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Abstract. Due to their extreme long-range modeling capability, vision
transformer-based networks have become increasingly popular in de-
formable image registration. We believe, however, that the receptive field
of a 5-layer convolutional U-Net is sufficient to capture accurate defor-
mations without needing long-range dependencies. The purpose of this
study is therefore to investigate whether U-Net-based methods are out-
dated compared to modern transformer-based approaches when applied
to medical image registration. For this, we propose a large kernel U-Net
(LKU-Net) by embedding a parallel convolutional block to a vanilla U-
Net in order to enhance the effective receptive field. On the public 3D
IXI brain dataset for atlas-based registration, we show that the perfor-
mance of the vanilla U-Net is already comparable with that of state-
of-the-art transformer-based networks (such as TransMorph), and that
the proposed LKU-Net outperforms TransMorph by using only 1.12%
of its parameters and 10.8% of its mult-adds operations. We further
evaluate LKU-Net on a MICCAI Learn2Reg 2021 challenge dataset for
inter-subject registration, our LKU-Net also outperforms TransMorph
on this dataset and ranks first on the public leaderboard as of the sub-
mission of this work. With only modest modifications to the vanilla U-
Net, we show that U-Net can outperform transformer-based architectures
on inter-subject and atlas-based 3D medical image registration. Code is
available at https://github.com/xi-jia/LKU-Net.

1 Introduction

Deformable image registration, a fundamental task in medical image analysis,
aims to find an optimal deformation that maps a moving image onto a fixed
image. The problem can be formulated as the minimization problem including
a data fidelity term that measures the distance between the fixed and warped
moving image and a regularization that penalizes non-smooth deformations.


https://github.com/xi-jia/LKU-Net
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Fig. 1. Displacement fields computed from the IXI brain dataset. The left figure plots
the displacement vectors in voxel averaged over the whole training data (average lengths
of these vectors along z-axis, y-axis, and z-axis are 2.1 voxels, 2.3 voxels, and 1.4
voxels, respectively). The right figure is an illustration of the left figure where vectors
are represented by a sphere, the size of which is much smaller than the cubic which
represents the true size of the volumetric image.

Many iterative optimization approaches [321124] have been proposed to tackle
intensity-based deformable registration, and shown great registration accuracy.
However, such methods suffer from slow inference speeds and manual tuning for
each new image pair. Though some works, such as Nesterov accelerated ADMM
[22], propose certain techniques to accelerate the computation, their speed still
does not compare to approaches based on deep learning. Due to their fast infer-
ence speed and comparable accuracy with iterative methods, registration meth-
ods based on deep neural networks [A255I27ITITIIT] have become a powerful
benchmark for large-scale medical image registration.

Deep learning based registration methods [255/I8IT9] directly take moving
and fixed image pairs as input, and output corresponding estimated deforma-
tions. Most deep neural networks use a U-Net style architecture [20] as their
backbone and only vary preprocessing steps and loss functions. Such an archi-
tecture includes a contraction path to encode the spatial information from the
input image pair, and an expansion path to decode the spatial information to
compute a deformation field (or stationary velocity field). Inspired by the suc-
cess of the transformer architecture [23], several recent registration works [26//7/6]
have used it as the backbone to replace the standard U-Net. In this study, we
investigate whether U-Net is outdated compared to modern transformer archi-
tectures, such as the new state-of-the-art TransMorph [6], for image registration.

The motivation for this work can be found in Fig. [T, where we plotted the
average voxel displacement fields of the IXI brain dataset estimated by Trans-
Morph. We notice that the average length of displacements along z-axis, y-axis,
and z-axis are 2.1 voxels, 2.3 voxels, and 1.4 voxels, respectively. These displace-
ments are very small compared to the actual volumetric size (160x192x224) of
the image. Therefore, we argue that it may not be necessary to adopt a trans-
former to model long-range dependencies for deformable image registration. In-
stead, we propose a large kernel U-Net (LKU-Net) by increasing the effective
receptive field of a vanilla U-Net with large kernel blocks and show that our
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LKU-Net outperforms TransMorph by using only 1.12% of its parameters and
10.8% of its mult-adds operations.

