
EEF1-NN: Efficient and EF1 allocations through Neural Networks
Shaily Mishra

International Institute of Information

Technology (IIIT)

Hyderabad, India

shaily.mishra@research.iiit.ac.in

Manisha Padala

International Institute of Information

Technology (IIIT)

Hyderabad, India

manisha.padala@research.iiit.ac.in

Sujit Gujar

International Institute of Information

Technology (IIIT)

Hyderabad, India

sujit.gujar@iiit.ac.in

ABSTRACT

Neural networks have shown state-of-the-art performance in de-

signing auctions, where the network learns the optimal allocations

and payment rule to ensure desirable properties. Motivated by the

same, we focus on learning fair division of resources, with no pay-

ments involved. Our goal is to allocate the items, goods and/or

chores efficiently among the fair allocations. By fair, we mean an

allocation that is Envy-free (EF). However, such an allocation may

not always exist for indivisible resources. Therefore, we consider

the relaxed notion, Envy-freeness up to one item (EF1) that is guar-

anteed to exist. However, it is not enough to guarantee EF1 since the

allocation of empty bundles is also EF1. Hence, we add the further

constraint of efficiency, maximum utilitarian social welfare (USW).

In general finding, USW allocations among EF1 is an NP-Hard prob-

lem even when valuations are additive. In this work, we design a

network for this task which we refer to as EEF1-NN. We propose an

UNet inspired architecture, Lagrangian loss function, and training

procedure to obtain desired results. We show that EEF1-NN finds

allocation close to optimal USW allocation and ensures EF1 with a

high probability for different distributions over input valuations.

Compared to existing approaches EEF1-NN empirically guarantees

higher USW. Moreover, EEF1-NN is scalable and determines the al-

locations much faster than solving it as a constrained optimization

problem.

KEYWORDS

Fairness, Efficiency, and Neural Networks

ACM Reference Format:

Shaily Mishra, Manisha Padala, and Sujit Gujar. 2018. EEF1-NN: Efficient

and EF1 allocations through Neural Networks. In Woodstock ’18: ACM Sym-
posium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Consider a situation where a social planner needs to allocate a

set of indivisible items (goods or/and chores) among interested

agents. Agents have valuations for the items, i.e., an item might

be a good – positive valuation for one while it might be a chore –

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

negative valuation for the other. The agents reveal their valuations

upfront to the social planner., The social planner is responsible for
the fair and efficient allocation of these items among the agents.

For example, a Government needs to distribute resources or/and

delegate tasks amongst its subdivisions. The subdivisions should not

feel mistreated in the system (fairness), and while ensuring fairness,

the Government would like to further allocate items optimally for

the system’s growth (efficiency).

The fair division of items is well-explored in literature [13, 40, 42,

48]. Economists have proposed various fairness notions (Envyfree-

ness [27], Equitable [24], Proportional [46]) and efficiency notions

(Utilitarian Welfare, Nash Welfare, Egalitarian Welfare, Pareto Effi-

ciency). These are applicable in real-world settings, such as division

of investments and inheritance, vaccines, tasks, etc. There are web-

based applications such as Spliddit, The Fair Proposals System,

Coursematch, Divide Your Rent Fairly, etc., used for credit assign-

ment, land allocation, division of property, course allocation, and

even task allotment. All these applications assure certain fairness

and efficiency guarantees.

Fairness Notion. One of the most popular fairness criteria is envy-

freeness (EF)[27]. An allocation is envy-free if each agent values

its share at least as much as they value any other agent’s share,

i.e., no agent is envious. EF is also trivially satisfied by allocat-

ing empty bundles to every agent. Hence we must also have effi-

ciency/optimality guarantees. When we consider a complete allo-

cation of indivisible items, Envy-free may not exists—for example,

two agents, one good. The agent who doesn’t get the good will

always envy the one who receives it. Finding whether EF allocation

exists or not is known to be Δ
𝑝

2complete [12], let alone finding

an efficient allocation among EF. To overcome this limitation, we

consider a prominent relaxation of EF - EF1 (Envy-freeness up to

one item) [11]. Unlike EF, EF1 always exists and can be computed

in polynomial time [36].

Efficiency Notion. The notion of Pareto efficiency
1
is widely stud-

ied in fair resource allocation, i.e., PE and fair allocations [3, 9, 28].

In this work, we instead focus on utilitarian social welfare (USW),

i.e., the sum of utilities of individual agents. When valuations are ad-

ditive, finding allocations that maximize utilitarian welfare (MUW)

is polynomial-time solvable. While finding EF1 or MUW alloca-

tions are polynomial-time solvable, maximizing utilitarian welfare

within EF1 allocation is an NP-hard problem [2–4, 8, 22] even in

additive valuation settings. There is existing work that provides ap-

proximate efficiency and fairness guarantees in [1, 9, 15, 35]. But to

find allocations that are MUW among EF allocations is an NP-Hard

problem even when valuations are additive for two agents [5, 8].

1
An allocation𝐴 is said to be PE if it is not Pareto dominated by any other allocation, i.e., there is

no other allocation𝐴′
such that ∀𝑖 ∈ 𝑁, 𝑣𝑖 (𝐴′

𝑖
) ≥ 𝑣𝑖 (𝐴𝑖) , and ∃𝑖 ∈ 𝑁, 𝑣𝑖 (𝐴′

𝑖
) > 𝑣𝑖 (𝐴𝑖) .

ar
X

iv
:2

11
2.

05
43

6v
1

 [
cs

.G
T

]
 1

0
D

ec
 2

02
1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Aziz et al. [5] provide a pseudopolynomial-time algorithm for

finding MUW within EF1, which is exponential in the number of

agents and polynomial in the number of items and 𝑉 , where 𝑉

bounds the valuation per item. When agents valuations are addi-

tive and drawn randomly from a uniform distribution, envy-free

allocation exists with a high probability when the number of items

𝑚 is at least Ω(𝑛 log𝑛) and can be obtained by MUW allocations

proven by Dickerson et al. [23]. This guarantee is achieved only

for significantly large values of𝑚. However, the hidden constants

might be high
2
, and it leaves scope to explore.

With these theoretical limitations, in this paper, we focus on a

data-driven approach, i.e., given the agents’ valuations, we aim to

learn allocations that maximize USW amongst EF1, which we call

EEF1; efficient and envy-free up to one item. It is widely known

that neural networks outperform existing approaches in finding

an optimal mapping (e.g., mechanisms, algorithms) between the

given input and output data [19, 20, 25, 31, 33, 37, 45, 47, 49, 50, 52].

Given enough data, hyper-parameter tuning, and proper training,

the networks are adept at learning effective transformations. Duet-

ting et al. [25] learn a mechanism from input valuation space to

allocations and payments that provide maximum revenue and en-

sure truthful valuation elicitation. Motivated by the success of NNs

in resource allocations and the theoretical limitations, we propose a

learning-based approach for fair and efficient resource allocations.

