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Abstract.  Diffusion Tensor Imaging (DTI) and Magnetic Resonance Imaging (MRI) techniques 

have gained significant popularity in the diagnosis of neurodegenerative disorders. Combining 

brain scans with deep learning is receiving increasing attention in medical diagnostic 

applications. However, deep networks can learn powerful features and perform well only when 

a large amount of DTI or MRI image data are available. The paper attempts to reduce the 

dependence on massive training data by exploiting transfer learning of deep networks pretrained 

on ImageNet data for the diagnosis of dementia. Transfer learning can significantly reduce the 

length of the training, validation and testing process on a new dataset, and is based on the use 

of pretrained models which have demonstrated better performance than models trained from 

scratch in several applications. In this context, the paper investigates the potential of transfer 

learning, which is based on modifications of the AlexNet and VGG16 convolutional neural 

networks (CNNs), when MRI or DTI data are used for the classification of Mild Cognitive 

Impairment (MCI), AD and normal patient. Experiments based on data from the ADNI database 

demonstrate the high performance of the transfer learning methods in the detection of early 

degenerative changes in the brain. The highest accuracy of 99.75% in the diagnosis of AD was 

achieved with transfer learning of VGG models using DTI scans. The prediction of early 

cognitive decline with an accuracy of 93% was reached by VGG models processing MRI data. 

 

 

1 Scientific Background 

Mild cognitive impairment (MCI) belongs to the group of neurocognitive disorders 

characterized by minor problems with cognitive function, including memory, language, visual 

and spatial perception. Around 15% of the 65-year-olds with MCI develop dementia within a 

year, whilst around 30% of them develop it within 5 years. The most common course of 

dementia is Alzheimer's disease (AD). Neuroimaging technology is one of the key diagnostic 

approaches for the detection of early dementia. In this context, Magnetic Resonance Imaging 

(MRI) scans give detailed characteristics of the anatomical properties of the brain and cover 

around 50% of imaging data used for the diagnosis of brain diseases [1]. Also, Diffusion Tensor 

Imaging (DTI) provides the complex anatomy of the fibre tracts on the microstructural level 

and creates a brain-wide mapping of neuronal connections between the anatomical regions [2]. 

Both methods are widely used in the diagnosis of MCI and AD. Previous research has pointed 
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out that in the early phases of the disease white matter (WM) tract damage is happening earlier 

than gray matter (GM) destruction and progression of WM atrophy exceed the grey matter 

degeneration in patients with dementia [3, 4]. It was highlighted that there is a significant 

correlation between WM changes and regional GM atrophy in patients with AD and this affects 

the cognitive test performance [5]. At the same time, the correlation between GM atrophy and 

the damage of most WM tracts was not found in patients with the amnestic forms of MCI. In 

this vein, the study presented in this paper uses both imaging techniques for the early diagnosis 

of dementia. 

In the last decade, a significant number of studies used machine learning methods for 

medical diagnosis [6, 7]. The highest popularity among traditional machine learning has been 

gained by approaches that use support vector machines (SVM), support vector regression 

(SVR), and random forest (RF) classifiers [6]. Advances in deep neural networks have opened 

a wide diagnostic opportunity in the classification and processing of medical imaging data 

offering additional benefits [7]. In particular, Convolutional Neural Networks (CNNs) have 

demonstrated great potential in medical image analysis [8]. A CNN consists of an input layer, 

hidden layers, and an output layer. Hidden layers of this network are divided into convolution, 

pooling, activation, and classification layers. Convolutional layers are used for feature 

engineering, pooling layers reduce the dimensions of the feature maps, activation layers 

normalize the feature maps by removing the negative values, and output layers produce the 

classification result. Additional layers that can be used in the CNN architecture are dropout and 

fully connected. The dropout layer reduces the model overfitting by eliminating the results with 

a probability of 0.5 and below. The fully connected layers compute a score of each class 

collected from convolutional layers. 

Transfer learning, which forms the core of this paper, became noticeable in medical 

diagnostics only in recent years. Its popularity is growing as it is a fast and highly effective 

approach [9]. Transfer learning of pretrained networks is usually done by replacing the last 

three layers of the architecture. This allows adjusting the existing network to the newly inputted 

image classes. 