2 Related Works

U-Net-based registration: First published in 2015, U-Net [20] and its vari-
ants have proved their efficacy in many image analysis tasks. VoxelMorph [4/5],
one of the pioneering works for medical image registration, used a five-layer U-
Net followed by three convolutional layers at the end. The network receives a
stacked image pair of moving and fixed images and outputs their displacements.
To train the network, an unsupervised loss function was used which includes a
warping layer, a data term, and a regularization term. VoxelMorph has achieved
comparable accuracy to state-of-the-art traditional methods (such as ANTs [3])
while operating orders of magnitude faster. Inspired by its success, many sub-
sequent registration pipelines [25127J18/T3] used the U-Net style architecture as
their registration network backbone. Among them, some works [27[13] cascaded
multiple U-Nets to estimate deformations. An initial coarse deformation was first
predicted and the resulting coarse deformation then refined by subsequent net-
works. This coarse-to-fine method usually improves the final performance, but
the number of cascaded U-Nets is restricted by the GPU memory available, so
training them on large-scale datasets may not be feasible with small GPUs. In
this work we show that, without any cascading, a single U-Net style architecture
can already outperform transformer-based networks.

Transformer-based registration: Transformer [23] is based on the at-
tention mechanism, and was originally proposed for machine translation tasks.
Recently, this architecture has been rapidly explored in computer vision tasks
[11UT5], because it successfully alleviates the inductive biases of convolutions and
is capable of capturing extreme long-range dependencies. Some recent registra-
tion methods [7J6l26] have embedded the transformer as a block in the U-Net
architecture to predict deformations. Building on a 5-layer U-Net, Zhang et al.
[26] proposed a dual transformer network (DTN) for diffeomorphic image reg-
istration, but such a dual setting requires lots of GPU memory and greatly in-
creases the computational complexity. As such, DTN can only include one trans-
former block at the bottom of the U-Net. Chen et al. [7] proposed ViT-V-Net by
adopting the vision transformer (ViT) [II] block in a V-Net style convolutional
network [I7]. To reduce the computational cost, they input encoded image fea-
tures to ViT-V-Net instead of image pairs. Their results were comparable with
VoxelMorph. The authors of ViT-V-Net [7] later improved upon ViT-V-Net and
proposed TransMorph [6] by adopting a more advanced transformer architecture
(Swin-Transformer [I5]) as its backbone. They conducted thorough experiments
and showed the superiority of their TransMorph [6] over several state-of-the-art
methods. In this work, we show that our proposed LKU-Net can outperform
TransMorph on both inter-subject and atlas-subject brain registration tasks.
We conclude in the end that fully convolutional U-Net architectures are still
competitive in medical image registration.
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Fig. 2. Blocks used in the vanilla U-Net, TransMorph, and LKU-Net. The vanilla U-Net
uses the same blocks in both the encoder and decoder, each of which consists of multiple
sequential 3x3 convolutional layers. TransMorph replaces four convolutional blocks in
the encoder with transformer-based blocks, each of which is built on a combination of
layer norm (LN), multi-head self-attention (MHA), and multi-layer perceptron (MLP).
For a fair comparison with TransMorph, we use four LK blocks in LKU-Net, each of
which contains one identity shortcut and three parallel convolutional layers (that have
the kernel sizes of 1x1, 3x3, and k X k, respectively). The outputs of each LK block
are then fused by an element-wise addition.

3 Large Kernel U-Net (LKU-Net)

Large kernel (LK) block: According to [I], it is easy to compute that the
receptive field of a vanilla 5-layer U-Net is large enough to cover the area
which could impact the deformation field around a given voxel. However, as
per RepVGG [9] and RepLK-ResNet [10], in practice the effective receptive field
(ERF) of a convolutional network is much smaller than the one we compute. We
therefore adopt a LK block to increase the effective receptive field. Specifically,
in each LK block, there are four parallel sub-layers, including a LK convolutional
layer (k x k X k), a 3x3x3 layer, a 1x1x1 layer, and an identity shortcut. The
subsequent outputs of these sub-layers are then element-wisely added to pro-
duce the output of a LK block, as shown in Fig. 2] The parallel paths in each
LK block not only handle distant spatial information but also capture and fuse
spatial information at a finer scale.

