
27/04/2024 09:10

Delayed and Periodic Execution of Tasks in Jadescript Programming Language / Petrosino, G.; Monica, S.;
Bergenti, F.. - 583:(2023), pp. 50-59. (Intervento presentato al convegno 19th International Symposium
on Distributed Computing and Artificial Intelligence, DCAI 2022 tenutosi a ita nel July 13th, 2022)
[10.1007/978-3-031-20859-1_6].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Springer Science and Business Media Deutschland GmbH

This is the peer reviewd version of the followng article:

Delayed and Periodic Execution of Tasks
in the Jadescript Programming Language

Giuseppe Petrosino1, Stefania Monica1, and Federico Bergenti2

1 Dipartimento di Scienze e Metodi dell’Ingegneria
Università degli Studi di Modena e Reggio Emilia

42122 Reggio Emilia, Italy
{giuseppe.petrosino,stefania.monica}@unimore.it

2 Dipartimento di Scienze Matematiche, Fisiche e Informatiche
Università degli Studi di Parma

43124 Parma, Italy
federico.bergenti@unipr.it

Abstract. Software agents are expected to timely act and to dynami-
cally plan their activities, for example, to solve the complex collabora-
tion problems of many real-world applications. The collaboration among
agents requires the ability to reason about time to dynamically coor-
dinate and to effectively adjust the frequency of periodic actions and
reactions. For these and related reasons, an agent-oriented programming
language is demanded to provide the programmer with effective means
to schedule the execution of delayed and periodic tasks. This paper de-
scribes the new datatypes, and the related changes to some language con-
structs, that have been recently added to the Jadescript programming
language to allow agents to effectively manage the dynamic scheduling
of delayed and periodic tasks.

Keywords: Agent-based software systems · Agent-oriented program-
ming · Jadescript · JADE

1 Introduction

The ability to reason about time and to act in a timely manner is of primary
importance for software agents because agents are normally expected to dy-
namically plan and to timely act in complex and dynamic worlds, especially
when real-world applications are concerned. The agents that are immersed in
a Multi-Agent System (MAS) are expected to reason about time, for example,
to organize their activities, to perform coordinated tasks, to detect failures, to
achieve dynamic collaborations, and to react to unexpected or erroneous con-
ducts of peers. Actually, the ability to reason about time is essential in several
agent-based applications, for example, in robotics, in cyber-physical systems,
and in all applications that rely on human-machine interactions. For these and
related reasons, an Agent-Oriented Programming Language (AOPL) (e.g., [21]) is
demanded to natively provide abstractions to support the effective development
of software agents that can act in a timely manner.

Jadescript (e.g., [7]) is an AOPL that has been recently designed on top of
JADE (e.g., [3]), the Java framework for the development of MASs that strongly
contributed to shape Agent-Oriented Software Engineering (AOSE) (e.g., [5]).
Some of the most relevant abstractions that JADE contributed to AOSE, as
briefly discussed in [4], were reworked in Jadescript to have them natively em-
bedded in the language to ensure their easy and profitable use in the daily routine
of the programmer. Moreover, the availability of these abstractions in terms of
native language constructs guarantees that the Jadescript compiler can block
erroneous uses and possibly suggest corrections and improvements. The pro-
grammer that uses Jadescript is encouraged to think about agents and MASs
in terms of agent-oriented abstractions to effectively profit from the relevant
characteristics of agents in terms of reusability and composability (e.g. [6]).

However, these abstractions, that JADE provides by means of Java classes,
interfaces, objects, and methods, needed to be redesigned to become an integral
part of a new language and of its peculiar approach to Agent-Oriented Program-
ming (AOP) (e.g., [21]). For example, the programmer that uses Jadescript is
supposed to manage application-specific data using ontologies [17], to imple-
ment the interactions among agents using the supported speech acts [16], and
to program tasks using behaviours [14]. For these reasons, the most appropriate
approach to introduce delayed and periodic tasks in Jadescript was to extend
the language and to enrich its support for behaviours with the possibility of
dynamically selecting when a behaviour should be scheduled. This approach to
the support for delayed and periodic tasks in Jadescript also required to extend
the language with an appropriate support for time-related datatypes. Jadescript
agents are now capable of treating time-related abstractions using dedicated
datatypes that are deeply embedded in the core of the language.