Note that payments are at their disposal in most previous NN-based

resource allocation, and the main challenge is to learn payments. In

our work, there are no payments, and we are learning allocations

via NNs. The major challenges are as follows,

Challenges. To the best of our knowledge, this is the first study

that integrates deep learning and fair resource allocation. It entails

addressing the following challenges. (i) Allocations for indivisible

items are in the discrete space, whereas the output of NNs being

real numbers, it can easily learn optimal fractional fair allocations,

i.e., give each agent an equal proportion of an item. If we convert

fractional solutions to integral solutions in our settings, fairness

guarantees no longer hold. (ii) Further, we aim to design a general-

ized network that should work for any number of agents or items,

even for configurations not seen during training. Most of the exist-

ing NN based approaches in EconCS, train the models separately

for each configuration, for example, in papers [25, 37]

Contributions. For a given distribution, there is a certain likeli-

hood for MUW allocation to be EF1. It increases when the number

of items is very large, w.r.t. the number of agents. We train the

NN for the cases where MUW allocation is rarely EF1. In order to

provide competitive results, we address the above challenges by

introducing the following novelty,

• We convert the valuations into a six-channeled input to the

network for better performance.

• We have a series of convolutional and up-convolutional lay-

ers to learn EEF1 allocations. Since the network is fully con-

volutional, it is generalized for any number of agents and

items once trained accordingly.

2
Our experiments show that in the case of uniform distribution, even for 10 agents, 150 items, the

probability of MUW allocation being EF1 is less than 0.5

• We formulate a Lagrangian loss function to find allocations

that are Envy Free up to one item Efficient (maximal USW)
and EF1.

• We show that, for our setting, the Bagging of multiple net-

works improves performance.

• We sample valuations from various distributions and report

the expected fairness and efficiency achieved. Our network

performs well even for large instances with more than 10

agents and 100 items. Moreover, compared to any integer

optimization solver, the network quickly computes the out-

put; hence we can improvise this approach to be adept in

practical real-time applications.

2 RELATEDWORK.

Fair resource allocation is well studied in the literature across vari-

ous fairness and efficient notions [13, 26, 40, 42, 48]. When a def-

inition of fairness is too strong or may not exist, we always look

for its relaxation/approximation; researchers have also studied how

likely it is that a fairness notion will not exist.

In this paper, we are majorly concerned with EF1 and USW. EF1

allocations always exist and can be found in polynomial time. When

agents have additive valuations, the round-robin algorithm always

guarantees EF1 for (pure) goods or chores and the double round-

robin algorithm for the combination of goods and chores. [3, 21].

When agents have general valuations, we can find EF1 allocations

in𝑂 (𝑚𝑛3) using a cycle-elimination algorithm. [36]. Finding MUW

allocations is also polynomial-time solvable for additive valuations,

i.e., we iterate over items, assign the item to the agent who values

it the most. However, finding MUW allocation amongst EF1 allo-

cations is NP-hard even for two agents with additive valuations

[2–5, 8, 22].

Authors in [14] present a framework to compute 𝜖-Efficient and

F -Fair allocation, using parametric integer linear programming,

which is double exponential in terms of the number of agents and

items. In [14], they explore group Pareto Efficiency, which is equiv-

alent to USW. Authors in [5] provide a pseudopolynomial-time

algorithm for finding MUW within EF1 for any fixed number of

agents for goods, which is exponential in the number of agents.

In the paper, [41], the authors present an approximately optimal

round-robin order that gives highly efficient (USW) EF1 allocations

in the Reviewer Assignment setting; however, the setting is quite

different from ours, as we are not concerned with the multiplicity

of items.

In further related work, papers [3, 9] explore, PE and EF1 alloca-

tions, [28, 29] explore PE and EQ1 allocations, [6] explore PE and

Prop1 allocations for various items (goods or/and chores). There

will always be a tradeoff between fairness and efficiency, corre-

sponding to the study of the price of fairness [7, 10]. Alongside,

Researchers have also studied how likely it is that a fairness notion

will not exist [23, 38, 39]. In [39], the authors show that Round

Robin allocation is envy-free when𝑚 ≥ Ω(𝑛 log𝑛/log log𝑛).
Recently the EconCS community has been interested in learning

mechanisms/algorithms using neural networks, esp. in a setting of

theoretical limitations. For, e.g., In paper [32], the authors provide

a strategy-proof, multi-facility mechanism that minimizes expected

social cost via NN. Authors in [17], the authors integrate machine

learning in the combinatorial auction for preference elicitation.

Further, in [52], authors use a neural network to improve it and

reformulateWDP into a mixed-integer program. Authors in [37, 47]

learn optimal redistribution mechanisms through NNs. Another

line of work is Reinforcement Mechanism Design, such as learning

dynamic price in sponsored search auctions [19, 44]. In [51], the

authors use NN to maximize the expected number of consumers

and the expected social welfare for public projects.

3 PRELIMINARIES

We consider the problem of allocating 𝑀 = [𝑚] indivisible items

among 𝑁 = [𝑛] interested agents. Each agent 𝑖 ∈ 𝑁 has a valuation

function 𝑣𝑖 : 2𝑀 → R and 𝑣𝑖 (𝑆) is its valuation for a 𝑆 ⊆ 𝑀 s.t.

𝑣𝑖 (𝜙) = 0. We consider three settings - pure goods, pure chores,

and a combination of goods and chores. In combination, an item

may be good for one agent and a chore for another. For an agent 𝑖 ,

an item 𝑗 ∈ 𝑀 is a good if, 𝑣𝑖 ({ 𝑗}) ≥ 0, and a chore if, 𝑣𝑖 ({ 𝑗}) < 0.
We represent valuation profile 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛). We consider

additive valuations. The valuation of an agent 𝑖 ∈ 𝑁 for bundle𝐴𝑖 is

𝑣𝑖 (𝐴𝑖) =
∑

𝑗 ∈𝐴𝑖
𝑣𝑖 ({ 𝑗}). Utilitarian Social Welfare (USW) is defined

as 𝑠𝑤 (𝐴, 𝑣) = ∑
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖). We assume F = 𝐹1 × 𝐹2, . . . ,×𝐹𝑛 to be

a known prior distribution over agents’ valuations. We randomly

draw 𝑣𝑖 ∼ 𝐹𝑖 . An allocation 𝐴 ∈ {0, 1}𝑛×𝑚 is an 𝑛 way partition

(𝐴1, . . . 𝐴𝑛) of 𝑀 . Here, 𝐴𝑖 ∈ [𝑚] is the bundle assigned to the

agent 𝑖 and 𝐴𝑖 ∩ 𝐴𝑘 = 𝜙,∀𝑖, 𝑘 ∈ 𝑁 and 𝑖 ≠ 𝑘 . We consider a

complete allocation of items, i.e., ∪𝑖𝐴𝑖 = 𝑀 . We use the notation

𝑛 ×𝑚, for a problem setting with 𝑛 agents and𝑚 items. Given a

valuation profile of agents 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛), our goal is to find a

fair and efficient allocation. First, we define fairness and efficiency

properties.