Directly enlarging the kernel size of a convolutional layer leads to the number
of parameters growing exponentially. For example, the number of parameters
increases by 463% and 1270% when enlarging a 3x3x3 kernel to 5x5x5 and to
7xTx7, respectively. The resulting network is then cumbersome and prone to
collapsing or over-fitting during training. The benefits of using the proposed LK
block is that both the identity shortcut and the 1x1x1 convolutional layer help
the training. These numerical results are listed in our ablation studies (Table [1]).
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LKU-Net: We then propose LKU-Net for registration by integrating the LK
blocks into the vanilla U-Net as in Fig. 2] In order to perform a fair comparison
with TransMorph, which uses four transformer blocks in the contracting path
of its architecture, we only use four LK blocks in the contracting path of the
proposed LKU-Net. Note that, the proposed LK block is a plugin block that can
be integrated into any convolutional network.

Parameterization: The resulting LKU-Net takes a stacked image pair as
input, and outputs the estimated deformation. LKU-Net itself has two sets of
architecture specific hyperparameters: the number of kernels and the size of the
kernels in each convolutional block. For simplicity, we set the number of kernels
in the first layer as C; then the number of kernels is doubled after each down-
sampling layer in the contraction path and halved after each up-sampling layer
in the expansion path; the number of kernels in the last layer is set to 3 for 3D
displacements (2 for 2D displacements). On the other hand, though multiple LK
blocks are used within our LKU-Net, we use the same kernel size k x k x k for
all LK blocks and set all other kernels to be 3x3x3.

Diffeomorphism: Besides directly estimating displacements from LKU-Net,
we also proposed a diffeomorphic variant, termed LKU-Net-diff, in which the
final output of the LKU-Net is a stationary velocity field v. We then use seven
scaling and squaring layers to induce diffeomorphisms, i.e. the final deformation
¢ = Ezp(v) as in [28].

Network loss: We adopt an unsupervised loss which consists of a normalized
cross correlation (NCC) data term and a diffusion regularization term (applied
to either the displacement or velocity field), which are balanced by a hyperpa-
rameter \. The overall loss is £(@) is ming —+ > | NCC(I{ 0 ¢;(©) — I}) +
2 SN IVo;(©)]|3 Here N is the number of training pairs, Iy denotes the fixed
image, I; represents the moving image, ® are the network parameters to be
learned, o is the warping operator, and V is the first order gradient implemented
using the finite differences.

4 Experimental Results

Datasets: We used two datasets in our experiments. First, OASIS dataset [16]
consists of 416 cross-sectional T'1-weighted MRI scans. We used the pre-processed
OASIS dataset (including 414 3D scans and 414 2D images) provided by the
Learn2Reg 2021 challenge (Task 3) [12] for inter-subject brain registration. Each
MRI brain scan has been skull stripped, aligned, normalized and has a resolution
of 160x192x224. Label masks of 35 anatomical structures were used to evaluate
registration performance using metrics such as Dice Score. In this dataset, there
are 394 scans (unpaired) for training, and 19 image pairs (20 scans) for validation
and public leaderboard ranking. We report our 3D results on their validation set
in Tabel 3] For fast evaluation of different methods and parameters, in Table [T}
we used 414 2D images with size 160x192, each being one slice of its respective
3D volume. We randomly split the data into: 200 images for training, 14 image
pairs for validation, and 200 image pairs for testing.
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Second, IXI datasetﬂ contains nearly 600 3D MRI scans from healthy sub-
jects, collected at three different hospitals. We used the pre-processed IXI data
provided by [6]. Specifically, we used 576 T1-weighted brain MRI images to per-
form atlas-to-subject brain registration, in which 403, 58, and 115 images were
used for training, validation, and testing, respectively. The atlas is generated
by [I4]. All volumes were cropped to size of 160x192x224. Label maps of 29
anatomical structures were used to evaluate registration performances by Dice.