     The paper explores the classification potential of popular CNN architectures, such as the 

AlexNet and the VGG16 networks, that have been trained on ImageNet data (www.image-

net.org). Transfer learning enables quick adaptation of these computational models to new 

classes of medical imaging data from MRI or DTI with minimal image preprocessing. The aim 

is to understand how transfer learning with deep networks can be used to inform the design of 

DTI or MRI based diagnostic tools for binary and multiclass classification of early mild 

cognitive impairment (EMCI), Alzheimer’s disease (AD) and Normal (healthy) Controls (NC). 

This approach could offer new opportunities for quick and efficient diagnostics of different 

medical conditions including neurodegenerative disorders. 

 

2 Materials and Methods 

Brain scans used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The created datasets 

include T1-waited images of structural MRI and DTI data of fractional anisotropy of 150 

subjects at the age between 55 and 65 for the Early Mild Cognitive Impairment (EMCI) and 

Normal Cognitively (NC), and at the age between 65 and 90 for Alzheimer’s Disease (AD). 

Images were processed and classified in Matlab using commodity hardware (Windows10 

Enterprise, Intel (R) Core (TM), i7-7700 CPU@ 3.60 GHz, 16 GB RAM).  

Initially, we created MRI and DTI datasets of 2D images from the ADNI3 database. Images 

were taken from the same type of 3T scanners, Siemens Medical Solutions (see details available 

on ADNI: http://adni.loni.usc.edu/methods/mri-tool/mri-acquisition). For MCI and NC classes 
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we used patient data at the age between 55 and 65 to minimize the ageing effect on imaging 

data. After that, the MRI and DTI brain images were normalized using the histogram stretching 

technique and resized to 256×256 pixels with RGB colour channels as typically done for deep 

learning image processing and classification. Then, the brain of a single 2D image was 

segmented from the skull and other surrounding tissues using region growing and double 

thresholding methods (see Fig. 1). MRI and DTI sets of 1200 images obtained from 150 subjects 

were balanced across classes and used for binary and multiclass diagnostic problems. 

  

 

(a)                      (b) 

Figure 1: (a) Segmented brain from MRI slice (b) Segmented brain from DTI slice. 

 

The classification tasks were processed using transfer learning of two CNN architectures, 

the AlexNet and the VGG16 [7, 8], where the last 3 layers were replaced by a fully connected 

layer, a Softmax layer and an output layer, which was configured for binary or multiclass (3 

classes) classification depending on the type of the diagnostic tasks. When the cross-entropy 

loss function is used for training, the outputs of the Softmax layer can be interpreted as values 

of a probability distribution, which helps to produce the diagnostic outcome. 

In general, AlexNet has been found to provide a short training time, while the VGG16 is 

known for its low error rate. AlexNet and VGG16 were originally configured and trained for 

1000 classes using ImageNet data. AlexNet consists of 8 layers, has a size of 227MB and 

includes 61.0 million parameters. This network requires an input image size of 227×227×3 (227 

wide, 227 high, 3 colour channels). The size of VGG16 is much bigger and equal to 515MB. 

This network has 16 layers and 138.0 million parameters it requires an input image size of 

224×224×3.  

The following settings were used for retraining/finetuning both models on DTI and MRI 

data: N = 5 is the number of epochs each dataset was trained, mini-batch size = 128, validation 

data frequency = 50, initial learning rate = 0.0001. The stochastic gradient descent with 

momentum (SGDM) was used as the network optimization method. All brain images were 

resized to the required input sizes of two trained networks and fed into the model. 80% of the 

images were used for training, 10% for validation, and 10% for testing. All the results below 

are presented for unseen MRI and DTI image data. 

 

3 Experiments and Results 

Experiments were conducted with the updated configurations of AlexNet and VGG16, as 

described above, using DTI and MRI data. Four classification problems were tested: three 

binary classification tasks (EMCI vs. NC, AD vs. NC, and AD vs. EMCI) composed of 400 

images each, and one multiclass task (AD vs EMCI vs NC) using 600 images with a balanced 

number of AD, EMCI, and NC subjects. 
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Table 1: Average classification performance (over 5 runs) of the two models on unseen DTI 

and MRI test data. 

