de-focused hologram without performing an auto-focusing or phase
recovery routine [16, 21]. Even though those approaches greatly accelerate the
holographic reconstruction, the detection and classification of the objects need
to be performed afterwards.

To count and identify the objects in a live video stream, three different tasks
are necessary: (i) a classification task to identify the objects, (ii) a detection task
to locate them and (iii) a tracking task to determine their respective trajecto-
ries to avoid counting the same objects several time during the video life span.
However, these three distinct, yet complementary, tasks are often performed
independently on holograms. The classification is often done on cropped holo-
grams with, for example, a trained CNN as in [4, 22] but a preliminary detection
is necessary to determine those regions of interest (ROIs) that are then feed into
the model. To detect the objects, some works have implemented a CNN-based
sliding window algorithm [19] that perform a binary classification on different
regions in the holograms to detect and count cells. Other studies propose to per-
form the detection with a segmentation-based method. The segmentation can
be carried out with a threshold as in [17] that proposes to filter the intensity
of the reconstructed holograms with a bandpass filter before applying a thresh-
old to generate a binary mask. The segmentation can also be done with a deep
learning model as in [7] where a Segnet model coupled with a circular Hough
transform are applied on the holograms to locate the objects. However, detec-
tion by segmentation often requires a prior holographic reconstruction, as the
diffraction patterns on raw holograms do not allow the object’s boundaries to
be precisely determined. Concerning the tracking task, which is performed to
determine the objects trajectories, the existing methods are generally based on
a frame-by-frame detection of the objects that are then associated through the
sequences [10]. In the framework of holography, the detection assignment can be
carried out with the calculation of the cross-correlation between two consecutive
frames [13] which is effective when there is little variation in object morphology
or noise between the images. When the motion of the objects causes a variation
of their morphology (spin, rotation) between frames, other more robust algo-
rithms, such as the minimum boundary filter (MBF) [9], have been successfully
applied. However, these methods rely on a detection pipeline that requires a
holographic reconstruction at each frame of the video.

Even if several approaches have been proposed in the last few years to detect
and classify objects on holograms, the methods often focus on only one aspect,
either a classification or a detection/tracking task. Moreover, most of the existing
methods require a prior holographic reconstruction to detect the objects [20].
However, conventional algorithms [5] used to search each object’s focus plane
and remove twin image artifacts are iterative and computationally intensive and
therefore not always compatible with real-time processing. Therefore, the use of
an object detection model such as [12] Faster-RCNN, YOLO, SSD or RefineDet,
offers an alternative by performing in real time the localization and classification
of all objects on a frame in a single pass. Applied to raw holograms, these real-
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time models could greatly improve the applicability of digital holography and
are compatible with other tracking algorithm to accurately count and classify
the objects.

The aim of the paper is to demonstrate that the classification, localization
and tracking of plankton can be simultaneously performed in real-time on raw
holograms with an object detection model. For that purpose, two datasets of la-
beled in-line holograms will be simulated with 13 different plankton species. The
paper is organized as follows. In the next section, the generation of holographic
datasets and the object detection models are described. Section three shows the
performances of the models. Conclusions and perspectives are given in the last
section.

2 Materials and Methods

2.1 Hologram Formation

Fig. 1. In line-holography.

For an in-line holographic setup (see Fig. 1), the reference and object waves
share the same optical axis and an object can be described by a complex trans-
mission function [6] at a given z plane:

tz(x, y) = exp[−a(x, y)] exp[iϕ(x, y)] (1)

where a(x, y) describes the absorption of the object and ϕ(x, y) is the phase
distribution. The transmission function can be used to calculate the wavefront
just behind the object Uz+(x, y):

Uz+(x, y) = tz(x, y)Uz−(x, y) (2)
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where Uz−(x, y) is the incident wave that can be either plane or spherical.
Considering that the object is located at z = 0, the exit wave given by Eq. 2
can be rewritten as U0+(x, y) = t0(x, u)U0−(x, y) and is propagated to the de-
tector/hologram plane which is located at z = z2 along the optical axis. This
propagation is simulated by the angular spectrum method by calculation of the
following transformation:

