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ABSTRACT

Most of the existing algorithms for fair division do not consider externalities. Under externalities,
the utility an agent obtains depends not only on its allocation but also on the allocation of other
agents. An agent has a positive (negative) value for the assigned goods (chores). This work focuses
on a special case of externality, i.e., an agent receives positive or negative value for unassigned items
independent of which other agent gets it. We show that it is possible to adapt existing algorithms
using a transformation to ensure certain fairness and efficiency notions in this setting. Despite the
positive results, fairness notions like proportionality need to be re-defined. Further, we prove that
maximin share (MMS) may not have any multiplicative approximation in this setting. Studying
this domain is a stepping stone towards full externalities where ensuring fairness is much more
challenging.

Keywords Resource Allocation · Fairness · Externalities

1 Introduction

We consider the problem of allocating m indivisible items among n agents who report their valuations for the items.
The objective is to ensure fair allocation for a desirable notion of fairness. These scenarios often arise in the division of
inheritance among family members, divorce settlements and distribution of tasks among workers Brams et al. [1996],
Moulin [2004], Segal-Halevi [2019], Steihaus [1948], Su [2000]. Economists have proposed many fairness and ef-
ficiency notions widely applicable in such real-world settings. Researchers also explore the computational aspects
of some widely accepted fairness notions Caragiannis et al. [2019], Barman et al. [2018a], De Keijzer et al. [2009],
Freeman et al. [2019], Procaccia and Wang [2014]. Such endeavours have led to web-based applications like Spliddit
1, The Fair Proposals System2, Coursematch 3, Divide Your Rent Fairly 4, etc. However, most approaches do not
consider agents with externalities, which we believe is restrictive.

In general, externality implies that the agent’s utility depends not only on their bundle but also on the bundles allocated
to other agents. Such a scenario is relatively common, mainly in allocating necessary commodities. For example,

1www.spliddit.org
2www.fairproposals.com
3www.coursematch.io
4www.nytimes.com/interactive/2014/science/rent-division-calculator.html

http://arxiv.org/abs/2108.12806v3
www.spliddit.org
www.fairproposals.com
www.coursematch.io
www.nytimes.com/interactive/2014/science/rent-division-calculator.html
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the COVID-19 pandemic resulted in a sudden and steep requirement for life-supporting resources like hospital beds,
ventilators, and vaccines. Getting a vaccination affects an agent positively. Even if someone else gets vaccinated
instead of the agent, the agent values it positively, possibly less. However, not receiving a ventilator in time results in
negative utility for the patient and family. Such a complex valuation structure is modeled via externalities.

Generally with externalities, the utility of not receiving an item depends on which other agent receives it. That is, each
agent’s valuation for an item is an n-dimensional vector. The jth component corresponds to the value an agent obtains
if the item is allocated to agent j. In this work, we consider a special case of externalities in which the agents incur
a cost/benefit for not receiving an item. Yet, the cost/benefit is independent of which other agent receives the item.
This setting is referred to as 2-D, i.e., value v for receiving an item and v′ otherwise. When there are only two agents,
the 2-D domain is equivalent to the domain with general externalities. We refer to the agent valuations in the absence
of externalities as 1-D. For the 2-D domain, we consider both goods/chores with positive/negative externality for the
following fairness notions.

Fairness Notions. Envy-freeness (EF) is the most common notion of fairness. It ensures that no agent has higher
utility for other agent’s allocation Foley [1966]. Consider two agents - {1, 2} and two goods - {g1, g2}; agent 1 has
a value of 6 for good g1 and 5 for good g2, while agent 2 values g1 at 5 and g2 at 6. Then allocating g1 and g2 to
agent 1 and 2, respectively, is EF. Such an allocation will not be EF if we consider externalities. For example, if agent
1 receives a negative utility of −1 and −100 for not receiving g1 and g2, respectively. And agent 2 receives a negative
utility of −100 and −1 for not receiving g1 and g2, respectively.

Externalities introduce complexity, so much that the definition of proportionality cannot be adapted to the 2-D domain.
Proportionality (PROP) ensures that every agent receives at least 1/n of its complete bundle value Steihaus [1948]. In
the above example, each agent should receive goods worth at least 11/2. Guaranteeing this amount is impossible in
2-D, as it does not consider the dis-utility of not receiving goods. Moreover, it is known that EF implies PROP in the
presence of additive valuations. However, in the case of 2-D, it need not be true, i.e., assigning g2 to agent 1 and g1 to
agent 2 is EF but not PROP.

Finally, we consider a relaxation of PROP, the maximin share (MMS) allocation. Imagine asking an agent to divide
the items into n bundles and take the minimum valued bundle. The agent would divide the bundles to maximise the
minimum utility, which is the MMS share of the agent. An MMS allocation guarantees every agent its MMS share.
Even for 1-D valuations, MMS allocation may not exist; hence researchers find multiplicative approximation α-MMS.
An α-MMS allocation guarantees at least α fraction of MMS share to every agent. Authors in Garg and Taki [2021]
provides an algorithm that guarantees 3/4 + 1/12n-MMS for goods and authors in Huang and Lu [2021] guarantees
11/9-MMS for chores. In contrast, we prove that for 2-D valuation, it is impossible to guarantee multiplicative
approximation to MMS. Thus, in order to guarantee existence results, we propose relaxed multiplicative approximation
and also explore additive approximations of MMS guarantees.

In general, it is challenging to ensure fairness in the settings with full externality, hence the special case of 2-D proves
promising. Moreover, in real-world applications, the 2-D valuations helps model various situations (e.g., COVID-19
resource allocation mentioned above).

Our Approach. There is extensive literature available for fair allocations, and we primarily focus on leveraging
existing algorithms to 2-D. Towards guaranteeing fairness notion in 2-D, we propose a property preserving transfor-
mation T that converts 2-D valuations to 1-D; i.e., an allocation that satisfies a property in 2-D also satisfies it in
transformed 1-D and vice-versa. Moreover, the 1-D valuations obtained via T satisfy the assumptions required to
apply the existing algorithms for finding fair allocations. Along with fairness, typically certain efficiency notions are
also considered. Hence, we also study if our transformation retains the efficiency notions.

Contributions.

1. We propose T that retains fairness notions such as EF, MMS, and its additive relaxations and efficiency
notions such as MUW and PO (Theorem 3). Thus, we can adapt the existing algorithms for the same.

2. We introduce PROP-E for general valuations in the presence of full externalities (Section 2) and derive rela-
tion with existing proportionality extensions (Section 4).