Implementation details: The vanilla 5-layer U-Net architecture used in
this work was first proposed by [25] and then used in [I§], the only change we
made was setting all kernels to 3x3x3. 2D U-Net shares the same architecture
except that all kernels are 3x3. In all experiments, we used the Adam optimizer,
with batch size being set to 1, and the learning rate being kept fixed at 1 x 1074
throughout training. Note that for the 3D OASIS registration (Learn2Reg Task
3), following [6], we additionally adopt a Dice Loss.

Ablation and parameter stud- Table 1. Ablation and Parameter Studies

ies: In Table m we compare the regis— Method ~ Model k C Identity 1x1 Dice
) Al UNet - 8 E ~ 76.16(4.08)
tration performance of our LKU-Net A2 UNet 5 8 Bl - 76.25(4.04)
with the vanilla U-Net using Dice on A3 UNet 78 - - 76.41(4.13)
U g s A4 UNet 9 8 - - 76.33(3.98)
2D OASIS data. Methods A1-A5 in A5 UNet 11 8 - - 75.80(4.03)
B, : . Bl LKUNet 3 8 Y N 76.26(4.18)
Table .mdlcate th.at using different B2 IKUNet 3 8 N Y 76400406
kernels in the vanilla U-Net affects B3 LKUNet 3 8 Y Y 76.47(3.98)
) . B4 LKU-Net 5 8 Y N 76.36(4.08)
the network’s performance. Specifi- B5  LKUNet 5 8 N Y 76.30(4.06)
cally, replacing all 3x3 kernels with B6 LKUNet 5 8 Y Y 76.51(4.10)
. . Cl  LKUNet 7 8 Y Y 76.55(4.00)
5x5 and 7x7 ones improves Dice by C2 LKUNet 9 8 Y Y 7645(4.03)
0.09 and 0.25, respectively. However, C3  LKUNet 11 8 Y Y 76.31(4.05)
. DI LKUNet 5 16 Y Y 77.19(3.86)
when using 9x9 and 11x11 kernels, D2 LKUNet 5 32 Y Y 77.38(3.89)
the performance begins to decline. D3 LKUNet 7 32 Y Y 7752390

Comparing the results of Methods Al & B3, A2 & B6, A3 & C1, A4 & C2,
and A5 & C3, it is easy to see that our LKU-Net outperforms the U-Net when
we use the same kernels size k, and that LKU-Net is consistently better than
the vanilla U-Net (A1).

Meanwhile, the results from B1-B6 suggest that using either the identity
shortcut or the 1x1 layer improves the registration performance, and that com-
bining both leads to the best performance. Comparing B3, B6 and C1, we see
that the performance of LKU-Net improves when we increase the kernel size.
Lastly, comparing D1, D2 and D3, we find that using larger models also im-
proves the performance, i.e., when we increase C from 8 to 16 and to 32 in
LKU-Netg 5, Dice improves from 76.51 to 77.19 and to 77.38, respectively.

Atlas-to-subject registration on IXI: To guarantee a fair comparison
with TransMorphE] on this dataset, we used the exact same data pre-processing,
training/validation split, and testing protocol. We report our results in Table

6 IXI data is available in https://brain-development.org/ixi-dataset/
" https://github.com/junyuchen245/TransMorph_Transformer_for_Medical_
Image_Registration
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Table 2. Performance comparison between different methods on IXI. Note that the
listed results (except the last six rows) are directly taken from TransMorph [6].