Uz2(X,Y ) = TF−1

[
TF (U0+(x, y))× exp

(
2πiz2
λ

√
1− (λu)2 − (λv)2

)]
(3)

where λ is the wavelength and (u, v) are the Fourier domain coordinates. TF−1

and TF denoted the inverse and the direct Fourier transform, respectively. Note
that Eq. 3 is often expressed as Uz2(X,Y ) = R(X,Y ) + O(X,Y ) where R and
O are the reference and the object waves that interfere at the surface of the
recording medium. The recorded hologram at z = z2 is the intensity calculated
by:

Hz2(X,Y ) = |Uz2(X,Y )|2 = Uz2(X,Y )U∗
z2(X,Y ) (4)

where ∗ denotes the complex conjugate. As a result, a hologram can be simulated
once λ, z2, U0−(x, y) and t0(x, y) are known or set.

2.2 Dataset

Plankton Images To generate a dataset of labeled holograms for an object
detection task, the complex transmission function t0(x, y) of several objects in
a plane (x, y, z = 0) must be simulated first. For that purpose, two labeled
datasets of plankton images will be used as objects. The first dataset consists of
shadow images collected by the In Situ Ichthyoplankton Imaging System (ISIIS),
which was the subject of a competition on Kaggle 4. This open source dataset
consists of 121 marine plankton species, among which 10 species with a number
of images greater than 1000 were selected for our simulations. The second dataset
(custom) consists of optical microscopy images of 3 phyto-plankton species from
New Caledonia (Haslea sp., Pleurosigma sp. and Mastogloia sp. noted P1, P16
and P17, respectively). The plankton was imaged with a bright-field microscope
at a ×10 magnification. The images were automatically thresholded, segmented
into ROIs using an edge detection based algorithm (Sobel) and manually labeled.
Fig. 2 presents the number of images per species. Note that for each dataset,
the ROI segments are labeled per class and saved as grayscale images. Moreover,
the images were processed so that background has a constant value equal to 1
and only the pixels inside the object support have a value between 0 and 1. This
particularly allow us to simulate the absorption a(x, y) and the transmission
function t(x, y) of the objects. In particular, we converted a ROI segment I(x, y)
into an absorption with a(x, y) = −1 × I(x, y) + 1 so that the transmission
function is t0(x, y) = exp[−a(x, y)] exp[iϕ(x, y)] inside the object support and
t0(x, y) = 1 where there is no object (a(x, y) = 0 and ϕ(x, y) = 0). Note that

4 https://www.kaggle.com/c/datasciencebowl/



Real-Time Automatic Plankton Detection 5

t0(x, y) = 1 only implies that the incident wave that illuminates the sample
remains undisturbed where there is no plankton (U+

0 (x, y) = U−
0 (x, y)).

Fig. 2. Number of images per species.

To simulate t0(x, y) with various objects, the transmission functions of sev-
eral plankton images can be randomly placed on a N×N empty (all-ones) image.
By doing so, the (x, y)-axis coordinates of the bounding boxes are randomly set.
Moreover, the plankton images are already saved as ROIs so that the bounding
boxes width and height are the images dimensions. Since the images are classi-
fied per species, the labels of a simulated t0(x, y) for an object detection task
(classes and bounding boxes coordinates) can be completely set. Once t0(x, y)
is simulated, the corresponding hologram can be computed with the Eq. 3 and
Eq. 4.

Holograms Simulation To demonstrate that it is possible to classify and track
objects on raw holograms in real time, we have simulated two datasets. The first
dataset, used to train and test the detection model, consists of 10,000 simulated
holograms. The second dataset, used to evaluate the tracking performance of the
model, is composed of 100 simulated videos in which plankton are moving in a
laminar flow in a two-dimensional plane channel. In this section, we describe in
more detail the simulation of these two datasets.