The major contributions of this paper are:

1. To briefly describe Jadescript behaviours and how they are scheduled (see
Section 2);

2. To present the new datatypes that were added to the language to natively
manipulate time-related abstractions (see Section 3);

3. To discuss the changes introduced in Jadescript and in its underlying be-
haviour scheduling mechanism to support delayed and periodic tasks (see
Section 4);

4. To concisely describe how other AOPLs support time-related abstractions
and the manipulation of delayed and periodic tasks (see Section 5); and

5. To motivate and shortly overview possible developments of the discussed
work (see Section 6).

Note that, even if the novel support for delayed and periodic tasks is a rel-
evant improvement of the language, Jadescript and JADE are not designed for
realtime applications, and these new features of the language should not be con-
sidered as an oversimplified support for realtime applications. Actually, JADE
and, therefore, Jadescript are not yet ready for realtime applications, even if the
literature documents interesting proposals (e.g. [13]).

2 Jadescript Behaviours

Jadescript provides behaviours to program the tasks of agents. Agents perform
several tasks during their lifecycles, and therefore they activate and deactivate
several behaviours. When a behaviour is activated, a reference to the behaviour
is kept in a list, internal to the agent, of all activated and ready behaviours.
An agent, during its execution loop, performs one execution of each one of its
ready behaviours following a round robin scheduling algorithm. The scheduling
of behaviours is said to be cooperative because behaviours explicitly release
the control back to the scheduler at the end of each execution. This approach
to the scheduling of behaviours has its roots in JADE, and, despite the lack
of parallelism in the execution of behaviours within an agent, it has several
advantages that are well known to the programmers that use JADE. The most
important advantage of this approach is that the programmer is not required to
take into consideration the synchronized access to the state of the agent, which
is shared among its active behaviours. Moreover, this approach is intended to
promote parallelism by distributing tasks among agents, which can cooperate
and coordinate using message passing.

Jadescript supports two types of behaviours. One-shot behaviours are ex-
ecuted only once, and then they are automatically deactivated. On the other
hand, cyclic behaviours are kept in the internal list of the active behaviours of
the agent after each execution. Therefore, agents reschedule cyclic behaviours
indefinitely, until explicit deactivation.

Behaviours can be created and initialized dynamically, and if a behaviour re-
quires initialization arguments, the Jadescript compiler forces the programmer
to provide the needed arguments. A created and initialized behavior can be acti-
vated by means of the activate statement. The related deactivate statement
is used to deactivate an active behaviour. Behaviours can be deactivated and re-
activated indefinitely, and between a deactivation and a subsequent activation,
behaviours keep their internal states. Finally, Jadescript provides the destroy
statement to deactivate a behaviour and invalidate all its subsequent activations.

Behaviour declarations are used to define new types of behaviours. Behaviour
declarations can include, among other features like properties, functions, and
procedures, several event handlers to provide the procedural code to be exe-
cuted to react to events. Immediately after the creation of a behaviour, the on
create event handler of the newly created behaviour is executed. This event
handler can declare a list of typed parameters that can be used to initialize the
state of the behaviour. When a behaviour is activated, the on activate event
handler is executed. Note that the on activate event handler is executed ex-
actly once for each activation of the behaviour. The on execute event handler
can be used to provide the procedural code to be executed when a behaviour is
scheduled. When a one-shot behaviour is deactivated after its single execution,
its on deactivate event handler is executed. This also happens when a cyclic
behaviour is explicitly deactivated by means of the deactivate statement. The
on destroy event handler is executed when a behaviour is explicitly destroyed.
Finally, the on message event handler is particularly relevant because it is of pri-

mary importance to support message passing among agents. It is executed when
an agent successfully extracts a message from its inbox, thus allowing agents
to use behaviours to handle the reception of messages. An on message event
handler can restrict the set of accepted messages by explicitly mentioning the
supported performative and by providing details on accepted message contents
using pattern matching [15]. A behaviour can declare several on message event
handlers, and, when scheduled, the behaviour checks if a message in the inbox
of the agent matches the requirements of the available handlers. Only the first
handler that matches a message in the inbox is used, and only one message is
processed when the behaviour is scheduled. Therefore, a behaviour needs to be
scheduled several times to process several messages in the inbox of the agent.
The order in which event handlers appear in a behaviour declaration fixes, from
top to bottom, the priority of the declared handlers.

