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Abstract. Recently, convolutional neural networks (CNNs) and atten-
tionmechanisms have beenwidely used in image denoising and achieved
satisfactory performance. However, the previous works mostly use a sin-
gle head to receive the noisy image, limiting the richness of extracted fea-
tures. Therefore, a novelCNNwithmultiple heads (MH) namedMHCNN
is proposed in this paper, whose heads will receive the input images ro-
tated by different rotation angles. MH makes MHCNN simultaneously
utilize features of rotated images to remove noise. To integrate these
features effectively, we present a novel multi-path attention mechanism
(MPA). Unlike previous attention mechanisms that handle pixel-level,
channel-level, or patch-level features, MPA focuses on features at the
image level. Experiments show MHCNN surpasses other state-of-the-art
CNN models on additive white Gaussian noise (AWGN) denoising and
real-world image denoising. Its peak signal-to-noise ratio (PSNR) results
are higher than other networks, such as BRDNet, RIDNet, PAN-Net, and
CSANN. The code is accessible at https://github.com/JiaHongZ/MHCNN.

Keywords: CNN · Image Denoising · Deep Learning.

1 Introduction

Due to various problems in image acquisition equipment, the collected images
often contain noise that can not be ignored. Image denoising aims to generate a
clean image x from a given noisy image y, modeled as y = x+v. Here v denotes
the noise, and AWGN is commonly used. Recently, CNNs achievedremarkable
results in this task. Compared to traditional denoising methods [5], CNNs can
be trained end-to-end, which are easy to optimize and have better denoising
results.
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Zhang et al. [35] utilized residual learning and batch normalization to con-
struct DnCNN for AWGN denoising, super-resolution, and JPEG deblocking.
Then, [34]wereproposed todeepen thenetwork byresidual connections andgot
better results than DnCNN. Some works such as BRDNet [29] and DHDN [24]
showed thatwidening thenetwork canalso improvethedenoising performance.
However, thesemethods usedmore convolution layers, increasing the computa-
tional complexity. Therefore, it is essential to extract features effectively.

The attention mechanism is commonly used to increase the CNN’s capacity
and flexibility of extracting image features. This paper classifies the previous at-
tentionmechanisms into three types: pixel-level, channel-level, and patch-level.
For pixel-level attention, the non-local operation is a classical method in image
restoration. Itmakes full useof the information fromadjacentpixels andachieves
success in image restoration [20], image resolution [7] and image denoising [33,
23]. Channel-level attention weights each feature channel and pays more atten-
tion to those important channels so that it improves denoising performance [2].
CSANN[31]andMRSNet [19] combinedpixel-level attentionwith channel-level
attention to get better denoising results than that of single attention. For patch-
level attention, it can establish the relation between image patches and achieve
good results in image enhancement [3].

Although these methodsmentioned above achieved high performance, only
one input head limits their abilities of extracting full features. This paper sug-
gests that considering multiple rotation angles of the input image will get better
results than one angle. It is different from the rotation pre-processing of data
enhancement. Data enhancement can make CNNs learn the translated image
features, but these features can not be simultaneously used because of the sin-
gle input head limitation. We take a step to propose a multi-head convolutional
neural network (MHCNN) with multi-path attention (MPA), which achieves
state-of-the-art results. The different heads of MHCNN receive the input im-
ages rotated around the center to obtain rich features. MPAwill integrate these
features from different CNN heads to remove noise effectively, which is quite
different from the previous attention mechanisms because MPA is image-level.
The superiority of the proposed MHCNN is described in Section 4 and 5.

The main contributions of this paper are as follows:

(1) WeproposeanoveldenoisingnetworkMHCNN. Itsmultipleheads (MH)
will utilize features from multiple rotation angles of the input image.

(2) A novel attention module MPA is proposed to integrate the features
from the different CNNheads.MPAfocuses on image-level features rather than
previous pixel-level, channel-level, and patch-level features.

(3) Ablation experiments show that theproposedMHwithMPAmechanism
ispluggableandcanimprovethedenoisingperformanceofthesingleheadmodel.

(4) The proposed MHCNN can achieve state-of-the-art AWGN and real-world
image denoising.
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2 Related work

Image denoising has received extensive attention for its indispensable role in
many practical applications. This paper focuses on the CNN-based image de-
noising.