Object detection dataset Before simulating the transmission functions and the
corresponding holograms to train the detection model, the plankton images from
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the two sample image datasets (ISIIS and Custom) were randomly split, per
class, in a 80:20 ratio for training and testing, respectively. We have considered
that the plankton are pure amplitude objects so that ϕ(x, y) = 0. The simula-
tion of t0(x, y) proceeds as follows. First, for each simulated t0(x, y), 13 plankton
images (one per species) are randomly selected. The images are then randomly
rotated and flipped with 4 possible rotations (0◦,90◦,180◦ or 270◦) and 3 possible
flips (None, horizontal or vertical). Then, the plankton transmission functions
are individually modified so that tplankton(x, y) = exp[−C × a(x, y)] where C
is a random constant and C ∈ [0.5, 1]. Next, the 13 transmission functions are
randomly placed without overlapping on a 512 × 512 empty image to generate
t0(x, y). Finally, the hologram Hz2(X,Y ) is simulated with Eq. 3 and Eq. 4.
Both the holograms and the t0(x, y) are normalized between 0 and 1 and saved.
8,000 and 2,000 holograms were simulated for training and testing, respectively.
Fig. 3 presents an example of a simulated and labeled t0(x, y) and its corre-
sponding hologram. During training, the object detection model learns to locate
all the plankton on the raw holograms. The model should be able to predict the
bounding boxes of the objects (x,y,w,h) and the class.

Fig. 3. Simulation example. 13 plankton images are used to generate a labeled holo-
gram for a object detection task.

Tracking dataset To evaluate the tracking performances, we have simulated 100
videos that consist of 50 frames in which several plankton are moving in a 2D
channel. For each simulated video, 10 plankton images were randomly selected
from the ROIs used to test the detection model. For each selected plankton, we
have simulated the transmission function tplankton(x, y) = exp[−C×a(x, y)], C ∈
[0.5, 1] which remained constant throughout the video. The plankton was then
randomly placed on a 512×512 all-ones image with a non-overlapping constraint,
so that the plankton does not initially occluded a previously placed plankton.
Its velocity was then initialized with the calculation of the Poiseuille equation
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between two planes. Note that, for each video that lasts 50 frames, the 10 plank-
ton are appearing or disappearing at different frame index according to their
respective speed and frame of appearance (see Fig. 4).

Fig. 4. Tracking dataset example. 10 plankton are moving in a 2D channel.

For the simulations of the two datasets, we have considered λ = 530 nm
(green), z2 = 0.8 mm and a pixel size, which limits the final resolution, of 1.12
µm. The incident plane wave, described by a distribution U(z) = exp[i(kxx +
kyy + kzz)] where (kx, ky, kz) are the wave vector components, was simulated
with U−

0 (x, y) = 1 by choosing the position of the object at z = 0 and by
selecting the optical axis along the propagation of the wave (kx = ky = 0)
[6]. Note that since the plankton are placed close to the camera plane (z2 <
1 mm), the simulated holograms are captured with a unit magnification [11].
As a result, the models trained on 512x512 images should be able to detect
plankton over a field of view equal to 0.33 mm2. The source code is available at
https://github.com/romanescherrer/HoloTrack.

2.3 Object Detection Models and Tracking

Two tasks are to be considered in this paper. The first is the detection of objects
on raw holograms which is performed frame by frame on a video. By detection,
we mean the localization of all objects i.e. the determination of bounding boxes of
coordinates (x,y,w,h) and the classification of objects (one among the considered
13 classes). The second task is the tracking of the objects throughout the video.
This task, which aims at associating/linking detections across frames, allows,
among other things, to determine the objects trajectories in order to precisely
count the plankton that appear and disappear in the video without generating
any duplicate.