3. We prove that multiplicative approximation of MMS may not exist in 2-D (Theorem 2).

4. We propose Shifted α-MMS which is a novel way of approximating MMS in 2-D (Section 5.3).
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Related Work

While fair resource division has an extremely rich literature, externalities in fair division is less explored. Velez [2016]
extend the notion of EF in externalities and explored EF allocation of indivisible goods and money among inter-
ested agents in presence of externalities. Brânzei et al. [2013] generalize PROP and EF for divisible goods allocation
with positive externalities. Treibich [2019] study egalitarian social welfare in presence of average externalities for
divisible goods. Further, Seddighin et al. [2019] propose average-share definition, an extension of PROP, and study
(EMMS) MMS allocation for indivisible goods with positive externalities. Note that in our setting MMS share is
equivalent to EMS. Authors in Aziz et al. [2021] explore EF1/EFX for the specific setting of two and three agents. For
two agents, their setting is equivalent to 2-D, hence existing algorithms for EF, PROP and their additive relaxations
Caragiannis et al. [2019], Plaut and Roughgarden [2020], Aziz et al. [2020a] suffice. Beyond two agents, the setting is
more general and Aziz et al. [2021] prove the non-existence of EFX for three agents. In contrast, for the special case
of 2-D, EFX always exists for three agents since it exists in 1-D Chaudhury et al. [2020]. Further Aziz et al. [2021],
provide extension of PROP for additive valuations with full externalities.

We breifly summarize the existing algorithms for 1-D valuations available for each of the fairness notions.

Envy-freeness. EF may not exist for indivisible items. Hence we consider two prominent relaxations of EF,
Envy-freeness up to one item (EF1) Budish [2011], Lipton et al. [2004] and Envy-freeness up to any item(EFX)
Caragiannis et al. [2019]. We have poly-time algorithms to find EF1 in general monotone valuations for goods
Lipton et al. [2004] and chores Bhaskar et al. [2020]. For additive valuations, EF1 can be found using Round Robin
Caragiannis et al. [2019] in goods or chores, and Double Round Robin Aziz et al. [2018] in combination. Authors
in Plaut and Roughgarden [2020] present an algorithm to find EFX allocation under identical general valuations for
goods. Researchers have also studied fair division in presence of strategic agents Barman et al. [2019], Bei et al.
[2020], Padala and Gujar [2021].

Proportionality. PROP1 and PROPX are popular relaxation of PROP. For additive valuations, EF1 implies PROP1,
and EFX implies PROPX. Unfortunately, in paper Aziz et al. [2020a], the authors showed the PROPX for goods may
not always exists. Authors in Li et al. [2021] explored (weighted) PROPX showed that a (weighted) PROPX allocation
always exists and can be computed efficiently.

MMS. MMS allocations do not always exist Procaccia and Wang [2014], Kurokawa et al. [2016]. The papers
Procaccia and Wang [2014], Amanatidis et al. [2017], Barman et al. [2018b], Garg et al. [2019] showed that 2/3-MMS
for goods always exists. Paper Ghodsi et al. [2018], Garg and Taki [2021] showed that 3/4-MMS for goods always
exists. Authors in Garg and Taki [2021] provides an algorithm that guarantees 3/4 + 1/12n-MMS for goods. Au-
thors in Aziz et al. [2017] presented a polynomial-time algorithm for 2-MMS for chores. The algorithm presented in
Barman et al. [2018b] gives 4/3-MMS for chores. Authors in Huang and Lu [2021] showed that 11/9-MMS for chores
always exists. Authors in Kulkarni et al. [2021] explored α−MMS for a combination of goods and chores.

Fair and Efficient. In Caragiannis et al. [2019], the authors showed that MNW allocation is EF1 and PO for indivisible
goods and Barman et al. [2018a] gave a pseudo-polynomial time algorithm. For a combination of resources, the
authors in Aziz et al. [2018] presented a polynomial-time algorithm to find EF1 and PO for two agents. An Algorithm
to find PROP1 and fractional PO which is stronger than PO was proposed by Aziz et al. [2020a] for a combination
of resources. Authors in Aziz et al. [2020b] proposed a pseudo-polynomial time for finding utilitarian maximizing
among EF1 or PROP1 in goods.

2 Preliminaries

We consider a resource allocation problem (N,M,V) for determining an allocation A of M = [m] indivisible items
among N = [n] interested agents, m,n ∈ N. We only allow complete allocation and no two agents can receive the
same item. That is, A = (A1, . . . , An), A ∈ NM s.t., ∀i, j ∈ N , i 6= j;Ai ∩Aj = ∅ and

⋃

i Ai = M . We denote the
allocation for all the agents except i as A−i.

2-D Valuations. The valuation function for n agents is denoted by V = {V1, V2, . . . , Vn}. For each i ∈ N , Vi : 2
M →

R2, i.e., Vi ∈ R22
M

. For any bundle S ⊆ M , Vi(S) = (vi(S), v
′
i(S)), where vi(S) denotes the value for receiving

bundle S and v′i(S) for not receiving S. The value an agent i has for item k in 2-D is given by (vik, v
′
ik). If k is a good

(chore), then vik ≥ 0 (vik ≤ 0). For positive (negative) externality v′ik ≥ 0 (v′ik ≤ 0).

The utility an agent i ∈ N obtains for a bundle S ⊆ M is,

ui(S) = vi(S) + v′i(M \ S)

3
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Also, ui(∅) = 0 + v′i(M) and utilties in 2-D are not normalized5. When agents have additive valuations, ui(S) =
∑

k∈S vik+
∑

k/∈S v′ik.

We assume monotonicity of utility for goods, i.e., ∀S ⊆ T ⊆ M , ui(S) ≤ ui(T ) and anti-monotonicity of utility for
chores, i.e, ui(S) ≥ ui(T ). We use the term full externalities to represent complete externalities, i.e., each agent has
n-dimensional vector for its valuation for an item.

Given the notations, we next define fairness notions considered in this paper.