Definition 3.1 (Envy-free (EF)). An allocation 𝐴 is said to be EF,

if no agent envies another agent, i.e., ∀𝑖, 𝑗 ∈ 𝑁, 𝑣𝑖 (𝐴𝑖) ≥ 𝑣𝑖 (𝐴 𝑗).

As EF allocation may not always exist for indivisible goods, we

consider a generalized version of relaxation of the EF defined by

Budish [18].

Definition 3.2 (Envy-free up to one item (EF1)). An allocation 𝐴

is said to be EF1 if envy of any agent can be eliminated by either

removing any good from the envied agent’s allocation or remov-

ing any chore from the agent’s allocation. i.e., when either of the

following is true ∀𝑖, 𝑘 ∈ 𝑁 ,

(1) ∃ 𝑗 ∈ 𝐴𝑘 s.t. 𝑣𝑖 (𝐴𝑖) ≥ 𝑣𝑖 (𝐴𝑘 \ { 𝑗})
(2) ∃ 𝑗 ∈ 𝐴𝑖 s.t. 𝑣𝑖 (𝐴𝑖 \ { 𝑗}) ≥ 𝑣𝑖 (𝐴𝑘)

Definition 3.3 (Maximum Utilitarian Welfare (MUW)). An allo-

cation𝐴∗
is said to be efficient or MUW if it maximizes the USW, i.e.

𝐴∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝐴∈{0,1}𝑛×𝑚

𝑠𝑤 (𝐴, 𝑣)

Definition 3.4 (EEF1 Allocation). We say an allocation is EEF1 if it
satisfies EF1 fairness and maximizes USW amongst EF1 allocations.

4 OUR APPROACH: EEF1-NN

EEF1-NN represents a mapping from valuation space to allocation

space, i.e., A𝑤 : R{𝑛×𝑚} → {0, 1}𝑛×𝑚 , where 𝑤 represents the

network’s weights. To learn the network parameters, we formulate

our problem to optimize social welfare w.r.t. to fairness constraints

in Section 4.1. We construct the Langrangian Loss function of this

optimization problem for the training of EEF1-NN. We explain our

architecture in Section 4.2 and training details in Section 4.3. Note

that we represent EEF1-NN by A𝑤
and an allocation by 𝐴.

4.1 Optimization Problem.

Consider 𝑛 interested agents and𝑚 indivisible items; it can be good

𝑣𝑖 ({ 𝑗}) ≥ 0, or chore 𝑣𝑖 ({ 𝑗}) < 0. We are given a set of valuation

profile 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛), where 𝑣𝑖 is drawn randomly from a

distribution F𝑖 . Among all possible allocations 𝐴 ∈ {0, 1}𝑛×𝑚 , we

need to find an optimal 𝐴∗
that maximizes utilitarian social wel-

fare 𝑠𝑤 (𝐴, 𝑣) and satisfies a fairness constraint. We formulate two

fairness constraints - EF and EF1. In Definition 3.1, the envy of an

agent 𝑖 ∈ 𝑁 according to EF is as follows,

𝑒𝑛𝑣𝑦𝑖 (𝐴, 𝑣) =
∑︁
𝑘∈𝑁

max

{
0, (𝑣𝑖 (𝐴𝑘) − 𝑣𝑖 (𝐴𝑖))

}
(1)

In Definition. 3.2, the 𝑒 𝑓 1𝑖 of an agent 𝑖 ∈ 𝑁 , according to EF1 is as

follows:

𝑒 𝑓 1𝑖 (𝐴, 𝑣) =
∑︁
𝑘∈𝑁

max

{
0, (𝑣𝑖 (𝐴𝑘) − 𝑣𝑖 (𝐴𝑖))+

min

{
−max

𝑗 ∈𝐴𝑘

𝑣𝑖 ({ 𝑗}),min
𝑗 ∈𝐴𝑖

𝑣𝑖 ({ 𝑗})
} }

(2)

The above constraints are generalized formulations for both goods

and chores. Given a set of valuation profiles, our goal is to maximize

the expected welfare w.r.t. to the expected fairness.

minimize − E𝑣 [𝑠𝑤 (𝐴, 𝑣)] = E𝑣 [
∑︁
𝑖∈𝑁

𝑣𝑖 (𝐴𝑖)]

subject to E𝑣

[∑︁
𝑖∈𝑁

𝑒𝑛𝑣𝑦𝑖 (𝐴, 𝑣)
]
= 0 or,

E𝑣

[∑︁
𝑖∈𝑁

𝑒 𝑓 1𝑖 (𝐴, 𝑣)
]
= 0

(3)

In the above optimization problem, we have ’OR’ among fairness

constraints, which we will elaborate on in the Ablation Study in

Section 5.1.

EEF1-NN: Lagrangian Loss Function. We now formulate the

objective function given by Eq. 3 using the Lagrangian multiplier

method. We use the Lagrangian multiplier _ ∈ R≥0 to combine the

objective and constraints. Given L samples of valuation profiles

(𝑣1, . . . , 𝑣L) drawn from F , we have the corresponding input 𝐼 𝑙𝑣
and the loss for each sample is given by,

𝐿𝑜𝑠𝑠 (𝐼 𝑙𝑣,𝑤, _) = 1

𝑛 ×𝑚

[
−𝑠𝑤 (A𝑤 (𝐼 𝑙𝑣), 𝑣𝑙)+_

∑
𝑖∈𝑁 𝑒𝑛𝑣𝑦𝑖 (A𝑤 (𝐼 𝑙𝑣), 𝑣𝑙)

𝑛

]
(4)

We minimize the following loss w.r.t𝑤 ,

L𝐸𝐸𝐹1 (𝐼 𝑙𝑣,𝑤, _) = 1

L
∑︁
𝑙

𝐿𝑜𝑠𝑠 (𝑣𝑙 ,𝑤) (5)

4.2 Network Details

We describe EEF1-NNś various components, including the input,

architecture, and other training details in this section. EEF1-NN is

a fully convolutional network (FCN) and processes input of varied

sizes (i.e., height × width). Because of using an FCN, EEF1-NN runs

independently of 𝑛 and𝑚.

EEF1-NN: Input. We construct an input tensor of size 𝑛 ×𝑚 ×
6, i.e., the input to the network is a six channeled input 𝐼𝑣 ∈
R𝑛×𝑚×6

. The first channel is an 𝑛 ×𝑚 matrix of given valuations,

i.e., ∀𝑖, 𝑗 ; 𝐼𝑣 [𝑖, 𝑗, 1] = 𝑣𝑖 ({ 𝑗}). Note that we sample the valuation

from a distribution F . We take a matrix𝑋 of size𝑛×𝑚 that contains

valuation for items only corresponding to the agent who values

it the most, and the rest elements are zeros, i.e., It takes a value

𝑣𝑖 ({ 𝑗}) for each item (column) for the agent (row) having maximum

value for it, i.e,

∀𝑗 ∈ 𝑀; 𝑋 [𝑖 . 𝑗, 1] =
{
𝑣𝑖 ({ 𝑗}) if 𝑖 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑣𝑖 ({ 𝑗})
0 otherwise

We break ties arbitrarily. We expand this 𝑛 ×𝑚 matrix into five

channels, such that the first one will contain information about

items indexed as 0, 5, 10, . . . , ⌊𝑚/5⌋, i.e.,

𝐼 [𝑖 . 𝑗, 2] =
{
𝑋 [𝑖, 𝑗, 1] if 𝑗 ∈ {0, 5, 10, . . . , ⌊𝑚/5⌋}
0 otherwise

The next channel will have data from the previous channel and

along with that about items indexed as 1, 6, 11, . . . , 1 + ⌊𝑚/5⌋.