Detection To perform object detection task on raw holograms, we chose two
YOLOv5 [3, 15] models that were pre-trained on the COCO dataset, namely
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YOLOv5s 5 (the smallest) and YOLOv5x (the largest) with 7.3M and 87.7M
parameters, respectively. YOLO is a one-stage detector that integrates the de-
tection of objects and their respective classification into a single process and has
achieved state-of-the-art performances in term of speed and accuracy in many
object detection problems. The model is composed of 3 parts (Fig. 5): a back-
bone (CSPDarknet), a neck (PANet) and a head (Yolo) that collect features from
different stages of a N ×N input images and encode/decode them into 3 output
tensors of size S × S × (B ∗ (5 + nc)) where S = (N/32, N/16, N/8), B is the
number of anchors per grid cell and nc is the number of classes. The anchors are
generic bounding boxes dimensions (w,h) that are determined using a clustering
algorithm (k-means) on the training dataset. Each cell in an output tensor is
responsible for detecting objects within itself and after various post-processing
steps (non-max suppression, among other, to only retain the candidate bound-
ing boxes with higher response [3]), YOLO produces an output prediction vector
p = (b, o, c) where b = (x, y, w, h) are the objects bounding boxes, o is the ob-
jectness i.e. a confidence score that the bounding boxes captures real objects
and c is the class of the objects.

The models were trained on 8,000 holograms during 400 epochs with a batch
size of 8 and tested on 2,000 holograms. The SGD optimizer was used with
an initial learning rate equal to 0.01. To further evaluate the object detection
performances on raw holograms, two models were also trained on the transmis-
sion functions t0(x, u) with the same hyperparameters. Note that t0(x, y) is the
perfect image (artifact-free) that the holographic reconstruction steps seeks to
obtain. Comparing the detection results on the holograms with those obtained
on transmission function allow to determine whether the holographic reconstruc-
tion steps, which are iterative and time consuming, are avoidable to accurately
classify and locate the objects with precision. The experiments were carried out
on a 2.9 GHz Intel Core i7 PC with 64 GB of RAM and a Nvidia GTX 2060
GPU. The training took 8 hours for the small model and 2 days for the larger
one.

Tracking Yolo is a real-time object detector [3] and thus can predict the bound-
ing boxes and the classes of the objects at every frame of the video. In order
to associate/link the detections across frames, we used the SORT algorithm
proposed by [2]. The method works as follows (Fig. 6): During the algorithm ini-
tialization at the first frame noted k, each bounding box dk detected by YOLO
is associated with an unique tracker which is composed of a kalman filter. We
denote tk#n the bounding boxes of the trackers at the frame k where n is
an unique identifier. For the next frame k + 1, the new bounding boxes dk+1

detected by YOLO must be associated to the existing trackers or new track-
ers must be created if the objects were not detected at the previous frame.
For this, the kalman filters of the trackers predict the state of the bounding
boxes at frame k + 1 by knowing the state of the bounding boxes at frame k.
Then, the association of dk+1#m,m ∈ [1, 2, ...,M ] with the bounding boxes of

5 https://github.com/ultralytics/yolov5
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Fig. 5. YOLOv5 architecture.

the trackers tk+1#n, n ∈ [1, 2, ...N ] is performed by computing a cost matrix
C =

(
− IoU(dk+1#m, tk+1#n)

)
∈ IRM×N where IoU is the Intersection over

Union expressed by :

IoU(dk+1, tk+1) =
dk+1 ∩ tk+1

dk+1 ∪ tk+1
(5)

The assignment is solved using the Hungarian algorithm and once a detection
is associated to a target, the detected bounding box dk+1 is used to update the
target state via the associated Kalman filter. The SORT algorithm is applied
sequentially, frame by frame after the YOLO inference, on the whole video stream
and the tracking can be done in real time because the state of the system at
frame k is predicted by its previous state at frame k − 1.

2.4 Metrics

To evaluate YOLO, we report the object detection performances with the well-
known average precision (AP) metrics [12]. We recall that the AP@.5 and AP@.75
are the average precision computed with an intersection over union threshold
t = 0.5 and t = 0.75, respectively. The AP@[.5:.95] is reported by computing the
mean AP@ with 10 different IoU thresholds [.5:.05:.95].
To evaluate the tracking performances, we report the CLEAR MOT metrics [1],
with in particular:

– MOTA: The Multiple Object Tracking Accuracy metric that combines the
false negative rate (FN), false positive rate (FP ) and the mismatch rate
(IDSW ) into a single score :

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
t GTt

(6)



10 R. Scherrer et al.

Fig. 6. SORT multiple object detection algorithm.

where t is the frame index and GT is the number of ground-truth objects.
– MOTP: The Multiple Object Tracking Precision that describes how pre-

cisely the objects are tracked by measuring and averaging the IoU between
the objects and their corresponding hypothesis.