In summary, the execution of the behaviours of a Jadescript agent can be
outlined as follows:

1. The on activate event handler is executed, if available and if this is the
first time that the behaviour is scheduled after its activation;

2. The on execute event handler is executed, if available; and
3. The first on message event handler that matches a message in the inbox of

the agent is executed, using the priority that is implicitly assigned by the
behaviour declaration.

If, in a cyclic behaviour, no event handlers can be executed, the behaviour is au-
tomatically marked as waiting. Waiting behaviours are still considered as active
by the agent, and they are rescheduled as soon as an interesting event occurs.
As a matter of fact, when a message is added to the inbox of the agent, the
agent sets all its waiting behaviours as ready to allow them to check if one of
their on message event handlers matches the new message. This mechanism is
completely transparent to the programmer that uses Jadescript.

Fig. 1 shows an example of a behaviour declaration. The behaviour is in-
tended to handle the reception of proposals in a contract-net protocol (e.g., [18]).
Actually, the behaviour handles proposals by activating an Evaluate behaviour
with the needed argument proposal set to the content of the message. The be-
haviour handles refusals by simply tracing the event in the message log of the
agent. Similarly, the behaviour handles all other messages by tracing them as
not understood in the message log of the agent.

3 Time-Related Datatypes

Software agents are expected to timely act and to dynamically plan their ac-
tivities in real-world applications, and therefore a good AOPL is demanded to
provide effective means to manipulate time-related abstractions. Jadescript pro-
vides a set of language constructs that allows the programmer to adequately
manipulate time-related abstractions. Most importantly, Jadescript includes two
datatypes for the manipulation of time [17].

1 cyclic behaviour HandleProposals
2 for agent ContractNetInitiator
3
4 on message propose do
5 activate Evaluate(proposal=content of message)
6
7 on message refuse do
8 log sender of message + " refused."
9

10 on message do
11 log message + " received but not understood."

Fig. 1. Example of a behaviour declaration written in Jadescript to manage proposals
in a contract-net protocol (handlers for propose and refuse messages) and to trace not
understood messages (last handler).

The first datatype, called timestamp, is used to represent instants with a
precision of one millisecond. Timestamps can be created using builtin functions
like today and now. In addition, they can be created using timestamp literals,
which are composed of year, month, day, hour, minute, second, and millisecond
values together with a timezone offset, and they are arranged in a format that
is strongly inspired by the ISO 8601 standard. Note that the values returned
by now and today are related to the clock of the agent container that is cur-
rently hosting the agent. Therefore, all agents that execute in the same agent
container have their internal clocks synchronized because they share the same
clock. On the contrary, agents that execute in different agent containers need to
adopt application-specific methods to synchronize their clocks, whenever needed.
The timestamp datatype provides a set of builtin operations, like relational and
equality operators. Two timestamps can be subtracted to have a duration (see
below), and a duration can be added to or subtracted from a timestamp to have
a new timestamp shifted forward or backward by the specified offset.

The second datatype, called duration, is used to manage time intervals. Du-
rations support a precision of one millisecond, and they can be created using
duration literals or with operations on timestamps. Duration literals are com-
posed of day, hour, minute, second, and millisecond values followed by their
respective prefixes, which are days (or d), hours (or h), min (or minutes, or m),
secs (or seconds, or s), and ms. Any part of a duration literal can be omitted
when its value is zero. Durations can be multiplied and divided by integer and
real factors. Any duration can be added to and subtracted from any other du-
ration. Moreover, a real number can be computed as the ratio of two durations.
Finally, just like timestamps, durations can be compared using the provided
relational and equality operators.

The parts that constitute a duration or a timestamp can be accessed as
readonly properties using the of operator [7]. Finally, durations and timestamps
can be used in pattern matching [15].

4 Delayed and Periodic Behaviours

Jadescript behaviours and their scheduling mechanism have been recently im-
proved to support the execution of delayed and periodic behaviours. In particu-
lar, the activate and deactivate statements were extended to support a set of
optional parts specifically designed to manage delayed and periodic activations,
and delayed deactivations, of behaviours.

The optional parts of the activate statement that start with at and after
allow the programmer to express the delayed activation of a behaviour. Specifi-
cally, at is followed by an expression denoting a timestamp, and it indicates the
instant at which the behaviour will be first activated, and therefore, at which its
on activate event handler will be scheduled. Note that if the timestamp indi-
cates an instant before the execution of the activate statement, the behaviour
is executed as soon as possible. Similarly, after is followed by a duration that
indicates the delay between the execution of the activate statement and the
first execution of the behaviour. These two options to specify when the first
activation of a behaviour will occur are strongly related, and they are normally
said to declare a delayed activation. Actually, they are mutually exclusive and
the compiler treats activate B at T as activate B after T - now.