Important Definitions. Since Envy-freeness (EF) may not exist for indivisible items, we consider EF1 and EFX.
For goods, an allocation is EF1 when the agent values its own bundle no less than it values any other agent’s bundle
with the most valued item removed. EFX is stronger than EF1 and requires that the agent values its own bundle no
less than the other agent’s bundle with the least valued item removed. For chores, similar definition applies but unlike
in goods, a chore is removed from the agent’s own bundle and then compared with the other agents’. A common
definition for is as follows,

Definition 1 (Envy-free (EF) and relaxations Aziz et al. [2018], Budish [2011], Caragiannis et al. [2019], Foley [1966],
Velez [2016]). For the items (chores or goods) an allocation A that satisfies ∀i, j ∈ N ,

ui(Ai) ≥ ui(Aj) is EF

vik < 0, ui(Ai \ {k}) ≥ ui(Aj); ∀k ∈ Ai

vik > 0, ui(Ai) ≥ ui(Aj \ {k}); ∀k ∈ Aj

}

is EFX

ui(Ai \ {k}) ≥ ui(Aj \ {k}); ∃k ∈ {Ai ∪ Aj} is EF1

Note that beyond 2-D, one must include the concept of swapping bundles to generalize the above definition as in Velez
[2016], Aziz et al. [2021]. We next state the definition of proportionality for 1-D.

Definition 2 (Proportionality (PROP) Steihaus [1948]). An allocation A is said to be proportional, if ∀i ∈ N ,
ui(Ai) ≥

1
n · ui(M).

For 2-D, achieving PROP is impossible as discussed in Section 1. To capture proportional allocations under exter-
nalities, we now introduce Proportionality with externality (PROP-E). Informally, while PROP guarantees 1/n share
of the entire bundle, PROP-E guarantees 1/n share of the sum of utilities for all bundles. Note that, PROP-E is not
limited to 2-D and applies to a general externality setting. Formally,

Definition 3 (Proportionality with externality (PROP-E)). An allocation A satisfies PROP-E if, ∀i ∈ N ,

ui(Ai) ≥
1

n
·
∑

j∈N

ui(Aj) (1)

Analogous to EFX/EF1, we now define the relaxations for PROP-E for the combination of goods and chores,

Definition 4 (PROP-E relaxations). An allocation A ∀i, ∀j ∈ N , satisfies PROPX-E if it is PROP-E up to any item,
i.e.,

vik > 0, ui(Ai ∪ {k}) ≥ 1
n

∑

j∈N ui(Aj); ∀ k ∈ {M \Ai}

vik < 0, ui(Ai \ {k}) ≥
1
n

∑

j∈N ui(Aj); ∀ k ∈ Ai

}

Next, A satisfies PROP1-E if it is PROP-E up to an item, i.e.,

ui(Ai ∪ {k}) ≥ 1
n

∑

j∈N ui(Aj); ∃ k ∈ {M \Ai} or,

ui(Ai \ {k}) ≥
1
n

∑

j∈N ui(Aj); ∃ k ∈ Ai

}

Finally, we state the definition of MMS and its multiplicative approximation.

Definition 5 (Maxmin Share MMS Budish [2011]). An allocation A is said to be MMS if ∀i ∈ N, ui(Ai) ≥ µi, where

µi = max
(A1,A2,...,An)∈

∏
n
(M)

min
j∈N

ui(Aj)

An allocation A is said to be α-MMS if it guarantees ui(Ai) ≥ α ·µi for µi ≥ 0, where α ∈ [0, 1] and ui(Ai) ≥
1
α ·µi

when µi ≤ 0, where 1/α ≥ 1 and α > 0.

5Utility is normalized when ui(∅) = 0, ∀i
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Since it is common to consider efficiency with notions, we next define Pareto-optimality, a popular efficiency notions.

Definition 6 (Pareto-Optimal (PO)). An allocation A is PO if ∄ A′ s.t., ∀i ∈ N , ui(A
′
i) ≥ ui(Ai) and ∃i ∈ N ,

ui(A
′
i) > ui(Ai).

We also consider efficiency notions like Maximum Utilitarian Welfare (MUW), that maximizes the sum of agent
utilities. Likewise Maximium Nash Welfare (MNW) maximizes the product of agent utilties and Maximum Egalitarian
Welfare (MEW) maximizes the minimum agent utility.

In the next section, we define a transformation from 2-D to 1-D that plays a major role in adaptation of existing
algorithms for ensuring desirable properties.

3 Reduction from 2-D to 1-D

We define a transformation T : V → W , where V is the valuations in 2-D, i.e., V = {V1, V2, . . . , Vn} and W is the

valuations in 1-D, i.e., W = {w1, w2, . . . , wn}. Note that wi : 2
M → R. The transformation T reduces Vi ∈ R22

M

to

wi ∈ R2M .

Definition 7 (Transformation T). Given a resource allocation problem (N,M,V) we obtain the corresponding 1-D
valuations denoted by W = T (V(·)) as follows, ∀i ∈ N

wi(Ai) = T(Vi(Ai)) = vi(Ai) + v′i(A−i)− v′i(M) (2)

When valuations are additive, we obtain

wi(Ai) = vi(Ai)− v′i(Ai)

Example. Consider two goods {g1, g2} and an agent with 2-D additive valuations given as: {g1 : (6,−1), g2 :
(5,−100)}. We apply T and obtain w1({g1}) = 7 and w1({g2}) = 105.

For an allocation A, the utility obtained by an agent in 2-D is ui(Ai) and the corresponding utility in 1-D is wi(Ai).
Note that utility is equal to the valuation in 1-D.

Lemma 1. For goods (chores), under monotonicity (anti-monotonicity) of V , W = T (V(·)) is normalized, monotonic
(anti-monotonic), and non-negative (negative).

Proof. We assume monotonicity of utility for goods in 2-D, i.e., ∀i ∈ N, ui(·) is monotone. Therefore, for an
S ⊆ M,wi(S) = ui(S) − v′i(M) is also monotone. Further, wi(∅) = vi(∅) + v′i(M) − v′i(M) = 0 is normalized.
Since wi(·) is monotone and normalized, it is non negative for goods. Similarly we can prove that wi(·) is normalized,
anti-monotonic and non-negative for chores.

Theorem 1. An Allocation A is F-Fair and E-Efficient in V iff A is F-Fair and E-Efficient in the transformed 1-D W ,
F ∈ {EF,EF1, EFX,PROP − E,PROP1− E,PROPX − E,MMS} and E ∈ {PO,MUW}.

Proof. We first consider F = EF. Let allocation A be EF in W then,

∀i, ∀j, wi(Ai) ≥ wi(Aj)

vi(Ai) + v′i(A−i)− v′i(M) ≥ vi(Aj) + v′i(A−j)− v′i(M)

ui(Ai) ≥ ui(Aj)

Starting with EF allocation in 2-D, we can prove it is EF in 1-D similarly. The complete proof of Theorem 3 for other
notions is provided in Appendix Section A.

From Lemma 1 and Theorem 3, we obtain the following.