2.1 CNNs for image denoising

In [16], Jain et al. claimed that CNNs have similar or even better representation
power than traditional denoising models. Then, Zhang et al. [35] achieved fast
and stable training and good denoising performance by integrating the residual
learning andbatch normalization toCNN. Singh et al. [27]usedResNet blocks to
construct the network andget better results than common convolution layers. In
additiontodeepeningthenetwork,widening thenetworkisalsoaneffectiveway.
BRDNet [29] is two-path networks and get better results than the single-path
networks. U-Net-based networks such as MWCNN [21] and DHDN [24] are three-
path network architecture. They further improved the denoising performance.
However, these methods only consider one angle of the input image, resulting
in extracting insufficient features. The proposed MHCNN uses MH to receive
image features of multiple rotation angles to solve this problem.

2.2 Attention mechanisms for image denoising

Only MH is not enough because features from these heads need effective pro-
cessing. Using attention mechanism is a popular method to increase this ability
of CNNs. For pixel-level, non-local attention is commonly used, which restores
the damaged pixel using its neighbors [20,33]. Some other pixel-level attention
mechanisms use attention to guide the previous stage for image denoising. In
ADNet [28], this guidance is achieved by convolution and multiplation opera-
tion. In PAN-Net [23], proportional-integral-derivative (PID) is used to get the
guidance. Channel-level attention in RIDNet [2] utilized the relationship be-
tween the channel features to exploit and learn the critical content of the image.
It achieves satisfying results both on AWGN and real-world image denoising.
Patch-level attention is often used in vision transformer, which establishes the
connection between image patches [8,3]. These attention methods also have the
limitation of a single head. Wepropose a novel image-level MPA, which effec-
tively integrate the features from the different heads of MHCNN.

3 The ProposedMethod

3.1 Network architecture

Fig. 1 shows the proposedMHCNN. Given a noisy image, we firstly rotate it by
0°, 90°, and 180°to construct the inputs of the three heads. The main body of
MHCNN consists of three parts as follows:
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Fig. 1. The architecture of MHCNN. The feature extraction module consists of three
heads to receive the input images with different rotation angles. Path_block is used
to extract features from the different heads. MPA will integrate the features and get
noisemaps by the residual connection. At the end ofMHCNN, noise processing module
makes a further process to noise maps and genarates the estimated noise, where ECA is
the effective channel attention layer [30]. Path_block and Tail are made up of densely
connected blocks.

Multi-head feature extraction module Traditional CNN denoisers have
a single head to receive the noisy image, which extracts limited features. We
introduceMHthatutilizes the features fromnoisy imageswith different rotation
angles. For each head, we use Path_block shown in Fig. 1 to extract features.
Path_block is a variant of Densnet block [13]. We first execute a 1 1 convolution
operation togenerate 128 featuremaps. These featuremaps areprocessedby two
densely connected blocks composed of three C+PR followed by one C+BN+R.
Here C is convolution layer, BN is batch normalization [15], R is ReLU [18]
and PR is parametric rectified linear unit [11]. Convolution layers in densely
connected blocks are set kernel size 3 3, stride 1, and padding 1. Ablation
experiments in Section 5 show that MH improves the denoising performance.

MPA MH extracts features from multiple rotation angles of the input image.
We assume that the rotated images contain many common features with the
original one. In contrast, whether the image is rotated or not, the noise is in-
dependent. MPA module is designed to integrate the common features from
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Fig. 2. The architecture of MPA module.

different CNN heads, shown in Fig. 2. The input of MPA consists of x, xr1, xr2,
which corresponds to the features of 0°, 90°, 180°rotated images, respectively.
These three inputs have the same size (b, c, h, w), where b is the batch size, c is
the number of channels, h and w are the height and width of the features. We
use 1 1 convolution to process the input so that it endows MPA the learning
ability. After the convolution operations, there are three data flows, xr1, x, and
xr2. For xr1 flow, we reshape x to (b, h, c, w) and xr1 to (b, h, w, c), and then
multiply them by matrix multiplication. This multiplication projects x to space
of xr1, which gets a fusion representation of the image and rotated image. Then,
it is normalized by instance norm (IN) [14] and is reshaped to (b, h, c, c). We
subsequently project the (b, h, c, c) fusion representation to the space of x by
multiplying it with another (b, h, c, w) x. Normalization and resizing are used
again, and we finally project the xr1 to x. According to Fig. 2, the projection
xr1_p can be represented as follows:

xr1_p = Reshape(IN (Reshape(IN (Reshape(Conv(x))
×Reshape(Conv(xr1)))) × Reshape(Conv(x))))