𝐼 [𝑖 . 𝑗, 3] = 𝐼 [𝑖, 𝑗, 2] +
{
𝑋 [𝑖, 𝑗, 1] if 𝑗 ∈ {1, 6, 11, . . . , 1 + ⌊𝑚/5⌋}
0 otherwise

And so on. The last channel, 𝐼𝑣 [𝑖, 𝑗, 6] will be equal to𝑋 We observe

that giving single channeled input of only valuations, i.e., tensor of

size (𝑛×𝑚×1), performs sub-optimal as opposed to the six-channel.

We evaluate the performance of six channeled input across various

other inputs in Section 5.1. With this representation, the network

learns better.

EEF1-NN: Architecture. Our architecture is inspired by U-Net

architecture [43]. U-Net is a fully convolutional network built to

segment bio-medial images; it also requires assigning labels to im-

age patches and not just classifying the image as a whole. Tradition-

ally, a fully convolutional network is used for image segmentation.

While we are working on valuation profiles rather than images, one

of the primary motivations to use U-Net is to process arbitrary size

images. If we use a feed-forward fully functional neural network to

learn fair and efficient allocations, we need a different network for

each 𝑛×𝑚. Moreover, just using a feed-forward functional network

(multi-layer perceptron) learns EEF1 allocations for smaller values

of 𝑛, cannot learn as 𝑛 increases; we will briefly mention this in our

Ablation Study in Section 5.1.

EEF1-NN contains series of convolution (contracting) and up-

convolution (expanding) layers, as given by Fig. 1. EEF1-NN has

three series of Conv-UpConv layers. The convolutional layers con-

sist of 4 repeated 3x3 convolution, each followed by a non-linear

activation function, i.e., tanh, which is applied element-wise. The

up-convolution layers consist of 4 repeated 3x3 up-convolution,

each followed by a tanh activation. Note that we are not using

maxpool or skip connections. We found that using a pooling layer

or skip connections degraded the network performance. The final

output represents the probability with which agent 𝑖 will receive

item 𝑗 . We apply softmax activation function across all agents

for every item to ensure each item is allocated exactly once ,i.e.,

∀𝑗 ∈ 𝑀
∑
𝑖∈𝑁 A𝑤

𝑖
({ 𝑗}) = 1. In total, we have 24 layers (convolu-

tion + up-convolution).

Using an FCN structure, we have a generalized network for𝑛×𝑚;

however, learning EEF1 allocations is not easy. We need to learn

discrete variables, while neural networks are known for learning

continuous output. We will describe these challenges in the next

Section.

Figure 1: EEF1-NN Architecture

4.3 Training Details

There are certain challenges with network training, especially in

the setting of indivisible resource allocation.

Integral Allocations. The global optima of the optimization prob-

lem in Eq. 3 might lie in a continuous allocation setting, i.e., similar

to allocating divisible items. The training starts if a network learns

to distribute an item equally among all agents, and the gradient

vanishes. For a fair allocation, assigning an equal partition of each

item is indeed an optimum. Converting these non-integral probabil-

ities to integral allocation is non-trivial. Hence we set a temperature
parameter in the softmax layer of the network to prevent getting

stuck at such optima. Let 𝑝 𝑗 = {𝑝 𝑗1 , . . . , 𝑝 𝑗𝑛 } denote the output of
our network before the final layer which represents the probability

of assigning item 𝑗 to all the agents. The final allocation for agent 𝑖 ,

i.e., A𝑤
𝑖
({ 𝑗})is given by,

A𝑤
𝑖 ({ 𝑗}) = softmax(𝑝 𝑗𝑖) =

𝑒𝑝 𝑗𝑖
/𝑇∑𝑛

𝑘=1
𝑒
𝑝 𝑗𝑘

/𝑇

It is common to start with a large temperature value for initial

exploration and gradually reduce the temperature to reach the

global optima. While training, when we set the temperature value

to 1, we get fractional allocations. As we decrease the value of 𝑇 ,

the network outputs allocation close to discrete. The approach we

want is while training, allocation output is almost discrete, but not

exactly discrete. When we keep the value of 𝑇 too low, the output

is exact discrete allocations, and there is no learning because of the

vanishing gradients [11]. So we appropriately choose 𝑇 based on

our experiments. Once the network learns, we set the parameter

low enough to ensure discrete allocations.

Inefficient Local Optima. Due to the low-temperature value, the

training of EEF1-NN is highly unstable and often gets stuck at

inefficient local optima. To overcome this, we use the technique of

Bootstrap Aggregation or Bagging [16]. It combines the predictions

from multiple classifiers to produce a single classifier. Hence we

train multiple weak networks with varied hyper-parameters on the

same data set, capturing different sets of local optima. While testing,

the final allocation is aggregated from these networks. We pass a

test sample through all networks and select the allocation that is EF1

with maximum USW. Usually, in Bagging, we train neural networks

with different training data sets, however in our case, varying _

produces different models. In total, we bag seven networks with

varied _ ∈ [0.1, 2] for increased performance. We further analyze

how Bagging affects our results in the ablation study provided in

the experimental section.

We implement EEF1-NN using Pytorch. The network weights are

initialized using Xavier Initialization [30]. To train, we use Adam

Optimizer [34] with fixed learning rate 0.001. We use a batch size of

256 samples. We sample valuations from𝑈 [0, 1] (goods),𝑈 [−1, 0]
(chores) and𝑈 [−1, 1] (combination). We sample 150𝑘 training data

for both 10×20 and 13×26 for goods, chores, and combinations, so

in total, we have 300𝑘 training samples, and we sample 10𝑘 testing

samples for each setting. We transform these valuations into six-

channeled input and feed to the network. We set the temperature

parameter to 0.01. We train our network for 1000 epochs. We use

our Lagrangian loss as the objective function to train our network.

We train seven networks with varied _ ∈ [0.1, 2] and bag them

for enhanced performance. The training process took 5-6 hours to

train a single network using GPU. We are training the network for

10 × 20 and 13 × 26. however, we show our test results for various

𝑛×𝑚. We test for network performance for 𝑛 ∈ [7, 15]. Further, we
also train a individual network over different distributions such as

Gaussian (`=0.5,𝜎=1), Log-normal (` = 0.5,𝜎 = 1), and Exponential
(_ = 1), with 150𝑘 training samples for 𝑛 = 10.

5 EXPERIMENTS AND RESULTS

For reporting the network performance on the test set, we define

the following two metrics, one is the measure of fairness and the

other of efficiency.

Evaluation Metrics.