Corollary 1. To determine {EF, EF1, EFX, MMS} fairness and {PO, MUW} efficiency, we can apply existing algo-
rithms to the transformed W = T (V (·)) for general valuations.

Note that applying any algorithm on the 2-D utility values directly without transformation may not work. We state
few examples are below. Modified leximin algorithm to find PROP1 and PO for chores for 3 or 4 agents given in
Chen and Liu [2020] does not find PROP1-E (or PROP1) and PO in 2-D when applied on utilities. The following
example demonstrates the same,

5
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Example 1. Consider 3 agents {1, 2, 3} and 4 chores {c1, c2, c3, c4} with positive externality. The 2-D valuation
profile is as follows, V1c1 = (−30, 1), V1c2 = (−20, 1), V1c3 = (−30, 1), V1c4 = (−30, 1), V3c1 = (−1, 40),
V3c2 = (−1, 40), V3c3 = (−1, 40), and V3c4 = (−1, 40). The valuation profile of agent 2 is the same as that
of agent 1. Allocation {∅, ∅, (c1, c2, c3, c4)} is the leximin allocation, which is not PROP1-E. However, allocation
{c3, (c2, c4), (c1)} is leximin allocation on transformed valuations; it is PROP1 and PO in W and it is PROP1-E and
PO in V .

In the same way, for chores, paper Li et al. [2021] showed that any PROPX allocation ensures 2-MMS for symmetric
agents doesn’t extend to 2-D. For example, consider two agents {1, 2} having additive identical valuations for six
chores {c1, c2, c3, c4, c5, c6}, given as V1c1 = (−9, 1), V1c2 = (−11, 1), V1c3 = (−12, 1), V1c4 = (−13, 1), V1c5 =
(−9, 1), and V1c6 = (−1, 38). Allocation A = {(c1, c2, c3, c4, c5), (c6)} is PROPX-E, but is not 2-MMS in V . While
it holds true for W .

Further, adapting certain fairness or efficiency criteria to 2-D is not straightforward. E.g., MNW cannot be defined in
2-D because agents can have positive or negative utilities. Hence, certain results from 1-D like MNW implies EF1 and
PO for additive valuations Caragiannis et al. [2019] do not apply for 2-D. The authors proved that MNW allocation
gives at least 2

1+
√
4n−3

-MMS value to each agent in paperCaragiannis et al. [2019], which doesn’t imply for 2-D.

Similarly, we show that approximation to MMS, α-MMS, does not exist in the presence of externalities (see Section
5).

4 Proportionality in 2-D

We remark that ensuring PROP (Def. 2) is too strict in 2-D. As a result, we introduce PROP-E and its additive
relaxations in Defs. 3 and 4 for general valuations.

Proposition 1. For additive 2-D, We can adapt the existing algorithms of PROP and its relaxations to 2-D using T.

Proof. In the absence of externalities, for additive valuations, PROP-E is equivalent to PROP as ∀i,
∑

j∈N ui(Aj) =

vi(M). From Theorem 3, we know that T retains PROP-E and its relaxations, and hence all existing algorithms of
1-D is applicable using T.

It is known that EF =⇒ PROP for sub-additive valuation in 1-D. As formally presented in Corollary 2, in the case of
PROP-E also, ∀i, j ∈ N , ui(Ai) ≥ ui(Aj) =⇒ ui(Ai) ≥

1
n ·

∑n
j=1 ui(Aj).

Corollary 2. EF =⇒ PROP-E for arbitrary valuations in presence of full externalities.

We now compare PROP-E with existing PROP extensions for capturing externalities. We consider two definitions
stated in literature from Seddighin et al. [2019] (Average Share) and Aziz et al. [2021] (General Fair Share). Note
that both these definitions are applicable when agents have additive valuations, while PROP-E applies for any general
arbitrary valuations. In Aziz et al. [2021], the authors proved that Average Share =⇒ General Fair Share, i.e., if an
allocation guarantees all agents their average share value, it also guarantees general fair share value. With that, we
state the definition of Average Share (in 2-D) and compare it with PROP-E.

Definition 8 (Average Share Seddighin et al. [2019]). In V , the average value of item k for agent i, denoted by

avg[vik] =
1

n
· [vik + (n− 1)v′ik] (3)

The average share of agent i, vi(M) =
∑

k∈M avg[vik]. An allocation A is said to ensure average share if

∀i, ui(Ai) ≥ vi(M).

Proposition 2. PROP-E is equivalent to Average Share in 2-D, for additive valuations.

Proof. ∀i ∈ N,

ui(Ai) ≥
1

n
·
∑

j∈N

ui(Aj) =
1

n
·
∑

j∈N

vi(Aj)− v′i(M \Aj)

=
1

n
·
∑

k∈M

vik −
1

n
·
∑

j∈N

v′i(M \Aj)

=
1

n
·
∑

k∈M

vik −
1

n
·
∑

k∈M

(n− 1)v′ik

We can prove the reverse implication in a similar way.
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Next, we briefly state the relation of EF, PROP-E, and Average Share beyond 2-D and give the proofs in the Appendix
Section B.

Remark 1. In case of full externality, EF 6=⇒ Average Share Aziz et al. [2021].

Proposition 3. Beyond 2-D, PROP-E 6=⇒ Average Share and Average Share 6=⇒ PROP-E.

To conclude this section, we state that for the special case of 2-D externalities with additive valuations, we can adapt
existing algorithms to 2-D, and further analysis is required for the general setting.

Apart from the additive relaxations, the most commonly considered relaxation to PROP is maximin share (MMS)
allocations. We provide analysis of MMS for 2-D valuations in the next section.

5 Approximate MMS in 2-D

From Theorem 3, we showed that transformation T retains MMS property, i.e., an allocation A guarantees MMS in
1-D iff A guarantees MMS in 2-D. We draw attention to the point that,

µi = µW
i + v′i(M) (4)

where µW
i and µi are the MMS value of agent i in 1-D and 2-D, respectively. Kurokawa et al. [2018] proved that MMS

allocation may not exist even for additive valuations, but multiplicative approximation of MMS always exists in 1-D.
The current best approximation results on MMS allocation are 3/4 + 1/(12n)-MMS for goods Garg and Taki [2021]
and 11/9-MMS for chores Huang and Lu [2021] for additive valuations. We are interested in finding multiplicative
approximation to MMS in 2-D. Note that we only study α-MMS for complete goods or chores in 2-D, as paper
Kulkarni et al. [2021] proves the non-existence of α-MMS in the case of combination of goods and chores in 1-D.
From Eq. 5 of α-MMS, if µi is positive, we consider α-MMS allocation with α ∈ [0, 1], and if it is negative, 1/α-
MMS with α ∈ (0, 1].

