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Abstract. Accurately identifying patient’s status through medical im-
ages plays an important role in diagnosis and treatment. Artificial in-
telligence (AI), especially the deep learning, has achieved great success
in many fields. However, more reliable AI model is needed in image
guided diagnosis and therapy. To achieve this goal, developing a bal-
anced, safe and robust model with a unified framework is desirable. In
this study, a new unified model termed as automated multi-objective
Mixer (AutoMO-Mixer) model was developed, which utilized a recent
developed multiple layer perceptron Mixer (MLP-Mixer) as base. To
build a balanced model, sensitivity and specificity were considered as the
objective functions simultaneously in training stage. Meanwhile, a new
evidential reasoning based on entropy was developed to achieve a safe
and robust model in testing stage. The experiment on an optical coher-
ence tomography dataset demonstrated that AutoMO-Mixer can obtain
safer, more balanced, and robust results compared with MLP-Mixer and
other available models.

Keywords: Image guided diagnosis and therapy · reliable artificial in-
telligence · balance · safe · robustness.

1 Introduction

With the development of modern medicine, medical image has become an es-
sential tool to carry out personalized and accurate diagnosis. Due to the strong
ability to analyze image, deep learning has been widely used in medical image
analysis and has achieved great success [1,2] in the past years. However, many
current available models can also lead to unreliable predictions. For example,
the car’s perception system misclassified the white part of the trailer into the
sky, resulting in a fatal accident [3]. As such, different from other application
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fields such as face recognition, nature image classification, model reliability is
more important in medicine as it is related to human life and health. On the
other hand, we not only need to obtain the accurate prediction results, but also
need to know whether the outcome is reliable or not. To realize this abstract
goal by considering the clinical needs, we believe that building a unified model
to achieve balance, safe and robust is desirable.

Currently, most prediction models use a single objective (e.g., accuracy,
AUC) [4,5] function in the model training. However, the imbalanced sensitiv-
ity and specificity may result in higher rate of missed diagnosis [6]. Therefore, a
multi-objective model which considers sensitivity and specificity simultaneously
is needed. So far, there have been some studies on multi-objective optimiza-
tion [7,8].

Furthermore, since most models are data-driven based strategy, it is hard
to evaluate whether the prediction outcome for an unseen sample is reliable or
not. A possible solution is evaluating the model output by introducing a “third
party” to independently estimate the model reliability or uncertainty. There have
been several studies on uncertainty estimation for deep learning. [9] proposed
a framework based on test-time data augmentation to quantify the diagnostic
uncertainty in deep neural networks. [10] used the prediction of the augmented
images to obtain entropy to estimate uncertainty.

Meanwhile, it is found that the model built based on the dataset collected
from one institution always obtain bad performance when the testing dataset is
from another institution [11,12,13], demonstrating the poor robustness. On the
other hand, a reliable model should always work well across the multiple insti-
tutions. Several studies have investigated this issue. Adversarial attack is one of
the most serious factors that cause models not to be robust [14]. Some attackers
perturbated test reports to obtain medical compensation [15]. Adversarial ex-
amples lead to wrong decisions that can cause dangerous effects on the patient’s
life [16]. [17,18] evaluated the robustness of the model with adversarial attacks.

In summary, there have been several studies on building balanced, safe and
robust model independently, but there is no unified framework that can achieve
three goals simultaneously. As such, a new automated multi-objective Mixer
(AutoMO-Mixer) model based on multiple layer perceptron Mixer (MLP-Mixer)
is developed in this study to build a more reliable model. In AutoMO-Mixer,
both sensitivity and specificity were considered as the objective functions simul-
taneously and a Pareto-optimal model set can be obtained through the multi-
objective optimization [20] in training stage. In testing stage, the Pareto-optimal
models with balanced sensitivity and specificity were chosen so as to improve
model balance. To obtain safer and more robust model, evidential reasoning
based on entropy (ERE) approach was developed to fuse the outputs of Pareto-
optimal models to obtain the final outcome. The experimental studies on optical
coherence tomography (OCT) dataset demonstrated that AutoMO-Mixer can
outperform MLP-Mixer and other deep learning models, and more balanced,
robust and safer results can be achieved as well.
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2 Method

2.1 Overview

The framework of AutoMO-Mixer is shown in Fig. 1, which consists of training
and testing stages. To build a balanced model, both sensitivity and specificity
are considered as objective functions simultaneously in training stage, and a
Pareto-optimal model set is generated then. To build a safer and more robust
model, ERE strategy is developed to fuse the probability outputs of multiple
Pareto-optimal models in testing stage.

Fig. 1. The framework of AutoMO-Mixer model.

2.2 MLP-Mixer

Since the computational complexity is increased sharply when there are more
parameters in multi-objective learning, it is better to have fewer parameters in
model training. The recently proposed MLP-Mixer [19] model is a full MLP ar-
chitecture. Compared with CNN, the convolutional layer is removed from MLP-
Mixer, leading to decreasing the scale of the architecture parameters sharply.
On the other hand, MLP-Mixer can achieve similar performance to CNN [19].
Therefore, it is a better choice in multi-objective learning.