(1)

The projection from xr2 to x denoted as xr2_p is similar to xr1_p. For flow
x, it remains the same. At the end of MPA, we concatenate these three data
flows together. Thus the output of MPA is as follows:

MPA(xr1, xr2, x) = Conv(Concat(xr1_p, xr2_p, x)) (2)

MPA projects the rotated images onto the original image through transfor-
mation. This image-level operation can effectively extract image features. The
relevant analysis is in Section 5.2.

Noise processingmodule The output of MPA is the integrated features con-
taining 128 3 channels. We subtract these features from the 0°rotated image to
obtain noise maps, which are used as the input of the noise processing module.
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Table 1. PSNR (dB) results for different networks on Set12 with noise levels of 15, 25,
50.

Methods σ = 15 σ = 25 σ = 50
BM3D[5] 32.37 29.97 26.72
DnCNN[35] 32.86 30.43 27.18
FFDNet[36] 32.77 30.44 27.32
ADNet[28] 32.98 30.58 27.37
BRDNet[29] 33.03 30.61 27.45
CSANN[31] – 30.72 27.64
PAN-Net[23] 33.14 30.90 27.58
MHCNN 33.21 30.84 27.70

Here we use a 1 1 convolution layer to get 128 3 features from the 0°rotated
image. The effective channel attention (ECA) layer [30] is used to weigh the dif-
ferent channels, and the followed Tail block will further process the noise maps,
which is shown in Fig. 1. Tail block consists of four densely connected blocks,
and its output is the estimated noise with 1 channel for gray images or 3 chan-
nels for color images. After Tail, we subtract the estimated noise from the noisy
image to generate the clear image.

Given an input, MHCNN can be represented as:

x = Path_block(input)
xr1 = Path_block(Rot90°(input))
xr2 =Path_block(Rot180°(input))

noise = input − MPA(xr1, xr2, x)
output = input− Tail(ECA(noise))

(3)

Weuse l2 loss as the loss function of the proposed MHCNN, where yi is the
real clear image, outputi is the predicted clear image, and N is the number of
training samples:

L(Θ) = 1 (y
2N i

n

− outputi) , i ∈ [1, N ] (4)

3.2 Training setting

This model is implemented by python 3.5, PyTorch 1.5.1 with Cuda 9.2. The
Adam[17] algorithm is adopted to optimize the trainable parameters. The initial
learning rate is set as 0.0001 anddecreaseswith the increment of training epochs.
Beforetraining,dataaugmentationisemployedbyrandomlydividingtheimages
into 80x80 patches and rotating them by 0°, 90°, 180°, and 270°randomly. The
batch size is set as 128.
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Table 2. Color image denoising results of different networks

Datasets Methods σ = 15 σ = 25 σ = 50
FFDNet[36] 34.69 32.16 29.00
DnCNN[35] 34.55 32.07 28.86

Kodak24 ADNet[28] 34.76 32.26 29.10
BRDNet[29] 34.89 32.44 29.22
PAN-Net[23] 35.41 32.89 29.37
MHCNN 35.12 32.63 29.46
FFDNet[36] 34.71 32.37 29.20
DnCNN[35] 33.46 31.55 28.61

MCMaster ADNet[28]
BRDNet[29]

33.99
35.10

31.31
32.77

28.04
29.52

PAN-Net[23] 35.61 33.08 29.67
MHCNN 35.35 33.01 29.83

Table 3. Results for different networks on real-world noise datasets.

Test Data SIDD validation
Method CBDNet[10] RIDNet[2] VDN[32] MHCNN
PSNR
SSIM

38.68
0.901

38.71
0.914

39.28
0.909

39.06
0.914

Test Data DND
Method CBDNet[10] RIDNet[2] VDN[32] PAN-Net[23] MHCNN
PSNR
SSIM

38.06
0.942

39.26
0.953

39.38
0.952

39.44
0.952

39.52
0.951

4 Experimental Results

4.1 Datasets

MHCNN is tested on the tasks of AWGN denoising and real-world image de-
noising.