(1) 𝛼𝐴𝐿𝐺
𝐸𝐹1

- It measures the probability with which an algorithm

𝐴𝐿𝐺 outputs, EF1 allocation. 𝛼𝐸𝐹1 is the ratio of the number of

samples that are EF1 to the total number of samples.

(2) 𝛽𝐴𝐿𝐺
𝑆𝑊

- It measures the ratio of expected USW of an algo-

rithm 𝐴𝐿𝐺 by expected USW of MUW allocation. 𝛽𝐴𝐿𝐺
𝑆𝑊

=

E(𝑠𝑤𝐴𝐿𝐺)/E(𝑠𝑤𝑀𝑈𝑊).
Using the above metrics, we conduct the following ablation study

to set appropriate hyper-parameters. Our network is trained across

various types of items (goods or/and chores) and types of distribu-

tion. The test set consists of 10𝑘 samples. Note that 𝛽𝐴𝐿𝐺
𝑆𝑊

∈ [0, 1]
for goods, 𝛽𝐴𝐿𝐺

𝑆𝑊
≥ 1 for chores, and will depend on the over-

all social welfare (positive/negative) for a combination of goods

and chores. We will use that notation (𝛼𝐸𝐹1, 𝛽𝑠𝑤) to write net-

work/algorithm’s performance.

5.1 Ablation Study

Figure 2: Ablation Study over hyper-parameters

Figure 3: Ablation Study over Input channels and _

We illustrate the effect of specific hyper-parameters in the per-

formance of EEF1-NN in Fig. [2,3]. We sample the valuations from

the uniform distribution, set 𝑛 = 10, only goods, for all the ablation

study experiments, and observe the 𝛼𝐸𝐹1 as 𝑚 increases. In the

plots, the red line with the label EEF1-NN denotes the 𝛼𝐸𝐹1 for

optimal parameters. Corresponding to EEF1-NN, a single network

from this bagged network is labeled as Single Network in the graph.

This Single Network trained with six-channeled input, _ = 1, and
temperature 𝑇 = 0.01 is the baseline to compare across this abla-

tion study. Only one parameter is changed w.r.t. the Single Network
training for all the networks used in this study. We only compare

𝛽𝑠𝑤 for the network across varied _ values, as 𝛼𝐸𝐹1 values are close

to the Single Network.
(i) Effect of Temperature 𝑇 . Keeping other parameters fixed, we

vary the 𝑇 = {1, 0.1, 0.001} in Fig. 2. When 𝑇 = 1, our network
converges to global optima, i.e., fractional allocation, unable to learn

EEF1 discrete allocation represented by the blue line at the bottom

of the plot. Also, we empirically observed that when networks

learn to allocate an equal fraction of an item among agents (0.1

in case of 10 agents), the gradient vanishes, thus stuck in a bad

local optimum. When 𝑇 = 0.001 (violet line), it is too low, and

performs sub-optimally compared to when 𝑇 = 0.01 in single

network (no bagging) (light blue line). We also noticed that the

network’s performance for 𝑇 = 0.01 and 𝑇 = 0.1 are close to each

other. We set 𝑇 = 0.01 for all the bagged networks in EEF1-NN.

(ii) Effect of series of Conv-UpConv layers.We select three series of

Conv-UpConv For EEF1-NN as illustrated in Fig. 2. We plot the 𝛼𝐸𝐹1
for one Conv-UpConv series green dashed line. It is less than what

we obtain for a 2-series red dotted line, which is less than the optimal

3-series (light blue line). As seen from Fig. 2, an increase between

1-series and 2-series is significant compared to 2-series and 3-series

(single network without bagging). The complexity of the network

having 4-series is far more than the performance improvement. We

have limitations over the number of layers in Conv-UpConv, as

we are working with a low dimensional matrix, such as 10 × 20,
and having such a series increases performance. Briefly stating,

while training a 4-layered feed-forward fully functional network

for 10 × 20, 𝛼𝐸𝐹1 was roughly 0.008.

(iii) Effect of loss function We analyze how different envy definitions

in our loss function represented in Eq. 3 affects the training of

EEF1-NN. As shown in Fig. 2, when we train our network using

EF, i.e., Eq. 1 (Single Network, light blue line), the network performs

significantly better than when trained using EF1, i.e., Eq.2 (orange

dashed line). For example, for 10 × 20, the performance of Single
Network is (0.3358,17.9611), whereas the performance of the EF1

trained network is (0.1530,17.8708). Given a distribution, one way

of interpreting this behavior can be that when we train the neural

network to maximize social welfare w.r.t. to Envy-free, the best

fairness it can have is EF1 while maintaining efficiency close to

MUW.

iv) Number of Input Channels. When training with just one channel

input, i.e., valuations, the results we obtained were quite poor;

for 10 × 20, we get (0.2113, 17.8976) as shown in Fig 3. Thus we

changed our input representation into more channels. We tested

for 2,6, and (𝑛 + 1) channels for 𝑛 = 10. For two channeled input,

we set the first channel of input tensor as the valuation matrix

and the second channel to matrix 𝑋 , described in Section 4.2. Like

six-channeled input, we expand the matrix 𝑋 to 11 channels, i.e.,

the number of channels here is equal to 𝑛 + 1. The learning of a

six-channeled network, i.e., Single Network is better than the two-

channeled network. The performance of a two-channeled network

is (0.2365, 17.8991), Single Network is (0.3358, 17.9611), and 11-

channeled network is (0.3925, 17.9395). We didn’t plot 𝛼𝐸𝐹1 of

the 11-channeled network because Even though 𝛼𝐸𝐹1 is high of the

11-channeled network, the network is dependent on 𝑛; cannot be

generalized for 𝑛, along with an increase in input representation

complexity.

v) Effect of Bagging. We try different combinations of networks,

each trained for varied _ values. The Lagrangian Loss, as described

in Eq. 4, _ corresponds to the fairness constraint. More the value

of _, more penalty is given to envy in the loss. When _ is too

small, the penalty for allocating an unfair allocation is less, so

the network learns a more efficient but less fair allocation. As we

increase _ up to a certain value, the network learns less efficient

but more fair allocations. Beyond a certain value, if we increase _,

we get a degraded performance overall. In Fig. 3, we compare 𝛼𝐸𝐹1
and 𝛽𝑠𝑤 of Singe Network (_=1), lambda=0.5, and lambda=0.1. We

observed that varying _ value results in converging to the different

optimum. We bagged seven networks trained on with _ values of

_ ∈ [0.1, 2]. We choose a mix of (low efficiency, high fairness)

and (high efficiency, low fairness). We feed six-channeled input to

EEF1-NN, and it outputs the fairest and efficient, i.e., if more than

one network gives EF1 allocation, then it will select the one with

maximum social welfare. In Fig. 2, we find combining the networks

(red line) outperforms the performance of a single network (light

blue line).

5.2 Experiment Details and Observations

We select the best training parameters for EEF1-NN based on the

above ablation study for the following experiments. We conduct

three types of experiments to compare existing approaches across,

Exp1: Different kinds of resources, Exp2: Different input distribu-

tions, and Exp3: Scalability to samples with large 𝑛. In all three

experiments, we compare EEF1-NN with the following existing

methods,

• MUW Since we don’t have Optimal EEF1 allocations to compare

our results, we compare our results with MUW allocations. We

also analyze after which value of𝑚, an MUW allocation is likely

to be EF1.