The activate statement can also include every, which is available only for
cyclic behaviours. This optional part of the statement is followed by an expression
that denotes a duration. The statement activates the behaviour in periodic mode
to allow the programmer to declare periodic tasks. When in periodic mode, the
specified duration is used as the minimum time interval that must occur between
two successive executions of the behaviour.

Note that delayed and periodic activations impose constraints on the release
time of a task, where the release time of a task can be broadly defined as the
time at which the task becomes available for execution. Actually, delayed and
periodic activations do not set a deadline on the execution of the task. Therefore,
a delayed or periodic behaviour is guaranteed not to be scheduled before the
specified time, but it can be actually scheduled after.

The at and after optional parts of the activate statement can be also
used at the end of the deactivate statement. Delayed deactivations are used
to ensure that a behaviour will not be scheduled after the specified instant. An
immediate and appropriate use of delayed deactivations is for the creation of a
deadline for waiting for a message, which is typically in response to a previous
poll like, for example, in the progress of the contract-net protocol.

Delayed and periodic activations are implemented by modifying how waiting
behaviours are treated by the behaviour scheduler of Jadescript agents. Actually,
a waiting behaviour does not simply wait for events, but it also waits for a
specified amount of time to pass. Similarly, when a behaviour is activated with
at or after, the behaviour is set as waiting instead of ready. Finally, at the end
of each execution of a periodic behaviour, the behaviour is set as waiting to wait
for the successive periodic activation.

Similarly, delayed deactivations are implemented by adding a timestamp
property to all behaviours. This property is hidden to the programmer, and

it is set by the deactivate statement. When the scheduler is going to select
a behaviour, it first checks that the current time is not past the deactivation
time. If it is, the behaviour is not scheduled, it is removed from the list of active
behaviours, and its on deactivate event handler is executed.

The choice of letting the programmer define a delay or a period for a be-
haviour at the activation site rather than in the declaration of the behaviour
was adopted to promote reusability and to ensure that delays and periods can
be set dynamically. Reusability could have been damped by binding a delay
property or a period property to a behaviour declaration. Conversely, letting the
programmer define these two properties at the activation site allows the pro-
grammer to activate multiple related behaviours with different periods and/or
different delays. Also, this design choice allows a behaviour to be reactivated
with different periods or different delays, which can be computed at runtime to
dynamically change the reactivity of agents to interesting events.

To exemplify the relevance of the mentioned additions to the language, con-
sider the example shown in Fig. 1. According to FIPA specifications [18], the
contract-net protocol assumes that the agent that takes the role of initiator is
expected to set the deadline by which all participants have to reply with either
a propose message or a refuse message. After that, the initiator can proceed
to accept the best proposal and to reject all other proposals. To this purpose,
an on activate event handler can be added to HandleProposals behaviours.
This handler executes a delayed activation of a HandleDeadlineExpired be-
haviour to have it activated after the deadline has expired. When activated,
the HandleDeadlineExpired behaviour selects the best proposal, and it appro-
priately replies to all agents that provided a proposal in time. Moreover, the
HandleDeadlineExpired behaviour can treat incoming proposals as invalid, be-
cause they arrived late, and it can reply to such late proposals accordingly.

5 Related Work

SARL (e.g., [10, 20]) is a general-purpose AOPL whose runtime is based on
the Janus multi-agent platform for Java. The language is advocated as agent-
oriented, but it maintains strong connections to Object-Oriented Programming
(OOP). As a matter of fact, SARL supports OOP features like objects, classes,
and interfaces [12], and its statement and expression languages are created as ex-
tensions of the Xtend language [8], which is a dialect of Java. In SARL, tasks and
their executions are modeled using two distinct facilities, implemented, respec-
tively, by the Behaviours and the Schedules capacities [20]. SARL behaviours
are similar to Jadescript behaviours in their external structure because the entry
points of SARL behaviours are event handlers. However, the types of supported
events are limited to external events and to the creation and the destruction
of behaviours (on Initialize and on Destroy). Moreover, SARL behaviours
lack an event handler to define a generic task performed by the behaviour (cor-
responding to on activate and on execute event handlers in Jadescript). All

in all, SARL behaviours are nothing but structures for the organization of the
reactions of an agent to external events.