MOTP =

∑
t,i dt,i∑
t ct

(7)

where dt,i is the bounding boxes overlap between the target i and its assigned
ground-truth objet and ct is the number of matches.

– MTR: The Mostly Tracked Rate which is the percentage of ground-truth
tracks that have the same label for at least 80 % of their life span.

– MLR: The Mostly Lost Rate which is the percentage of ground-truth tracks
that are tracked for less that 20 % of their life span.

3 Results

3.1 Detection performances

In this section, we report the object detection performances on 2000 test holo-
grams and the mean inference time that includes FP16 inference, postprocessing
and non-max suppression on a GTX 2060 GPU. Tab. 1 summarizes the perfor-
mances of the object detection tasks performed on the raw holograms and on
the transmission functions t0(x, y).

For the models trained on the holograms, the AP@.5 are 0.976 and 0.981 for
YOLOv5s and YOLOv5x, respectively. For the models trained on the transmis-
sion functions, the AP@.5 are slightly better with 0.985 and 0.993 for YOLOv5s
and YOLOv5x, respectively. The AP@[.5:.95] are significantly higher on t0(x, y)
than on holograms (eg. 0.980 vs. 0.855 for YOLOv5x) but the AP@.75 are still
high on holograms (0.928 and 0.955 for YOLOv5s and YOLOv5x, respectively).
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Table 1. Detection Performances.

Model Inputs AP@.5:.95 AP@.5 AP@.75 Speed

YOLOv5s
Holograms 0.820 0.976 0.928

4 ms
t0(x, y) 0.967 0.985 0.985

YOLOv5x
Holograms 0.855 0.981 0.955

14 ms
t0(x, y) 0.980 0.993 0.989

Those results suggest that the detectors trained on the holograms are efficient
for a IoU threshold ≤ .75 but that their performances start to decline at a higher
threshold. Fig. 7 shows the confusion matrix of YOLOv5x at IoU@.5 on the test
holograms and an example of its predictions. One can notice that the diffrac-
tion pattern of an object spreads beyond its bounding box. In fact, the further
away the object is from the camera, the more this effect will be visible on the
hologram. Because of this and the lack of sharp edge, a detector trained on holo-
grams was expected to have difficulty in determining the object boundaries with
a high IoU.

Fig. 7. Confusion matrix at IoU.5 and model predictions (blue : ground-truth , red :
predicted).
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3.2 Tracking performances

In this section we report the tracking performances performed by YOLO+SORT.
We also computed the mean computation time of the whole pipeline when the
real time detection (frame by frame) is performed by the smallest (v5s) and
largest (v5x) versions of YOLOv5. The results of our evaluation are shown on
Tab.2. The pipeline YOLOv5s+SORT can be used up to 44 FPS while the extra
large version can be used up to 23 FPS. This difference is explained by the
fact that the model has to make its inference at each frame and that for very
large models it is often more optimized in term of speed to generate predictions
on a batch of observations. The results suggest that the performances difference
between the small and large version of YOLO is negligible when the input images
are t0(x, y). When the input images are holograms, the use of a larger model
improves the performances but the number of lost tracks remains higher than
that of the models trained on transmission functions. However, the tracking
performance on holograms remains high with for example a MOTA of 94.34%
and 92.03% for YOLOv5x and YOLOv5s, respectively. An exemplary output of
our pipeline is shown in Fig. 8. At each frame of the video, the total number
of plankton per species can be updated. Note that we have slightly modified
SORT, which is initially not class-aware, so that the predicted class of the object
is saved as soon as a YOLO detection is associated with its tracker. To update
the plankton count by class at a frame k, only plankton that were not detected
in the past frames are added to the total count. When a plankton leaves the
field-of-view of the video, the total count is not modified. For a plankton already
detected in the previous frames, it is possible that YOLO predicts the wrong
class during its trajectory. We therefore update the count by class by considering
that the detected object has the class that obtained the maximum occurrence
between frames 0 to k − 1.