• Round Robin (RR) [21] finds EF1 allocations under additive

valuations for pure goods and pure chores. Double Round Robin
(D-RR) [3] extends RR to find EF1 allocation for the case with a

combination of goods and chores under additive valuations.

• CRR Based on paper [4], we implement CRR to find RB sequence

such that it allocate items to the agent who values it the most

for goods. As mentioned in [4], an RB sequence is EF1 when all

items have positive valuations.

Note that approaches like using parametric ILP solver [14] and the

algorithm provided by [5] are exponential. Therefore, it is infeasible

to use these for the configurations we report our results on, so we

do not compare them.

Further, in Table 1, we study the convergence of different ap-

proaches towards EEF1 for uniform distribution, i.e., after which

value of𝑚, a method converges to EEF1.

EXP1: Performance across differed resources for Uniform

Distribution. For 𝑛 = 10, we compare the 𝛼𝐸𝐹1 in Fig. 4 (a1, b1,

c1) and 𝛽𝑆𝑊 in Fig. 4 (a2, b2, c2) as𝑚 increases across the existing

approach.

Irrespective of the resource type, as the number of items in-

creases, all the approaches will move closer to EEF1. We observe

that MUW allocation (blue dotted line) converges towards EEF1 al-

locations much faster for chores or combinations than goods. While

Round Robin converges to EEF1 allocations much faster in goods

compared to chores or combinations. We discuss this convergence

in detail in Table 1. We observe that EEF1-NN consistently has

better 𝛼𝐸𝐹1 than MUW allocation and better 𝛽𝑠𝑤 than RR/CRR.

The baseline RR is designed to find EF1 allocations and hence,

by construct has 𝛼𝑅𝑅
𝐸𝐹1

= 1. We observe that 𝛼𝐸𝐸𝐹1−𝑁𝑁
𝐸𝐹1

is close to

𝛼𝑅𝑅
𝐸𝐹1

after a certain𝑚. At the same time, the allocation returned by

EEF1-NN is far more efficient than 𝑅𝑅 as represented by the 𝛽𝑆𝑊
values. (Fig 4 (a2,b2,c2)). Though 𝛼𝐶𝑅𝑅

𝐸𝐹
= 1 (Fig. 4 a1), note that the

baseline CRR only works for goods. Even for goods, we observe

that compared to CRR, EEF1-NN obtains marginally better 𝛽𝑆𝑊 , in

Fig. 4(a2).

EXP2:Performance across different distributions.Weprovide

the performance of EEF1-NNwhen the valuations are sampled from

different distributions such as Gaussian (`=0.5,𝜎=1) in Fig 5(a1, a2),

Figure 4: Exp1 (𝑛 = 10, Uniform Distribution)

Log-normal (` = 0.5,𝜎 = 1) in Fig 5(b1, b2), and Exponential (_ = 1)
in Fig 5(c1, c2). Note that when we sample valuations from Gaussian

distribution, it corresponds to allocating a combination of goods

and chores. From Fig. 5, we observe that in all three distributions,

𝛼𝐸𝐸𝐹1−𝑁𝑁
𝐸𝐹1

is more than 0.99 and 𝛽𝐸𝐸𝐹1−𝑁𝑁
𝑆𝑊

is more than 0.99 for

𝑚 ≥ 40.

EXP3: Scalability to larger number of agents. EEF1-NN is trained

only for 10×20 and 13×26. As we have seen in the previous results
and in Fig. 6, the performance scales across varying𝑚 seamlessly.

In this section, we provide the performance of EEF1-NN when

𝑛 = 7, 𝑛 = 12, and 𝑛 = 14 in Fig. 6. Our network will not run when

𝑛 < 10, given the four 3 × 3 Convolution-UpConvolution. Hence

to report performance for 𝑛 ∈ [7, 9], we reduce a Convolution-

UpConvolution layer from our network and train accordingly with

7×14 and 10×20 valuation profiles. EEF1-NN scales appropriately

across 𝑛; however, if we test the network performance of 𝑛 = 14
and 𝑛 = 20, the network performs better for 𝑛 = 14, solely because

we trained just using 10× 20 and 13× 26. For a much higher value

of 𝑛, we need to expand our training samples.

Analysis of Convergence to EEF1 Allocations (Uniform Dis-

tribution)

Definition 5.1 (𝑚★(𝑛)). For a given 𝑛, we say an algorithm con-

verges to EEF1 allocation at𝑚★(𝑛) if ∀𝑚 > 𝑚★(𝑛),
(i) For goods: 𝛼𝐴𝐿𝐺

𝐸𝐹1
≥ 0.99 and 𝛽𝐴𝐿𝐺𝑠𝑤 ≥ 0.99.

(ii) For chores: 𝛼𝐴𝐿𝐺
𝐸𝐹1

≥ 0.99, and 𝛽𝐴𝐿𝐺𝑠𝑤 ≤ 1.02.

We empirically study the value of𝑚★(𝑛) after which EEF1-NN,

RR, and MUW start converging towards EEF1 for goods/chores for

uniform distribution in Table 1. We don’t report CRR in this Table;

as we see fluctuations in 𝛽𝑠𝑤 , it doesn’t increase smoothly in Fig.

[46]; However, note that CRR results better than RR for goods, and

EEF1-NN performs marginally better than CRR. We observe that

in the case of goods, EEF1-NN reaches close to EEF1 allocations

faster than MUW and RR, and RR reaches close to EEF1 faster than

MUW.

As seen in Table 1, EEF1-NN converges first, then MUW, and

finally RR in the case of chores. We report the value of𝑚★
for RR

we use 𝛽𝑠𝑤 ≤ 1.064 since these𝑚 values are already significantly

high than MUW and RR, concluding that RR will converge after a

considerably larger𝑚. We also observed as𝑚 increases, 𝛼𝐸𝐹1, 𝛼𝐸𝐹𝑋 ,

and 𝛼𝐸𝐹 of MUW keeps getting closer. For example, for 9 × 530
goods uniform distribution, 𝛼𝐸𝐹1 = 0.989,𝛼𝐸𝐹𝑋 = 0.9834, and
𝛼𝐸𝐹 = 0.9834; while for 9×200 goods uniform distribution, 𝛼𝐸𝐹1 =

0.6436,𝛼𝐸𝐹𝑋 = 0.5086, and 𝛼𝐸𝐹 = 0.5032.
Note that the actual value of 𝑚★(𝑛) may be slightly different

from the exact point of convergence mentioned in Table as we do

not perform experiments for all possible values of𝑚. Our goal here

is to observe a pattern among approaches to compre the different

approaches to achieve EEF1.