2.3 Training stage

In training stage, sensitivity denoted by fspe and specificity denoted by fsen are
considered as objective functions simultaneously, they are:

fsen =
TP

TP + FN
(1)
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Fig. 2. The illustration of training stage.

fspe =
TN

TN + FP
(2)

where TP and TN represent the number of true positives and true negatives,
FP and FN are the number of false positives and false negatives, respectively.

Assume M = {m1, ...,mq} denotes the MLP-Mixer model, where q repre-
sents the number of model parameters. To obtain the balanced models, we aim
to maximize fsen, fspe simultaneously, and an iterative multi-objective immune
algorithm (IMIA) [20] is used. IMIA consists of six steps: initialization, cloning,
mutation, deletion, update, and termination. First, the initial model set denoted
by D(t) = {M1, ...,MN} is generated , where Mi = {mi1, ...,miq}, i = 1, 2, ..., N .
Then the models with higher fsen, fspe will be replicated using the proportional
cloning method. In the third step, a probability of mutation is randomly gener-
ated for each model, and the model performs mutation when its probability is
larger than the mutation probability (MP). After the mutation, the new models
are generated. If some models have same sensitivity and specificity, only one
model is remained. Then the model set size is kept through AUC based non-
dominated sorting strategy. The training process will not stop until the maxi-
mum number of iterations is reached. Finally, the Pareto-optimal Mixer model
set is generated, where the model set size is J. Since the two hyperparameters
MP and λ may affect the model performance, Bayesian optimization [21] is used
to optimize the hyperparameters. The illustration of the training phase is shown
in Fig. 2.

2.4 Testing stage

In testing stage, the probability outputs of Pareto-optimal models are fused
through the evidential reasoning [22,23] based on entropy approach. The work-
flow is shown in Fig. 3.
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Fig. 3. The illustration of testing stage.

Weight calculation Since the performance of different Pareto-optimal models
cannot be the same, the weight for each model should be estimated, which is
denoted by wj . As the balanced model between sensitivity and specificity is
desired, the ratio between them is considered in the weight calculation, that is
fsen
fspe

or fspe
fsen

. When the ratio is less than 0.5 or greater than 1, the model is
considered as extreme imbalance, setting wj as 0. Meanwhile, AUC is a good
measure for model reliability, it is also considered. The expression of wj is as
follows:

wj =


λ

fj
sen

fj
spe

+ (1− λ)AUCj , when 0.5 ≤ fj
sen

fj
spe
≤ 1

λ
fj
spe

fj
sen

+ (1− λ)AUCj , when 0.5 ≤ fj
spe

fj
sen
≤ 1, j = 1, 2, ..., J

0 Other situations

(3)

where λ indicates the importance of balance, and 1−λ indicates the importance
of AUC. After calculating the wj for each model, the weights are normalized.

Uncertainty estimation Test-time data augmentation (TTA) [9,10] is used
to perform useful estimates of model uncertainty. The test image is fed into
model Mj , j = 1, 2, ..., J to generate the probability output pc

j
, c = 1, 2, where

p1j + p2j = 1. The original test image is enhanced T times to generate prediction
pcj,t, t = 1, 2, ..., T . The mean class probability pcj and the uncertainty uj are:

pc
j
=

1

T

T∑
t=1

pc
j,t
, c = 1, 2 (4)

uj = −
2∑

c=1

pcj log(p
c
j) (5)

To satisfy the conditions of the ERE strategy, pcj and uj are normalized so
that p1

j
+ p2

j
+ uj = 1.
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ERE strategy Assume that the output probability for each model is denoted
by pj = {p1j , p2j}, p1j + p2j ≤ 1, j = 1, 2, ..., J . If p1j + p2j < 1, it shows that the
jth model has uncertainty uj on its output. Then the final output probability
pcfin, c = 1, 2 and uncertainty ufin are obtained through the ERE fusion strategy.
that is:

pcfin, ufin = ERE(pcj , uj , wj), j = 1, 2, ..., J, c = 1, 2 (6)

where ERE is:

pcfin =

µ× [
J∏

j=1

(wjp
c
j + 1− wj(p

1
j + p2j ))−

J∏
j=1

(1− wj(p
1
j + p2j ))]

1− µ× [
J∏

j=1

(1− wj)]

, c = 1, 2 (7)

ufin =

µ× [
J∏

j=1

(1− wj(p
1
j + p2j ))−

J∏
j=1

(1− wj)]

1− µ× [
J∏

j=1

(1− wj)]

(8)

The normalized factor µ is:

µ = [

2∑
c=1

J∏
j=1

(wjp
c
j + 1− wj(p

1
j + p2j ))−

J∏
j=1

(1− wj(p
1
j + p2j ))]

−1 (9)

2.5 Robustness evaluation

In this study, fast gradient sign method (FGSM) [24] is used to disturb the
original samples, which is a white box attack with full information of the models.
Adversarial samples are generated by the following formula:

xa = x+ δ (10)

where xa represents the adversarial sample, x represents the original sample. δ
represents the perturbation. The degree of perturbation is controlled by ε. In
our study, ACC is used to evaluate robustness [18].