 

 
 

Model 

Multiclass 

AD, EMCI, NC 

Binary 

AD vs EMCI 

Binary 

EMCI vs NC 

Binary 

AD vs NC 

 DTI MRI DTI MRI DTI MRI DTI MRI 

VGG16         

Acc  0.8438 0.8950 0.7400 0.7813 0.9100 0.9300 0.9975 0.9350 

Precision 0.8600 0.8900 0.7450 0.7950 0.9200 0.9200 1.0000 0.9200 

Recall 0.8329 0.8990 0.7376 0.7737 0.9020 0.9388 0.9950 0.9485 

F-score 0.8462 0.8945 0.7413 0.7842 0.9109 0.9293 0.9975 0.9340 

AUC 0.9766 0.9800 0.8581 0.8787 0.9700 0.9800 0.9998 0.9756 

         

AlexNet         

Acc  0.7088 0.7200 0.6900 0.7463 0.8500 0.8500 0.9900 0.8600 

Precision 0.7000 0.7050 0.7200 0.7376 0.8700 0.8600 0.9900 0.8600 

Recall 0.7125 0.7268 0.6792 0.7525 0.8365 0.8431 0.9900 0.8600 

F-score 0.7062 0.7157 0.6990 0.7450 0.8529 0.8515 0.9900 0.8600 

AUC 0.9052 0.8550 0.8900 0.8900 0.9000 0.9200 0.9957 0.9600 

 

     Table 1 summarises models’ classification performance in testing, after applying the transfer 

learning process described in Section 2. Five independent runs were conducted in each case. 

The metrics shown include accuracy rate (Acc), the area under the curve which plots 

parametrically the true positive rate vs the false positive rate (AUC), and the F-score, which is 

commonly used for evaluating the performance of machine learning models. It is defined as the 

harmonic mean of the model’s Precision and Recall (see Table 1).  

     The highest performance of 89.50 % (0.98 of AUC, 0.89 of F-score) in the 

multiclassification task is achieved with VGG16 on MRI data. The best results in the binary 

classification tasks are obtained by VGG16 nets using MRI data: AD vs EMCI (78% of 

accuracy, 0.88 of AUC, 0.78 of F-score); EMCI vs NC (93% of accuracy, 0.98 of AUC, 0.93 

of F-score). These results compare well with previous research that only investigated DTI [9] 

or MRI data [10]. The AD vs NC task is diagnosed better by transfer learning with the VGG16 

classifier when DTI data are used, although AlexNet-based transfer learning also performs well. 

     It is worth noticing that the time spent for training and testing the two transfer learning 

architectures differs significantly (commodity hardware was used for all experiments as 

described in Section 2). AlexNet required approximately 1.3 hours for multiclassification and 

0.85 hours for binary classification, whilst the VGG16 took 15.7 hours and 9.7 hours 

respectively.  

 

4 Discussion and Future Work 

The experimental study demonstrated that deep transfer learning is a promising technique 

for the detection of cognitive decline when MRI data are used. At the same time, using DTI 

data gives an advantage in the early diagnosis of Alzheimer’s disease with deep transfer 

learning.  

The performance of the classifiers used in the research indicates the advantage of the 

VGG16-based models over the AlexNet ones, since the average error rate of AlexNet-based 
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models is 7.4% higher than the VGG16 models. The advantage of the VGG16, however, comes 

at a price since these models take 8 to 15 times longer to train and test than AlexNets.  

     From a medical perspective, the findings align with previous research that showed 

degeneration of the white matter of the brain is connected to and correlated with gray matter 

atrophy in cases of Alzheimer's disease. Axons of neurons can be affected earlier than the 

neurons themselves and can symbolize the early onset of the disease. DTI can detect these 

changes quicker than MRI and become the method of choice in the early diagnosis of 

Alzheimer’s forms of dementia. The white matter in patients with MCI is affected significantly 

less. Thus, in the diagnosis of MCI and the transformation of some of its forms to AD, MRI 

technologies help computational models perform better compared to DTI. This can be explained 

by the fact that cognitive decline in the case of MCI might have different morphological 

grounds when the destructive process does not involve the white matter only. The nature of 

MCI is more complex and might have another, vascular reason, for amnestic and cognitive 

decline. Only 30% of MCI progress to AD.  

     This work can be extended in two directions. The first direction focuses on longitudinal 

studies inside image classes based on the evaluation and analysis of the changes of WM tracts 

during the progression of dementia using transfer learning of Convolutional Neural Networks 

A second line of the research is the use of additional biomarkers (features) that can potentially 

improve the diagnosis of MCI using Deep Learning methods. 
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