We categorize externalities in two ways for better analysis 1) Correlated Externality 2) Inverse Externality. In the
correlated setting, we study goods with positive externality and chores with negative externality. And in the inverse
externality, we study goods with negative externality and chores with positive externality. In the following sections,
we show that α-MMS exists for correlated, while it may not exist for inverse externality.

5.1 α-MMS for Correlated Externality

In this section, we investigate approximate MMS guarantees for correlated externality.

Proposition 4. For correlated externality, if an allocation A is α-MMS in W , A is α-MMS in V , but need not vice
versa.

Proof. In the first part of this proof, we prove that A is α-MMS in W , A is α-MMS in V , and then in the second part,
we provide a counter-example such that A is α-MMS in V but not in W .

Part-1. Let A be α-MMS in W ,

∀i ∈ N,wi(Ai) ≥ αµW
i for goods

ui(Ai)− v′i(M) ≥ −αv′i(M) + αµi

∀i ∈ N,wi(Ai) ≥
1

α
µW
i for chores

ui(Ai)− v′i(M) ≥ −
1

α
v′i(M) +

1

α
µi

In the case of goods with positive externalities, µi is positive, α ∈ (0, 1], and ∀S ⊆ M , v′(S) ≥ 0. From this, we
derive that v′i(M) ≤ αv′i(M), and hence it is valid to say that ui(Ai) ≥ αµi. In the case of chores with negative
externalities, µi is negative, 1/α ≥ 1, and ∀S ⊆ M, v′(S) ≤ 0. Similarly to the previous point, we derive that
v′(M) ≤ 1

αv
′(M) and thus ui(Ai) ≥

1
αµi.

Part-2. We provide the following counter-example for goods to prove A is α-MMS in V but not in W .

Example. Consider N = {1, 2} both having additive identical valuations for 5 goods {g1, g2, g3, g4, g5, g6} given by,
Vig1 = (0.5, 0.1), Vig2 = (0.5, 0.1), Vig3 = (0.3, 0.1), Vig4 = (0.5, 0.1), Vig5 = (0.5, 0.1), and Vig6 = (0.5, 0.1).
After transformation, we get µW

i = 1 and in 2-D µi = 1.6. Allocation, A = {{g1}, {g2, g3, g4, g5, g6}} is 1/2-MMS
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in V , but not in W . We provide the following counter-example for chores with negative externality to prove A is
1/α-MMS in V but not in W .

Example 2. Consider N = {1, 2} both having additive identical valuations for 3 chores M = {c1, c2, c3} given by
V1c1 = (−40,−36), V1c2 = (−110,−70), and V1c3 = (−109,−71). Note that v′i(M) = −177. After transformation,

we get µW
i = −42 and µV

i = −219. Let us consider 1/α = 4/3, then wi(Ai) ≥ −56 and ui(Ai) ≥ −292. Allocation
A = {(c1, c2, c3), ∅} is 4/3-MMS in V , but not in W .

Corollary 3. We can adapt the existing α-MMS algorithms using T for correlated externality for general valuations.

Corollary 4. For correlated 2-D externality, we can always obtain 3/4 + 1/(12n)-MMS for goods and 11/9-MMS
for chores for additive.

5.2 α-MMS for Inverse Externality

Motivated by the example given in Kurokawa et al. [2018] for non-existence of MMS allocation for 1-D valuations,
we ingeniously adapted it to construct the following instance in 2-D to prove the impossibility of α-MMS in 2-D. We
show that for any α ∈ (0, 1], an α-MMS or 1/α-MMS allocation may not exist for inverse externality. In this section,
we present an instance for goods with inverse externality, such that ∀i, µi is positive, we show that for α > 0, there is
no α-MMS allocation. Further, we present an instance for chores with positive externality, such that ∀i, µi is negative,
and we prove that there is no 1/α MMS allocation. In order to prove the non-existence results for goods we consider
the 1-D valuations W where MMS does not exist. Further we use this example to construct V g where W = T(V g),
in 2-D such that α-MMS exists in V g only if MMS allocation exists in W . Hence the contradiction.

Non-existence of α-MMS in Goods. Consider the following example.

Example 3. We consider a problem of allocating 12 goods among three agents, and represent valuation profile as V g .
The valuation profile V g is equivalent to 103 × V given in Table 1. We set ǫ1 = 10−4 and ǫ2 = 10−3. We transform
these valuations in 1-D using T, and the valuation profile T(V g) is the same as the instance in Kurokawa et al. [2018]
that proves the non-existence of MMS for goods. Note that ∀i, v′i(M) = −4055000+ 103ǫ1 The MMS value of every
agent in T(V g) is 4055000 and from Eq. 4, the MMS value of every agent in V g is 103ǫ1.

Recall that T retains MMS property (Theorem 3) and thus we can say that MMS allocation doesn’t exist in V g .

Lemma 2. There is no α-MMS allocation for the valuation profile V g of Example 3 for any α ∈ [0, 1].

Proof. An allocation A is α-MMS for α ≥ 0 iff ∀i, ui(Ai) ≥ αµi ≥ 0 when µi > 0. Note that the transformed
valuations wi(Ai) = T(V g

i (Ai)). From Eq. 2, ui(Ai) ≥ 0, iff wi(Ai) ≥ −v′i(M), which gives us wi(Ai) ≥
4055000− 0.1. For this to be true, we need wi(Ai) ≥ 4055000 since T(V g) has all integral values. We know that
such an allocation doesn’t exist Kurokawa et al. [2018]. Hence for any α ∈ [0, 1], α-MMS does not exist for V g.

Non-existence of 1/α-MMS in Chores. Consider the following example.

Example 4. We consider a problem of allocating 12 chores among three agents. The valuation profile V c is equivalent
to −103V given in Table 1. We set ǫ2 = −10−3. We transform these valuations in 1-D, and T(V c) is the same as the
instance in Aziz et al. [2017] that proves the non-existence of MMS for chores. Note that v′i(M) = 4055000− 103ǫ1.
The MMS value of every agent in T(V c) amd V c is -4055000 and −103ǫ1, respectively.

Lemma 3. There is no 1/α-MMS allocation for the valuation profile V c of Example 4 with ǫ1 ∈ (0, 10−4] for any
α > 0.

Proof. An allocation A is 1/α-MMS for α > 0 iff ∀i, ui(Ai) ≥ 1
αµi when µi < 0. We set ǫ1 ≤ 10−4 in V c.