SARL provides the builtin Schedules capacity to schedule concurrent and
timed tasks. This capacity enriches the scope of the agent body with extension
methods to execute single-run tasks, to schedule delayed tasks, to launch tasks
at specific instants, and to set the execution of periodic task. All these extension
methods take as argument a method reference, or an Xtend lambda expression,
to procedurally define the actual task. The distinction between behaviours and
scheduled tasks in SARL creates a conceptual distance from the understanding
of behaviours advocated by Jadescript, where a behaviour corresponds to a task
that is performed by handling events and/or by actively performing actions.
Finally, SARL does not provide builtin types to treat time. However, SARL
agents can directly access the Java classes in the java.time package via Xtend.

Jason (e.g., [9]) is an implementation of AgentSpeak (e.g., [19]) created to
develop cognitive agents based on the Belief-Desire-Intention (BDI) model. In
Jason, the tasks performed by an agent are represented by the goals in the
intention stack of the agent. Jason provides two functions to schedule tasks:

1. at, which is used to emit an event at the specified instant; and
2. wait, which is used to suspend the intention on the top of the stack for a

specified number of milliseconds or until a specified event occurs.

The needed number of milliseconds is used to specify a time interval to wait,
while a text with a specific syntax is used to specify an instant to at. Also, Jason
supports two builtin actions to get the current date and the current time. Both
actions unify the parts of the current date, or time, with integer variables.

6 Conclusion

Software agents are expected to timely act and to dynamically plan their activi-
ties, for example, to effectively coordinate and to adequately adjust the frequency
of periodic actions and reactions. Therefore, a good AOPL is demanded to pro-
vide the programmer with effective means to schedule the execution of delayed
and periodic tasks. This paper described the datatypes, and the related changes
to some language constructs, that have been recently added to Jadescript to
allow the programmer to effectively manage the dynamic scheduling of delayed
and periodic behaviours.

Planned future works include an analysis of the described additions to the
language from the performance point of view to compare the adopted solutions
to alternative solutions documented in the literature. Moreover, the described
enhancements to Jadescript are open to further improvements. For example, as
hinted in Section 4, the behaviour scheduling mechanism that Jadescript cur-
rently adopts uses a strategy that does not guarantee that the average value
of the frequency of a periodic behaviour matches the inverse of the requested
period. Actually, the current behaviour scheduling mechanism treats the period

as the distance between the end of an execution and the beginning of the suc-
cessive execution. So, the period does not take into account the time needed to
perform the actual computation of the behaviour and all the delays caused by
other active behaviours. These delays cannot be considered as negligible in real-
world applications, and therefore the behaviour scheduling mechanism could be
improved to ensure that the release time of a periodic task would be computed
in a way that is not influenced by the actual execution time of behaviours.

As a further development, the opportunities offered by delayed and periodic
behaviours could be explored in combination with the other features of the lan-
guage related to the perception of the environment [11], for example, to program
autonomous robots. Similarly, the ability of Jadescript agents to take time into
account in their operations could be further extended to support real-world ap-
plications characterized by soft, or even hard, realtime constraints (e.g., [1, 2]).
This development requires to retarget Jadescript to runtime platforms that can
ensure compliance with real-time constraints, which is a very strong requirement
for a language that is tightly coupled with Java and JADE.

Acknowledgements. This work was partially supported by the Italian Min-
istry of University and Research under the PRIN 2020 grant 2020TL3X8X for
the project Typeful Language Adaptation for Dynamic, Interacting and Evolving
Systems (T-LADIES).