Table 1: Value of𝑚★(𝑛) as different approaches converge to

EEF1 allocations

𝑛
(𝑚) Goods (𝑚) Chores

EEF1-NN RR MUW EEF1-NN RR MUW

7 38 159 380 44 195 112

8 46 172 450 44 240 120

9 57 186 530 53 295 130

10 70 196 610 60 340 148

11 82 206 660 68 400 160

12 94 214 740 75 455 167

13 110 220 840 83 505 180

14 134 228 940 87 565 190

Discussion 𝛼𝐸𝐸𝐹1−𝑁𝑁
𝐸𝐹1

reaches 1 much faster than 𝛼𝑀𝑈𝑊
𝐸𝐹1

, and

𝛽𝐸𝐸𝐹1−𝑁𝑁
𝑠𝑤 reaches close to 𝛽𝑀𝑈𝑊

𝑠𝑤 much faster than RR, D-RR,

CRR. So the results from EEF1-NN show a better trade-off between

EF1 and efficiency than the existing approaches for different input

distributions. We trained our network with fixed 𝑛 ×𝑚 and goods

or/and chores, still the performance scales for any𝑚 and a large

𝑛. For smaller 𝑛 and𝑚, one can use integer programming or any

Figure 5: Exp2 (𝑛 = 10, different distributions)

Figure 6: Exp3 (𝑛 = 7, 12, 14 goods, Uniform Distribution)

pseudo-polynomial approach, and when 𝑚 >> 𝑛. We observed

that MUW converges towards EEF1 faster than RR in goods, while

in chores, it’s the other way around. Hence we conclude that our

approach effectively learns and provides a better trade-off when𝑚

is not too large or very small compared to the 𝑛 but is in a specific

range.

6 CONCLUSION

In this paper, we addressed finding fair and efficient allocations for

goods, chores, or combinations. In general, the problem is NP-hard.

We proposed a neural network EEF1-NN to find EEF1 allocations.

To overcome the issue of finding optimal discrete allocations, we de-

signed appropriate architecture and input representation combined

with other training heuristics. We studied the effect each proposed

constituent has on performance. Our experiments demonstrated the

efficacy of EEF1-NN for different input distributions over existing

approaches. It finds reasonably fair and close to optimal solutions

in real-time. Can we improve it further?

REFERENCES

[1] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi.

2017. Approximation Algorithms for Computing Maximin Share Allocations.

ACM Transactions on Algorithms 13, 4 (Dec 2017), 1–28.
[2] Haris Aziz, Páter Biró, Jérôme Lang, Julien Lesca, and Jérôme Monnot. 2016.

Optimal Reallocation under Additive and Ordinal Preferences. In Proceedings of
the 2016 International Conference on Autonomous Agents & Multiagent Systems
(Singapore, Singapore) (AAMAS ’16). International Foundation for Autonomous

Agents and Multiagent Systems, Richland, SC, 402–410.

[3] Haris Aziz, Ioannis Caragiannis, and Ayumi Igarashi. 2018. Fair allocation of

combinations of indivisible goods and chores. (2018). http://arxiv.org/abs/1807.

10684

[4] Haris Aziz, Xin Huang, Nicholas Mattei, and Erel Segal-Halevi. 2019. The

Constrained Round Robin Algorithm for Fair and Efficient Allocation.

arXiv:1908.00161 [cs.GT]

[5] Haris Aziz, Xin Huang, Nicholas Mattei, and Erel Segal-Halevi. 2020. Computing

Fair Utilitarian Allocations of Indivisible Goods. (2020). https://arxiv.org/abs/

2012.03979

[6] Haris Aziz, Hervé Moulin, and Fedor Sandomirskiy. 2019. A polynomial-time

algorithm for computing a Pareto optimal and almost proportional allocation.

http://arxiv.org/abs/1807.10684
http://arxiv.org/abs/1807.10684
https://arxiv.org/abs/1908.00161
https://arxiv.org/abs/2012.03979
https://arxiv.org/abs/2012.03979

[7] Siddharth Barman, Umang Bhaskar, and Nisarg Shah. 2020. Optimal Bounds

on the Price of Fairness for Indivisible Goods. In Web and Internet Economics -
16th International Conference, WINE 2020, Beijing, China, December 7-11, 2020,
Proceedings (Lecture Notes in Computer Science, Vol. 12495), Xujin Chen, Nikolai

Gravin, Martin Hoefer, and Ruta Mehta (Eds.). Springer, 356–369. https://doi.

org/10.1007/978-3-030-64946-3_25

[8] Siddharth Barman, Ganesh Ghalme, Shweta Jain, Pooja Kulkarni, and Shivika

Narang. 2019. Fair Division of Indivisible Goods Among Strategic Agents (AAMAS
’19). 1811–1813.

[9] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. [n.d.]. Finding

Fair and Efficient Allocations (EC ’18). Association for Computing Machinery,

New York, NY, USA, 557–574.

[10] Xiaohui Bei, Xinhang Lu, Pasin Manurangsi, and Warut Suksompong. 2019. The

Price of Fairness for Indivisible Goods. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (Macao, China) (IJCAI’19). AAAI Press,
81–87.

[11] Eli Bendersky. 2016. The Softmax function and its derivative.

[12] Sylvain Bouveret. 2008. Efficiency and envy-freeness in fair division of indivisible

goods: Logical representation and complexity. Journal of Artificial Intelligence
Research 32 (05 2008).

[13] Sylvain Bouveret, Yann Chevaleyre, Nicolas Maudet, and Hervé Moulin. 2016.

Fair Allocation of Indivisible Goods. Cambridge University Press, 284–310.

[14] Robert Bredereck, Andrzej Kaczmarczyk, Dušan Knop, and Rolf Niedermeier.

[n.d.]. High-Multiplicity Fair Allocation: Lenstra Empowered by N-Fold Integer

Programming. In Proceedings of the 2019 ACM Conference on Economics and
Computation (Phoenix, AZ, USA) (EC ’19). 505–523.

[15] Robert Bredereck, Andrzej Kaczmarczyk, Dusan Knop, and Rolf Niedermeier. 2020.

High-Multiplicity Fair Allocation Using Parametric Integer Linear Programming.

CoRR abs/2005.04907 (2020). arXiv:2005.04907 https://arxiv.org/abs/2005.04907

[16] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140.

[17] Gianluca Brero, Benjamin Lubin, and Sven Seuken. 2020. Machine Learning-

powered Iterative Combinatorial Auctions. arXiv:1911.08042 [cs.GT]

[18] Eric Budish. 2011. The Combinatorial Assignment Problem: Approximate Com-

petitive Equilibrium from Equal Incomes. Journal of Political Economy 119, 6

(2011), 1061–1103.

[19] Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. 2018.

Reinforcement Mechanism Design for E-Commerce. In Proceedings of the 2018
World Wide Web Conference (Lyon, France) (WWW ’18). 1339–1348.

[20] Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. 2018.

Reinforcement mechanism design for fraudulent behaviour in e-commerce. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.
[21] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg

Shah, and Junxing Wang. 2016. The Unreasonable Fairness of Maximum Nash

Welfare. In Proceedings of the 2016 ACM Conference on Economics and Computation
(Maastricht, The Netherlands) (EC ’16). Association for Computing Machinery,

New York, NY, USA, 305–322.