When α ≥ 103ǫ1 ∀i then ui(Ai) ≥ −1. From Eq. 2, ui(Ai) ≥ −1 iff wi(Ai) ≥ −4055001 + 103ǫ1. Note that
0 < 103ǫ1 ≤ 0.1 and since wi(Ai) has only integral values, we need ∀i, wi(Ai) ≥ −4055000. Such A does not exist
Aziz et al. [2017]. As ǫ1 decreases, 1/ǫ1 increases, and even though approximation guarantees weakens, it still does
not exist for V c.

From Lemma 2 and 3 we conclude the following theorem,

Theorem 2. There may not exist α-MMS for any α ∈ [0, 1] for µi > 0 or 1/α-MMS allocation for any α ∈ (0, 1] for
µi < 0 in the presence of externalities.

8



Fair Allocation with Special Externalities

Table 1: Additive 2-D Valuation Profile (V )

Item
Agent 1 Agent 2 Agent 3
(v1, v

′
1) (v2, v

′
2) (v3, v

′
3)

k1 (3ǫ2, -1017+3ǫ1-3ǫ2) (3ǫ2, -1017+3ǫ1-3ǫ2) (3ǫ2, -1017+3ǫ1-3ǫ2)

k2 (2ǫ1, -1025+2ǫ1+ǫ2) (2ǫ1, -1025+2ǫ1+ǫ2) (1025− ǫ1, -ǫ1)

k3 (2ǫ1, -1012+2ǫ1+ǫ2) (1012− ǫ1, -ǫ1) (2ǫ1, -1012+2ǫ1+ǫ2)

k4 (2ǫ1, -1001+2ǫ1+ǫ2) (1001− ǫ1, -ǫ1) (1001− ǫ1, -ǫ1)

k5 (1002− ǫ1, -ǫ1) (2ǫ1, -1002+2ǫ1+ǫ2) (1002− ǫ1, -ǫ1)

k6 (1022− ǫ1, -ǫ1) (1022− ǫ1, -ǫ1) (1022− ǫ1, -ǫ1)

k7 (1003− ǫ1, -ǫ1) (1003− ǫ1, -ǫ1) (2ǫ1, -1003+2ǫ1+ǫ2)

k8 (1028− ǫ1, -ǫ1) (1028− ǫ1, -ǫ1) (1028− ǫ1, -ǫ1)

k9 (1011− ǫ1, -ǫ1) (2ǫ1, -1011+2ǫ1+ǫ2) (1011− ǫ1, -ǫ1)

k10 (1000− ǫ1, -ǫ1) (1000− ǫ1, -ǫ1) (1000− ǫ1, -ǫ1)

k11 (1021− ǫ1, -ǫ1) (1021− ǫ1, -ǫ1) (1021− ǫ1, -ǫ1)

k12 (1023− ǫ1, -ǫ1) (1023− ǫ1, -ǫ1) (2ǫ1, -1023+2ǫ1+ǫ2)

Interestingly, in 1-D, α-MMS’s non-existence is known for α value close to 1 Kurokawa et al. [2018], Feige et al.
[2021], while in 2-D, it need not exist even for α = 0. It follows because α-MMS may not be lead to any relaxation in
the presence of inverse externalities.

Consider the situation of goods having negative externalities, where MMS share µi comprises of the positive value
from the assigned bundle Ai and negative value from the unassigned bundles A−i. We re-write µi as follows, µi =
µ+
i + µ−

i where µ+
i corresponds to utility from assigned goods/unassigned chores and µ−

i corresponds to utility from

unassigned goods/assigned chores. When µi ≥ 0, applying αµi is not only relaxing positive value αµ+
i , but also

requires αµ−
i which is stricter than µ−

i since µ−
i < 0. Hence, the impossibility of α-MMS in 2-D. Similar argument

holds for chores with positive externalities.

In the next section, we explore relaxing MMS such that it is guaranteed to exist in 2-D.

5.3 Re-defining Approximate MMS

In this section, we define Shifted α-MMS that guarantees a fraction of MMS share shifted by certain value, such that
it always exist in 2-D. We also considered intuitive ways of approximating MMS in 2-D. These ways are based on
relaxing the positive value obtained from MMS allocation µ+ and the negative value µ−, µ = µ+ + µ−. In other
words, we look for allocations that guarantee αµ+ and (1 + α) or 1/α of µ−. Unfortunately, such approximations
may not always exist. We provide detailed explanation in the Appendix Section C.

Definition 9 (Shifted α-MMS). An allocation A guarantees shifted α-MMS if ∀i ∈ N,α ∈ (0, 1]

ui(Ai) ≥ αµi + (1− α)v′i(M)} for goods

ui(Ai) ≥
1
αµi +

α−1
α v′i(M)

}

for chores

Proposition 5. An allocation A is α-MMS in W iff A is shifted α-MMS (Def. 9) in V .
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Proof. For goods, if allocation A is shifted α-MMS, ∀i, ui(Ai) ≥ αµi+(1−α)v′i(M). Applying T, we get wi(Ai)+
v′i(M) ≥ αµW

i + αv′i(M) + (1 − α)v′i(M) which gives wi(Ai) ≥ αµW
i . For chores, if A is shifted 1/α-MMS,

∀i, ui(Ai) ≥
1
αµi +

(α−1)
α v′i(M). Applying T gives wi(Ai) ≥

1
αµ

W
i . Similarly we can prove vice versa.

Corollary 5. We can adapt all the existing algorithms for α-MMS in W to get shifted α-MMS in V .

We use T and apply the existing algorithms for additive valuations as well as general valuations and obtain the corre-
sponding shifted multiplicative approximations. Since a direct multiplicative approximation of MMS need not exist in
presence of externalities, we consider additive relaxation of MMS in the next section.

5.3.1 Additive Relaxation of MMS

Definition 10 (MMS relaxations). An allocation A that satisfies, ∀i, j ∈ N , MMSX i.e., MMS upto any item,

∀ k ∈ {M \Ai}, vik > 0, ui(Ai ∪ {k}) ≥ µi

∀ k ∈ Ai, vik < 0, ui(Ai \ {k}) ≥ µi

}

(5)

satisfies MMS1 (Maximin Share up to an item)

∃ k ∈ {M \Ai}, ui(Ai ∪ {k}) ≥ µi, or,

∃ k ∈ Ai, ui(Ai \ {k}) ≥ µi

}

(6)

Proposition 6. From Theorem 3, we conclude that MMS1 and MMSX retains after transformation.