Table 2. Tracking Performances.

Inputs Model MOTA MOTP MTR MLR FPS

Holograms
Yolov5s 92.03 84.76 92.54 1.94 44
Yolov5x 94.35 86.33 95.30 1.43 23

t0(x, y)
Yolov5s 96.16 88.89 96.32 0.72 -
Yolov5x 96.05 90.66 96.63 0.92 -

4 Conclusion and perspectives

In this paper, we propose a pipeline that allows to detect, classify and count
objects on raw holograms without going through the conventional holographic
reconstruction/phase recovery steps. Our pipeline is composed of a real-time
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Fig. 8. Planckton tracked on a simulated video.

object detection model that performs the localization and classification of all
objects present on the holograms and the SORT algorithm that links the detec-
tions through the video frames. We evaluated the object detection and tracking
performances on simulated datasets that were generated with cropped plankton
images obtained with a bright-field microscope and a shadow imager (ISIIS).
Thirteen different species were considered for the simulations.

Two versions of YOLOv5 are trained to evaluate their detection performances
on raw holograms. The results are compared with the detection performance
obtained on transmission functions, which are the perfect images that the holo-
graphic reconstruction routine seeks to obtain. Note that in practice, obtaining a
reconstructed holographic image of the same quality as our t0(x, y) in this paper
is very complicated due to various noises and interferences on the hologram that
can affect the conventional algorithms (focus/phase recovery) robustness. If any-
thing, the presented comparison favors the holographic reconstruction/detection
pipeline over the detection on raw hologram. However, although the results
demonstrate that detection performances are slightly better on t0(x, y) than
on holograms, the difference in AP@.5 is only 1.2 %. These results suggest that
the prior realization of a holographic reconstruction, even perfectly conducted,
does not significantly increase the performance of the object classification and
detection tasks. With a AP@.5 score of 0.981, a YOLOv5x model can perform
detection and classification of all plankton groups within a 512x512 raw hologram
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(FOV ∼ 0.33 mm2) in a single pass in 14 ms. The tracking results show that
the whole pipeline YOLOv5s+SORT can be performed in real-time (44 FPS)
whereas YOLOv5x+SORT is slower (23 FPS) due to the large size of the model
that required more floating-point operations suggesting that its usage could be
more appropriate with batch (offline) tracking approaches.

Although the proposed method was validated with plankton images, it can
be implemented to localize, count and identify other microscopic objects in
raw holograms. Note that in practice, the object/camera distance was fixed at
z2 = 0.8 mm during our simulations. For three-dimensional imaging, the dis-
tance z2 can vary from one plankton to another. This aspect is not addressed
in this paper, which simply aims to show that holographic reconstruction is
not necessary to detect, classify and track objects. With its current architec-
ture, YOLOv5 is able to determine the (x,y,w,h) coordinates and the class of
objects whose size may vary from a few pixels to a hundred pixels. To obtain
the z-coordinate, the structure of the model could be modified. Otherwise, our
pipeline is compatible with the recording of holograms. The bounding boxes pro-
vided by YOLOv5+SORT have the potential to facilitate the determination of
the z-coordinate by any autofocusing algorithm.

While the results on simulated holograms are promising, it is often compli-
cated and time consuming to put together a large dataset of real labeled holo-
grams to train a detector. When a small labeled dataset is available, it might
be beneficial to pre-train a detector with a large amount of simulated holograms
and then use a transfer learning method to fine tune the model on the small
dataset. Another approach would be to rely on an intensive data augmentation.
Some works in the literature use de-focused back-propagated holograms as in-
puts of a deep learning model rather than raw holograms. By back-propagated
the holograms on several planes near the correct global focus, the dataset could
be significantly enlarged.
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