[22] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. 2009. On the

Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods

with Additive Preferences. In Algorithmic Decision Theory, First International
Conference, ADT 2009, Venice, Italy, October 20-23, 2009. Proceedings (Lecture
Notes in Computer Science, Vol. 5783), Francesca Rossi and Alexis Tsoukiàs (Eds.).

Springer, 98–110.

[23] John P. Dickerson, Jonathan Goldman, Jeremy Karp, Ariel D. Procaccia, and Tuo-

mas Sandholm. 2014. The Computational Rise and Fall of Fairness. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence (Québec City,

Québec, Canada) (AAAI’14). AAAI Press, 1405–1411.
[24] L. E. Dubins and E. H. Spanier. 1961. How to Cut a Cake Fairly. The American

Mathematical Monthly 68, 1P1 (1961), 1–17.

[25] Paul Duetting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa

Ravindranath. 2019. Optimal Auctions through Deep Learning. In Proceedings of
the 36th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.).

PMLR, 1706–1715.

[26] Ulle Endriss. 2018. Lecture Notes on Fair Division. arXiv:1806.04234 [cs.AI]

[27] Duncan K. Foley. 1967. Resource allocation and the public sector.

[28] Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. 2019. Equitable

Allocations of Indivisible Goods. CoRR abs/1905.10656 (2019). arXiv:1905.10656

http://arxiv.org/abs/1905.10656

[29] Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. 2020. Equitable

Allocations of Indivisible Chores. CoRR abs/2002.11504 (2020). arXiv:2002.11504

https://arxiv.org/abs/2002.11504

[30] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. 9), Yee Whye Teh and Mike Titterington (Eds.). JMLR Workshop

and Conference Proceedings, Chia Laguna Resort, Sardinia, Italy, 249–256. http:

//proceedings.mlr.press/v9/glorot10a.html

[31] Noah Golowich, Harikrishna Narasimhan, and David C Parkes. 2018. Deep

Learning for Multi-Facility Location Mechanism Design.. In IJCAI. 261–267.
[32] Noah Golowich, Harikrishna Narasimhan, and David C. Parkes. 2018. Deep

Learning for Multi-Facility Location Mechanism Design. In Proceedings of the
27th International Joint Conference on Artificial Intelligence (Stockholm, Sweden)

(IJCAI’18). AAAI Press, 261–267.
[33] Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, and

Pramod Viswanath. 2018. Communication Algorithms via Deep Learning.

arXiv:1805.09317 [stat.ML]

[34] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-

tion. International Conference on Learning Representations (12 2014).
[35] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. 2018. Fair Enough:

Guaranteeing Approximate Maximin Shares. J. ACM 65, 2, Article 8 (Feb. 2018),

27 pages.

[36] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. 2004. On Approximately Fair

Allocations of Indivisible Goods. In Proceedings of the 5th ACM Conference on
Electronic Commerce (New York, NY, USA) (EC ’04). 125–131.

[37] Padala Manisha, C. V. Jawahar, and Sujit Gujar. 2018. Learning Optimal Re-

distribution Mechanisms Through Neural Networks. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS
’18). 345–353.

[38] PasinManurangsi andWarut Suksompong. 2020. WhenDo Envy-Free Allocations

Exist? SIAM Journal on Discrete Mathematics 34 (01 2020), 1505–1521.
[39] Pasin Manurangsi and Warut Suksompong. 2021. Closing Gaps in Asymptotic

Fair Division. SIAM J. Discret. Math. (2021).
[40] Evangelos Markakis. 2017. Approximation Algorithms and Hardness Results for

Fair Division with Indivisible Goods. In Trends in Computational Social Choice,
Ulle Endriss (Ed.). AI Access, Chapter 12, 231–247.

[41] Justin Payan and Yair Zick. 2021. I Will Have Order! Optimizing Orders for Fair

Reviewer Assignment. CoRR abs/2108.02126 (2021). arXiv:2108.02126 https:

//arxiv.org/abs/2108.02126

[42] Ariel D. Procaccia and Hervé Moulin. 2016. Cake Cutting Algorithms. Cambridge

University Press, 311–330.

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional

Networks for Biomedical Image Segmentation. LNCS 9351, 234–241.
[44] Weiran Shen, Binghui Peng, Hanpeng Liu, Michael Zhang, Ruohan Qian, Yan

Hong, Zhi Guo, Zongyao Ding, Pengjun Lu, and Pingzhong Tang. 2017. Reinforce-

ment Mechanism Design, with Applications to Dynamic Pricing in Sponsored

Search Auctions. (2017). arXiv:1711.10279 http://arxiv.org/abs/1711.10279

[45] Weiran Shen, Pingzhong Tang, and Song Zuo. 2019. Automated mechanism

design via neural networks. In Proceedings of the 18th International Conference on
Autonomous Agents and Multiagent Systems. 215–223.

[46] H. STEIHAUS. 1948. The problem of fair division. Econometrica 16 (1948),

101–104.

[47] Andrea Tacchetti, DJ Strouse, Marta Garnelo, Thore Graepel, and Yoram Bachrach.

2019. A Neural Architecture for Designing Truthful and Efficient Auctions. (2019).

http://arxiv.org/abs/1907.05181

[48] William Thomson. 2016. Introduction to the theory of fair allocation. 261–283.
[49] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell.

2019. Neural Execution of Graph Algorithms.

[50] Guanhua Wang, Runqi Guo, Yuko Sakurai, Ali Babar, and Mingyu Guo. 2020.

Mechanism Design for Public Projects via Neural Networks. arXiv preprint
arXiv:2002.11382 (2020).

[51] Guanhua Wang, Runqi Guo, Yuko Sakurai, Ali Babar, and Mingyu Guo. 2020.

Mechanism Design for Public Projects via Neural Networks.

[52] Jakob Weissteiner and Sven Seuken. 2019. Deep Learning-powered Iterative

Combinatorial Auctions. arXiv:1907.05771 [cs.GT]

https://doi.org/10.1007/978-3-030-64946-3_25
https://doi.org/10.1007/978-3-030-64946-3_25
https://arxiv.org/abs/2005.04907
https://arxiv.org/abs/2005.04907
https://arxiv.org/abs/1911.08042
https://arxiv.org/abs/1806.04234
https://arxiv.org/abs/1905.10656
http://arxiv.org/abs/1905.10656
https://arxiv.org/abs/2002.11504
https://arxiv.org/abs/2002.11504
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1805.09317
https://arxiv.org/abs/2108.02126
https://arxiv.org/abs/2108.02126
https://arxiv.org/abs/1711.10279
http://arxiv.org/abs/1711.10279
http://arxiv.org/abs/1907.05181
https://arxiv.org/abs/1907.05771

	Abstract
	1 Introduction
	2 Related Work.
	3 Preliminaries
	4 Our Approach: EEF1-NN
	4.1 Optimization Problem.
	4.2 Network Details
	4.3 Training Details

	5 Experiments and Results
	5.1 Ablation Study
	5.2 Experiment Details and Observations

	6 Conclusion
	References