EF1 is a stronger fairness notion than MMS1 and can be computed in polynomial time. On the other hand, PROPX
might not exist for goods Aziz et al. [2020a]. Since PROPX implies MMSX, it is interesting to settle the existence of
MMSX for goods. Note that MMSX and Shifted α-MMS are not related. It is interesting to study these relaxations
further, even in full externalities.

6 Conclusion

In this paper, we conducted a study on indivisible item allocation with special externalities – 2-D externalities. We
proposed a simple yet compelling transformation from 2-D to 1-D to employ existing algorithms to ensure many
fairness and efficiency notions. We can adapt existing fair division algorithms via the transformation in such settings.
We proposed proportionality extension in the presence of externalities and studied its relation with other fairness
notions. For MMS fairness, we proved the impossibility of multiplicative approximation of MMS in 2-D, and we
proposed Shifted α-MMS instead. There are many exciting questions here which we leave for future works. (i) It
might be impossible to have fairness-preserving valuation transformation for general externalities. However, what are
some interesting domains where such transformations exist? (ii) What are interesting approximations to MMS in 2-D
as well as in general externalities?
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Appendix

A Complete Proof of Theorem 1

Theorem 3. An Allocation A is F-Fair and E-Efficient in V iff A is F-Fair and E-Efficient in the transformed 1-D W ,
where F ∈ {EF, EF1, EFX, PROP-E, PROP1-E, PROP1-X, MMS} and E ∈ {PO, MUW}.

Proof. Fairness notions.

Considering F = EF1. An allocation is EF1 if ∀i, j ∈ N, ui(Ai) ≥ ui(Aj), or ∃k ∈ {Ai ∪ Aj}, s.t., ui(Ai \ {k}) ≥
ui(Aj \ {k}). When k is good for agent i, then k ∈ Aj and when k is chore to agent i, then k ∈ Ai. Let allocation A
be EF1 in W then, ∀i, ∀j ∈ N, ∃k ∈ Aj , i.e., k is a good for agent i in Aj bundle

wi(Ai) ≥ wi(Aj \ {k})

vi(Ai) + v′i(A−i) ≥ vi(Aj \ {k}) + v′i(A−j ∪ {k})

ui(Ai) ≥ uj(Aj \ {k})

When k ∈ Ai, i.e., k is a chore for agent i,

wi(Ai \ {k}) ≥ wi(Aj)

vi(Ai \ {k}) + v′i(A−i ∪ {k}) ≥ vi(Aj) + v′i(A−j)

ui(Ai \ {k}) ≥ uj(Aj)

The reverse implication follows similarly. The proof of EFX is similar to that of EF1.

Moving on to PROP-E. Consider F = PROP−E. An allocation is said to be PROP-E if it satisfies, ∀i ∈ N, ui(Ai) ≥
1
n ·

∑

j∈N ui(Aj).

wi(Ai) ≥
1

n
·
∑

j∈N

wi(Aj)

vi(Ai) + v′i(A−i)− v′i(M) ≥
1

n
·
∑

j∈N

[vi(Aj) + v′i(A−j)− v′i(M)]

ui(Ai)− v′i(M) ≥
1

n
·
∑

j∈N

ui(Aj)− v′i(M)

ui(Ai) ≥
1

n
·
∑

j∈N

ui(Aj)
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Considering relaxation of PROP-E, we will prove it for PROP1-E, and the proof for PROPX-E follows in a similar
fashion. An allocation is said to be PROP1-E if it satisfies, ∃ k ∈ {M \ Ai}, ui(Ai ∪ {k}) ≥ 1

n ·
∑

j∈N ui(Aj),

i.e., item k is good for agent i, or ∃ k ∈ Ai, ui(Ai \ {k}) ≥
1
n ·

∑

j∈N ui(Aj), i.e., item k is chore for agent i. Let

allocation A be PROP1-E in W then, ∀i ∈ N, ∃k ∈ {M \Ai}, i.e., k is a good for agent i,

wi(Ai ∪ {k}) ≥
1

n
·
∑

j∈N

wi(Aj)

vi(Ai ∪ {k}) + v′i(A−i \ {k}) ≥
1

n
·
∑

j∈N

[vi(Aj) + v′i(A−j)]

ui(Ai ∪ {k}) ≥
1

n
·
∑

j∈N

ui(Aj)

When k ∈ Ai, i.e., k is a chore for agent i,

vi(Ai \ {k}) + v′i(A−i ∪ {k}) ≥
1

n
·
∑

j∈N

[vi(Aj) + v′i(A−j)]

Next, we show the prove for MMS allocation. An allocation is said to be MMS, if each agent gets at least its maximin
share value, i.e., ∀i ∈ N, ui(Ai) ≥ µi, where

µi = max
(A1,A2,...,An)∈

∏
n
(M)

min
i∈N

ui(Ai)

F = MMS and let allocation A be MMS in W then, ∀i ∈ N

vi(Ai) + v′i(A−i)− v′i(M) ≥ µi − v′i(M)

We now consider EQ for which T does not retain. First, we define EQ and its relaxations. An allocation A is said to
be equitable, when ∀i, j ∈ N , ui(Ai) = uj(Aj). An allocation A is said to be EQ1, i.e., Equitable up to one item,
ui(Ai \ {k}) ≥ uj(Aj \ {k}), ∃k ∈ {Ai ∪ Aj}. An allocation A is said to be EQX, i.e., Equitable up to any item,
ui(Ai) ≥ uj(Aj \ {k}), ∀k ∈ Aj and vik ≥ 0, and ui(Ai \ {k}) ≥ uj(Aj), ∀k ∈ Ai, and vik ≤ 0. Consider
the example, where N = {1, 2} and M = {g1, g2, g3, g4}. The 2-D additive valuations for agent 1 for g1 : (3,−6),
g2 : (3,−6), g3 : (1,−3), and g4 : (1,−3). For agent 2, the additive valuations for g1 : (1,−8), g2 : (1,−8),
g3 : (3,−6), and g4 : (3,−6).

• A = {(g1, g2), (g3, g4)} is EQ in W , but is not even EQ1 in V .

• A = {(g3, g4), (g1, g2)} is EQ in V but is not even EQ1 in W .

Thus, among fairness notions, T retains EF, PROP-E, MMS and their additive relaxations.

Efficiency notions. We will discuss efficiency notions such as PO, MUW, MNW, and MEW.