ForAWGNdenoising, the training set includes 400 images from [4], 400 im-
ages from the validation set of ImageNet [6] and 4,744 images from theWaterloo
Exploration Database [22]. The AWGNnoise generation algorithm from [35] is
used to generate the noisy images. We trainMHCNN on noise levels 15, 25, and
50, respectively, determined by the Gaussian distribution’s standard deviation
σ. For each noise level, MHCNN is tested on the commonly used datasets Set12
[26] for gray images and MCMaster [37] and Kodak24 [9] for color images.

We use the training set from the Smartphone Image Denoising DATA set
(SIDD) [1] to train MHCNN for real-world image denoising. It includes 160
differentscene instances,andeachsceneinstancehas twopairsofhigh-resolution
images. Each pair includes one noisy image and its corresponding ground-truth
image. In total, there are 320 training image pairs. The testing sets are the
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Fig. 3. Denoising results of the image Monarch from Set12 with noise level σ = 50: (a)
original image, (b) noisy image/14.71 dB, (c) DnCNN[35]/26.78 dB, (d) BM3D[5]/25.82
dB, (e) BRDNet[29]/26.97 dB, and (f) MHCNN/27.12 dB.

SIDD validation and the Darmstadt Noise Data set (DND) [25]. DND includes
50 pairs of images from four consumer cameras. There are no available ground-
truth images online for DND, so we submit the denoising images to the DND
official website to get the results.

4.2 Comparison with other methods

AWGNdenosing The peak signal-to-noise ratio (PSNR) [12] results are shown
inTable1 for gray images andTable2 for color images.MHCNNperforms better
than other methods. At noise level σ = 50, MHCNN gets the best PSNR results
on every dataset, which shows it is powerful for high-level noise.

Wevisualize thedenoising resultsofMHCNNandothermodels. Fig. 3shows
the denoising results of Monarch from Set12 at noise level σ = 50. MHCNN re-
moves the noise well. For color images, the denoising results of the apartment
wall from Kodak24 are shown in Fig. 4. The wall contains rich details informa-
tion,whichisverysuitable forevaluating themodel’sperformance.Thedenoised
image of MHCNN preserves the most details and has the best visual effects.

Real-world image denoising MHCNN has high performance on AWGNnoise
removing.Wealso doexperiments on real-world images to ensure thatMHCNN
can be used in actual denoising tasks.



AMulti-HeadConvolutional Neural Network 9

Fig. 4. Denoising results of the image from Kodak24 with noise level σ = 50: (a)
original image, (b) noisy image, (c)DnCNN[35]/25.80dB, (d) BRDNet[29]/26.33dB,
(e) FFDNet[36]/26.13dB, and (f) MHCNN/26.52dB.

Table 3 lists the results of different methods on SIDD validation and DND.
MHCNN has the best Structure Similarity Index Measure (SSIM) [38] on SIDD
and the best PSNR on DND, demonstrating its superiority. Fig. 5 shows the
denoisingresultonDND,fromwhichweobserve that thenoisehasbeenremoved
successfully. Compared with other models, MHCNN does not smooth the local
area of the noise too much and retains many details.

5 Results andDiscussion

5.1 Ablation Experiments on MH

This section verifies the effectiveness of MH in MHCNN. Table 4 shows the
PSNR results. We firstly study whether the number of heads affects denoising
performance. According to Table 4, as the number of heads decreases, the de-
noising ability of MHCNN decreases. Of course, more heads will lead to more
computation cost. We empirically choose three heads for a balance.

Different rotation angles of the input image are also studied. The results
in Table 4 show that MHCNN (0°, 90°, 270°) and MHCNN (0°, 180°, 270°)
have little impact on the performance. However, MHCNN (0°, 0°, 0°) leads to
a performance degradation. This demonstrates that it is important to consider
different rotation angles simultaneously.
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Fig. 5. Visual comparisons between MHCNN and other models. The test image
was cropped from DND benchmark. (a) Input. (b) CBDNet[10]. (c) RIDNet[2]. (d)
VDN[32]. (e) PAN-Net[23]. (f) MHCNN.

(a) (b) (c)
Fig. 6. Visualization of partial features of the Monarch. (a) is from three heads of
MHCNN without MPA, (b) is from three heads MHCNN and (c) is the output of MPA.