References

1. Alzetta, F., Giorgini, P.: Towards a real-time BDI model for ROS 2. In: Proceedings
of the 20th Workshop “From Objects to Agents” (WOA 2019). CEUR Workshop
Proceedings, vol. 2404, pp. 1–7. RWTH Aachen (2019)

2. Alzetta, F., Giorgini, P., Marinoni, M., Calvaresi, D.: RT-BDI: A real-time BDI
model. In: Advances in Practical Applications of Agents, Multi-Agent Systems, and
Trustworthiness. The PAAMS Collection. Lecture Notes in Artificial Intelligence,
vol. 12092. Springer (2020)

3. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE–A Java Agent DEvel-
opment Framework. In: Multi-Agent Programming, Multiagent Systems, Artificial
Societies, and Simulated Organizations, vol. 25, pp. 125–147. Springer (2005)

4. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-based
software development with JADE. Autonomous Agents and Multi-Agent Systems
34(36) (2020)

5. Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.): Methodologies and Software En-
gineering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Springer (2004)

6. Bergenti, F., Huhns, M.N.: On the use of agents as components of software sys-
tems. In: Methodologies and Software Engineering for Agent Systems: The Agent-
Oriented Software Engineering Handbook. pp. 19–31. Springer (2004)

7. Bergenti, F., Monica, S., Petrosino, G.: A scripting language for practical agent-
oriented programming. In: Proceedings of the 8th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decentralized Control

(AGERE 2018) at ACM SIGPLAN Conference on Systems, Programming, Lan-
guages and Applications: Software for Humanity (SPLASH 2018). pp. 62–71. ACM
(2018)

8. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing (2013)

9. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley Series in Agent Technology, Wiley (2007)

10. Feraud, M., Galland, S.: First comparison of SARL to other agent-programming
languages and frameworks. In: Proceedings of the 8th International Conference on
Ambient Systems, Networks and Technologies (ANT 2017) and of the 7th Inter-
national Conference on Sustainable Energy Information Technology (SEIT 2017).
Procedia Computer Science, vol. 109. Elsevier (2017)

11. Iotti, E., Petrosino, G., Monica, S., Bergenti, F.: Exploratory experiments on pro-
gramming autonomous robots in Jadescript. In: Proceedings of the 1st Workshop
on Agents and Robots for Reliable Engineered Autonomy (AREA 2020) at the Eu-
ropean Conference on Artificial Intelligence (ECAI 2020). Electronic Proceedings
in Theoretical Computer Science, vol. 319. University of New South Wales (2020)

12. Najjar, A., Rodriguez, S., Zhao, H., Tchappi, I.H., Galland, S., Mualla, Y., Gaud,
N.: Model transformations from the SARL agent-oriented programming language
to an object-oriented programming language. International Journal of Agent-
Oriented Software Engineering 7(1) (2019)

13. Pereira Filgueiras, T., Lung, L.C., de Oliveira Rech, L.: Providing real-time
scheduling for mobile agents in the JADE platform. In: Proceedings of the 15th

IEEE International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC 2012). pp. 8–15. IEEE (2012)

14. Petrosino, G., Bergenti, F.: An introduction to the major features of a scripting
language for JADE agents. In: Proceedings of the 17th Conference of the Italian
Association for Artificial Intelligence (AI*IA 2018). Lecture Notes in Artificial
Intelligence, vol. 11298, pp. 3–14. Springer (2018)

15. Petrosino, G., Bergenti, F.: Extending message handlers with pattern matching
in the Jadescript programming language. In: Proceedings of the 20th Workshop
“From Objects to Agents” (WOA 2019). CEUR Workshop Proceedings, vol. 2404,
pp. 113–118. RWTH Aachen (2019)

16. Petrosino, G., Iotti, E., Monica, S., Bergenti, F.: Prototypes of productivity tools
for the Jadescript programming language. In: Proceedings of the 22nd Workshop
“From Objects to Agents” (WOA 2021). CEUR Workshop Proceedings, vol. 2963,
pp. 14–28. RWTH Aachen (2021)

17. Petrosino, G., Iotti, E., Monica, S., Bergenti, F.: A description of the Jadescript
type system. In: Proceedings of the 3rd International Conference on Distributed
Artificial Intelligence (DAI 2022). Lecture Notes in Computer Science, vol. 13170,
pp. 206–220. Springer (2022)

18. Poslad, S.: Specifying protocols for multi-agent systems interaction. ACM Trans-
actions on Autonomous and Adaptive Systems 2(4), 15:–15:24 (2007)

19. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: MAAMAW 1996: Agents Breaking Away. pp. 42–55. Springer (1996)

20. Rodriguez, S., Gaud, N., Galland, S.: SARL: A general-purpose agent-oriented pro-
gramming language. In: Proceedings of the IEEE/WIC/ACM International Joint
Conferences of Web Intelligence (WI 2014) and Intelligent Agent Technologies (IAT
2014). vol. 3, pp. 103–110. IEEE (2014)

21. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92
(1993)