We first consider E = PO. An allocation A is Pareto Optimal (PO) if ∄ A′ s.t., ∀i ∈ N , ui(A
′
i) ≥ ui(Ai) and

∃i ∈ N , ui(A
′
i) > ui(Ai). Let allocation A be PO in W , i.e., ∄ A′ s.t., ∀i ∈ N , wi(A

′
i) ≥ wi(Ai) and ∃i ∈ N ,

Wi(A
′
i) > Wi(Ai). We can re-write that,

wi(A
′
i) + v′i(M) ≥ wi(Ai) + v′i(M)

∃i ∈ N,wi(A
′
i) + v′i(M) > wi(Ai) + v′i(M)

A is PO in V Similarly, we can prove the reverse implication.

It is easy to verify that MUW allocation is also retained under transformation T.

We cannot define MNW in presence of externalities, as for goods, agents can have positive as well as negative utility.

Note MEW is not retained using T. Consider two agents {1, 2} and two goods {1, 2}. Agents have additive valuations.
V11 = (8,−16), V12 = (10,−15), V21 = (5,−1), V22 = (6,−2). MEW (V) = {(g1, g2), (∅)}, while MEW (W) =
{(g1), (g2)}.

Among efficiency notions, we can retain PO and MUW using transformation T.
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B PROP-E and Average Share

We compare PROP-E and Average Share beyond 2-D. First we define valuation space in the presence of full external-
ities. The valuation function for n agents is denoted by V = {V1, V2, . . . , Vn}. For each i ∈ N , Vi : 2

M → Rn, i.e.,

Vi ∈ Rn2
M

. Further, for any bundle S ⊆ M , Vi(S) = (vi1(S), vi2(S), . . . , vin(S)), where vij(S) denotes the value
agent i receives when bundle S is assigned to agent j.

Proposition 7. Beyond 2-D, PROP-E 6=⇒ Average Share and Average Share 6=⇒ PROP-E.

Proof. We will show that there is no relation between PROP-E and average share beyond 2-D, for that we will consider
n = 3.

An Allocation A is said to be PROP-E, ui(Ai) ≥ 1/n ·
∑

j∈N ui(Aj). Let i = {1}

u1(A1) ≥ 1/3 ·
[

u1(A1) + u1(A2) + u1(A3)
]

u1(A1) ≥ 1/3 ·
[

v11(A1) + v12(A2) + v13(A3)+

v11(A2) + v12(A1) + v13(A3)+

v11(A3) + v12(A2) + v13(A1)
]

(7)

An Allocation A is said to be average share, ui(Ai) ≥ 1/n ·
∑

k∈M

∑

j∈N vij(k). Let i = {1}

u1(A1) ≥ 1/3 ·
[

v11(A1) + v12(A1) + v13(A1)+

v11(A2) + v12(A2) + v13(A2)+

v11(A3) + v12(A3) + v13(A3)
]

(8)

From Eq. 7 and 8, we conclude there is no relation between PROP-E and average share beyond 2-D.

C Re-defining Approximate MMS

We re-write µi as follows, µi = µ+
i + µ−

i where µ+
i corresponds to utility from assigned goods/unassigned chores

and µ−
i corresponds to utility from unassigned goods/assigned chores. We propose two more approximate MMS

definitions, such that it relaxes both utility and dis-utility obtained. The first two definition Def. 11 and 12 is based on
relaxing µ+ and µ− simultaneously. Unfortunately we show that they need not exist in Lemma 4 and 5.

Example 5. In order to prove this, we make few changes in the valuation profile V g of Example 3 and represent it as
V G. We set V G

1k10
= (1000− ǫ1 + ǫ3,−ǫ1), V

G
2k10

= (1000− ǫ1 + ǫ3,−ǫ1), and V G
1k4

= (1001− ǫ1 + ǫ3,−ǫ1). We

set ∀i, V G
ik8

= (1028 − ǫ1 + ǫ3,−ǫ1). We multiply 10 to V G. We set ǫ1 ≤ 10−5 ǫ2 = 10−3 and ǫ3 = 10−4 in the

valuation profile V G. We consider ǫ3 = 10−4 so that agents have unique MMS bundle, for example, agent 1 unique
MMS bundle is {k1, k2, k3, k4}. We transform these valuations in 1-D using T, and the valuation profile T(V G) is
similar to the instance in Kurokawa et al. [2018], and it is easy to verify that MMS allocation doesn’t exist. The MMS
value of every agent in T(V G) and V G is 40550000 and 104ǫ1, respectively. Note that µi = µ++µ−, µ+

i = 9 ·104ǫ1,

and µ−
i = −8 · 104ǫ1. Also v′i(M) = −40550000+ 104ǫ1.

Definition 11 (α-MMS (I.)). An allocation A is said to be α-MMS if it guarantees

∀i ∈ N, ui(Ai) ≥ α · µ+
i + (1 + α) · µ−

i

where α ∈ [0, 1].

Definition 12 (α-MMS (II.)). An allocation A is said to be α-MMS if it guarantees

∀i ∈ N, ui(Ai) ≥ α · µ+
i + (1/α) · µ−

i

where α ∈ (0, 1].

Unfortunately we cannot ensure α-MMS according to definition 11 and 12 in 2-D.

Lemma 4. There is no α-MMS (Def. 11) for the valuation profile V G for any α ∈ [0, 1].
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Proof. Let ǫ1 = 10−5. An allocation is α-MMS for α ≥ 0 iff ∀i, ui(Ai) ≥≥ 0 · µ+
i + (1 + 0)µ−

i = µ−
i . Note that

From Eq. 2, ui(Ai) ≥ µ−
i , iff wi(Ai) ≥ µ−

i − v′i(M), which gives us wi(Ai) ≥ 40550000 − 0.8. For this to be

true, we need wi(Ai) ≥ 40550000 since T(V G) has all integral values. We know that such an allocation doesn’t exist.
Hence for any α ∈ [0, 1], α-MMS does not exist for V G.

Lemma 5. An α-MMS (Def. 12) allocation may not exist.

Proof. Consider α = 8 ·104ǫ1 and since ǫ1 ≤ 10−5, we obtain ∀i, ui(Ai) ≥ 0.72−1. From Eq. 2, ui(Ai) ≥ 0.72−1,
iff wi(Ai) ≥ 0.72−1+40550000−104ǫ1. Since 0 < 104ǫ1 ≤ 0.1 and for this to be true, we need wi(Ai) ≥ 40550000
since T(V G) has all integral values. Note that as α ≥ 8 · 104, ui(Ai) ≥ 0.72 − 1, i.e., approximation guarantees
strengthens. As we decrease ǫ1; we decrease α which is 8 · 104ǫ1 and even though we weaker the approximation
guarantees, α-MMS still doesn’t exist.
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