5.2 Ablation Experiments on MPA

MPAachieves two crucial functions. One is integrating features from different
heads of MHCNN. Wevisualized the features of the image Monarch extracted
from each CNN head. As shown in Fig. 6 (b) and (c), the output features ofMPA
have the same angle as x, although the input angles are different. It illustrates
that MPA projects the rotation images to the original image, achieving feature
integration. The other is that MPA helps to extract rich features. Fig. 6 (a) and
(b) show that MHCNN with MPA extracts richer images features, which have
moredetails. Fordenoising performance, Table4 showsMHCNNobtains higher
PSNR results than that without MPA.
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Table 4. Results (PSNR) of ablation experiments on Set12.

Methods σ = 15 σ = 25 σ = 50
MHCNN

MHCNN with 2 heads
MHCNN with 1 head

33.21
33.15
33.10

30.84
30.75
30.71

27.70
27.63
27.58

MHCNN (0°, 0°, 0°) 33.18 30.77 27.63
MHCNN (0°, 90°, 270°) 33.22 30.83 27.70
MHCNN (0°, 180°, 270°) 33.21 30.82 27.69
MHCNN without MPA 33.14 30.75 27.65

Table 5. Results (PSNR) of pluggable MH with MPA on Set12.

Methods σ = 15 σ = 25 σ = 50
DnCNN[35] 32.86 30.43 27.18

Multi-head DnCNN 32.97 30.56 27.32

5.3 Pluggable MH withMPA

We indicate that the MH with MPA mechanism is also valuable for the other
single-headCNNmodels such as DnCNN.Weuse it to replace the first 10 layers
of DnCNN to keep the network depth unchanged for a fair comparison. The
PSNR results are shown in Table 5, which demonstrates that adding MH with
MPAsignificantly improves DnCNN.

6 Conclusion

This paperproposes anoveldenoisingnetworknamedMHCNN. It has the start-
of-the-art results forAWGNdenoising and real-world image denoising. TheMH
with MPA mechanism in MHCNN is proved effective by the ablation experi-
ments. In addition, this mechanism can also be added to other models to im-
proveperformance.AlthoughMHwill causemanyparameters and calculations,
excellent parallelism can solve this problem.MHCNN adopts three CNN heads
to obtain image features to balance computing costs. Furthermore, more CNN
heads can be used to improve the denoising effect in practical applications. MH
withMPAis a valuable attentionmechanism, andwewill exploitMHwithMPA
in image recognition and other visual tasks in the future.

Acknowledgment

This paper is supported by the National Natural Science Foundation of China
(grant no. 62176241) and theNational Key Research andDevelopment Program
of China (grant No. 2021ZD0200300) and the Open Project Program of the State



Jiahong Zhang , Meijun Qu, YeWang, and Lihong Cao (B)12

Key Laboratory of Mathematical Engineering and Advanced Computing(grant
no. 2020A09).

References

1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smart-
phone cameras. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 1692–1700 (2018)

2. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV). pp. 3155–3164
(2019)

3. Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., Gao,
W.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 12299–12310 (2021)

4. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework
for fast and effective image restoration. IEEE Transactions on Pattern Analysis
and Machine Intelligence 39(6), 1256–1272 (2017)

5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE Transactions on Image Processing
16(8), 2080–2095 (2007)

6. Deng, J., Russakovsky, O., Krause, J., Bernstein, M.S., Berg, A., Fei-Fei, L.: Scal-
ablemulti-label annotation. In: Proceedings of the SIGCHIConference onHuman
Factors in Computing Systems. pp. 3099–3102 (2014)

7. Dian, R., Fang, L., Li, S.: Hyperspectral image super-resolution via non-local sparse
tensor factorization. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3862–3871 (2017)

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A.,Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXivpreprint
arXiv:2010.11929 (2020)

9. Franzen, R.: Kodak lossless true color image suite: Photocd pcd0992
10. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind

denoising of real photographs. In: 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 1712–1722 (2019)

11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: 2015 IEEE International Confer-
ence on Computer Vision (ICCV). pp. 1026–1034 (2015)

12. Horé, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th International
Conference on Pattern Recognition. pp. 2366–2369 (2010)

13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 2261–2269 (2017)

14. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 1501–1510 (2017)

15. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448–456. PMLR (2015)