3 Experiments

3.1 Experimental setup

The dataset used in this study was collected from the Second Affiliated Hos-
pital of Xi’an Jiaotong University (Xi’an, China), including 228 patients with
Choroidal neovascularization (CNV) and cystoid macular edema (CME) between
October 2017 and October 2019. First, OCT images of each patient were ac-
quired via the Heideberg Retina Tomograph-IV (Heidelberg Engineering, Heidel-
berg, Germany). These patients were then injected with anti-vascular endothelial
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Table 1. The range of values for MLP-Mixer network structure parameters.

parameters range of values
Number of layers [2, 3, 4]
Hidden size C 256*[1, 1.2, 1.4, 1.6]

MLP dimension Ds 196*[2, 3, 4, 5]
MLP dimension Dc 256*[2, 4, 6, 8, 10]

Table 2. The evaluation results on OCT dataset.

models SEN SPE AUC ACC min(SEN,SPE)
max(SEN,SPE)

MLP-Mixer 0.611±0.052 0.703±0.077 0.709±0.041 0.671±0.038 0.869
ResNet-18 0.728±0.075 0.706±0.071 0.791±0.046 0.714±0.052 0.970

AutoMO-Mixer 0.778±0.000 0.779±0.000 0.844±0.000 0.779±0.000 0.999

growth factor (anti-VEGF) and the evaluations were made after 21 days. Among
them, anti-VEGF was effective for 171 patients, and the remaining 57 patients
had no sign of effectiveness. The study was approved by the Research Ethics
Committee, and each patient provided written informed consent. In our study,
we built a binary classifier to determine whether anti-VEGF would be effective
for patients using OCT images. In the training stage, there were 135 effective
cases and 44 ineffective cases. In the testing stage, there were 34 and 12, respec-
tively, in these two classes.

Before being fed into the model, all the images were resized into 224 x 224.
MP and λ were set to 0.5 and 0.8, respectively. The MLP-Mixer contains four
parameters, these settings are shown in Table 1.

As AutoMO-Mixer was built based on MLP-Mixer and ResNet-18 is a classi-
cal deep learning model, they were used in comparative study. The four parame-
ters in MLP-Mixer network were set to 5, 256, 392, 1024, respectively, and trans-
fer learning was used on ResNet-18 as pre-training. Sensitivity (SEN), specificity
(SPE), area Under Curve (AUC), and accuracy (ACC) were used for evaluation.
All the experiments were performed five times, and mean and standard deviation
were evaluated.

3.2 Results

The evaluation results on MLP-Mixer, ResNet-18 and AutoMO-Mixer are shown
in Table 2. In this study, min(SEN,SPE)

max(SEN,SPE) was used to assess the balance of the
model. It can be seen that AutoMO-Mixer model is the most balanced. In addi-
tion, both the AUC and ACC of the AutoMO-Mixer are better than the other
two models.

Safety evaluation In this study, the uncertainty estimation was used to mea-
sure model safety. If the performance of the model can improve as the number
of test samples with high uncertainty decreases, it is indicated that the model
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Table 3. Model performance of the test cohorts stratified by the uncertainty.

uncertainty SEN SPE AUC ACC
0.4245 0.778 0.779 0.844 0.779
0.4206 0.783 0.796 0.860 0.792
0.4165 0.818 0.829 0.823 0.827
0.4045 1.000 0.895 1.000 0.920

Fig. 4. Comparison of the robustness between the AutoMO-Mixer, ResNet-18 and
AutoMO-Mixer models.

is safe. The entire test samples were arranged from smallest to largest in order
of uncertainty, with the maximum uncertainty being 0.4245, the upper quartile
being 0.4206, the median being 0.4165, and the lower quartile being 0.4045. Sam-
ples with less uncertainty than them were grouped into four cohorts, and the
evaluation results are shown in Table 3. It can be seen that the lower the cutoff
uncertainty is, the better the model’s performance is, indicating our model can
assess whether the prediction is safe based on uncertainty.

Robustness After the original samples were attacked by FGSM, indistinguish-
able adversarial samples were generated. We measured the accuracy of adversar-
ial samples in each model in Fig. 4. It is obvious that except slightly less when
ε=0.06, the robustness of AutoMO-Mixer is better than the other as a whole.

4 Conclusions

In this study, a new model termed as AutoMO-Mixer was developed for im-
age guided diagnosis and therapy. In AutoMO-Mixer, sensitivity and specificity
were considered as the objective functions simultaneously and a Pareto-optimal
Mixer model set can be obtained in training stage. In testing stage, ERE was
used to obtain safer and more robust results. The experimental results on OCT
dataset showed that AutoMO-Mixer outperformed MLP-Mixer and ResNet-18
in balance, safe and robustness.
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