AMulti-HeadConvolutional Neural Network 13

16. Jain, V., Seung, S.: Natural image denoising with convolutional networks. In:
Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural In-
formation Processing Systems. vol. 21. Curran Associates, Inc. (2009)

17. Kingma, D.P., Ba, J.: Adam: Amethod for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25,
1097–1105 (2012)

19. Li, B., Wang, J., Zhang, J.: Mrsnet: A spatial and channel attention integration
network considering multi-resolution improves image denoising. In: 2021 7th In-
ternational Conference on Computer and Communications (ICCC). pp. 719–724.
IEEE (2021)

20. Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for
image restoration. In: Proceedings of the 32nd International Conference on Neural
Information Processing Systems. p. 1680–1689. NIPS’18, Curran Associates Inc.,
Red Hook, NY, USA (2018)

21. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-cnn for im-
age restoration. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). pp. 886–88609 (2018)

22. Ma, K., Duanmu, Z., Wu, Q., Wang, Z., Yong, H., Li, H., Zhang, L.: Waterloo
exploration database: New challenges for image quality assessment models. IEEE
Transactions on Image Processing 26(2), 1004–1016 (2017)

23. Ma, R., Zhang, B., Zhou, Y., Li, Z., Lei, F.: Pid controller-guided attention neural
network learning for fast and effective real photographs denoising. IEEE Transac-
tions on Neural Networks and Learning Systems pp. 1–14 (2021)

24. Park,B.,Yu,S., Jeong, J.:Densely connectedhierarchicalnetworkfor imagede-
noising. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW). pp. 2104–2113 (2019)

25. Plötz, T., Roth, S.: Benchmarking denoising algorithmswith real photographs. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
2750–2759 (2017)

26. Roth, S., Black, M.: Fields of experts: a framework for learning image priors. In:
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). vol. 2, pp. 860–867 vol. 2 (2005)

27. Singh, G., Mittal, A., Aggarwal, N.: Resdnn: deep residual learning for natural
image denoising. IET Image Processing 14(11), 2425–2434 (2020)

28. Tian, C., Xu, Y., Li, Z., Zuo, W., Fei, L., Liu, H.: Attention-guided cnn for image
denoising. Neural Networks 124, 117–129 (2020)

29. Tian, C., Xu, Y., Zuo, W.: Image denoising using deep cnn with batch renormal-
ization. Neural Networks 121, 461–473 (2020)

30. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: Efficient channel
attention for deep convolutional neural networks, 2020 ieee. In: CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE (2020)

31. Wang, Y., Song, X., Chen, K.: Channel and space attention neural network for
image denoising. IEEE Signal Processing Letters 28, 424–428 (2021)

32. Yue, Z., Yong, H., Zhao, Q., Zhang, L., Meng, D.: Variational denoising network:
Toward blind noise modeling and removal. arXiv preprint arXiv:1908.11314 (2019)

33. Zhang, J., Cao, L.,Wang, T., Fu,W., Shen,W.: Nhnet: A non-local hierarchical
network for image denoising. IET Image Processing (2022)



Jiahong Zhang , Meijun Qu, YeWang, and Lihong Cao (B)14

34. Zhang, J., Zhu, Y., Li, W., Fu, W., Cao, L.: Drnet: A deep neural network with
multi-layer residual blocks improves image denoising. IEEE Access 9, 79936–79946
(2021)

35. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE Transactions on Image
Processing 26(7), 3142–3155 (2017)

36. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: Toward a fast and flexible solution for cnn-
based image denoising. IEEE Transactions on Image Processing 27(9), 4608–4622
(2018)

37. Zhang, L., Wu, X., Buades, A., Li, X.: Color demosaicking by local directional
interpolation and nonlocal adaptive thresholding. Journal of Electronic imaging
20(2), 023016 (2011)

38. Zhou, W.: Image quality assessment: from error measurement to structural simi-
larity. IEEE transactions on image processing 13, 600–613 (2004)


	1Introduction
	2Related work
	2.1CNNs for image denoising
	2.2Attention mechanisms for image denoising

	3The Proposed Method
	3.1Network architecture
	3.2Training setting

	4Experimental Results
	4.1Datasets
	4.2Comparison with other methods

	5Results and Discussion
	5.1Ablation Experiments on MH
	5.2Ablation Experiments on MPA
	5.3Pluggable MH with MPA

	6Conclusion
	Acknowledgment
	References