Model Dice % of |[J]J<=0 Parameters Mult-Adds (G)
Affine 0.386+0.195 - - -
SyN 0.639+0.151 <0.0001 - -
NiftyReg 0.640+0.166 <0.0001 - -
LDDMM 0.675+0.135 <0.0001 - -
deedsBCV 0.733+0.126 0.14740.050 - -
VoxelMorph-1 0.723+0.130 1.590£0.339 274,387 304.05
VoxelMorph-2 0.726+0.123 1.52240.336 301,411 398.81
VoxelMorph-diff 0.577+0.165 <0.0001 307,878 89.67
CycleMorph 0.73040.124 1.719+0.382 361,299 49.42
MIDIR 0.736+0.129 <0.0001 266,387 47.05
ViT-V-Net 0.728+0.124 1.609£0.319 9,815,431 10.60
CoTr 0.7214+0.128 1.858+0.314 38,684,995 1461.61
PVT 0.72940.135 1.292+0.342 58,749,007 193.61
nnFormer 0.74040.134 1.595+0.358 34,415,851 686.77
TransMorph 0.746+0.128 1.579+0.328 46,771,251 657.64
TransMorph-Bayes 0.746+0.123 1.560+£0.333 21,205,491 657.69
TransMorph-bspl 0.75240.128 <0.0001 46,806,307 425.95
TransMorph-diff 0.599+0.156 <0.0001 46,557,414 252.61
U-Nety 0.727+0.126 1.524£0.353 279,086 58.73
U-Net-diff, 0.74440.123 <0.0001 279,086 58.73
LKU-Nety 5 0.75240.131 0.023+0.018 522,302 71.00
LKU-Net-diffs,5 0.746+0.133 <0.0001 522,302 71.00
LKU-Netg,s 0.757+0.128 0.117+0.058 2,086,342 272.09
LKU-Net-diffg 5 0.753+0.132 <0.0001 2,086,342 272.09

Fig. 3. Visual comparison between different methods. The first column displays the
fixed image, the moving image and the difference between them. Excluding the first
column, from top to bottom we show the warped moving images, the deformations,
and the difference maps (between warped moving images and fixed images) of different
methods. LKU-Net is able to produce smooth deformations and hence the most realistic
warped moving images (see the regions marked with pink arrows).

where C and k in U-Netc and LKU-Netc , respectively denote the number of
kernels in the first layer and the kernel size in the LK blocks.
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In the case of non-diffeomorphic registration, U-Net, achieves 0.727 Dice
score which is comparable with VoxelMorph-1 (0.723), VoxelMorph-2 (0.726),
ViT-V-Net (0.728), CoTr (0.721), and PVT (0.729), but lower than those of
nnFormer (0.740), TransMorph (0.746), and TransMorph-Bayes (0.746). How-
ever, LKU-Nety 5 outperforms all other competing methods with a Dice score of
0.752. Note that the parameters and mult-adds of LKU-Nety 5 are only 1.12%
and 10.8% of those of TransMorph, respectively. Furthermore, by increasing the
number channels from from LKU-Nety s to LKU-Netg 5, a better Dice score of
0.757 can be achieved. The visual comparison of estimated deformations is given
in Fig. 3 For diffeomorphic registration, U-Net-diff,, LKU-Net-diff; 5, and LKU-
Net-diffs 5 achieve Dice score of 0.744, 0.746, and 0.753, respectively. They all
outperform TransMorph-diff (0.599) by a large margin and are comparable to
TransMorph-bspl (0.752).

Subject-to-subject registration aple 3. Results of different methods on
on OASIS: We further evaluated the the Learn2Reg 2021 challenge Task 3.

proposed LKU-Net on the validation Tfethods Dice SDlog] HdDist95
nnU-Net 0.8464 £ 0.0159 0.0668 1.5003
set Of MICCAI Learn2Reg 2021 Chal LapIRN 0.8610 £ 0.0148 0.0721 1.5139

lenge (Task 3), and the results are  TransMorph-LC  (0.8691 & 0.0145  0.0945 13969
shown in Table [f] Even though our LKU-Net 0.8861 £ 0.0150 05160 1.2617
LKU-Net contains only one single network, it has already outperformed
TransMorph-LC (which is a large cascaded TransMorph). LKU-Net also outper-
forms LapIRN with a large margin (2.51%), which was the winner of Learn2Reg
2021 challenge. As of the submission of this work, our proposed LKU-Net holds
first place on the validation leaderboard?]

5 Conclusion

With two public 3D brain datasets, we have shown that the proposed method
built on a U-Net architecture can outperform modern transformer-based meth-
ods for both inter-subject and atlas-to-subject registration tasks. Our LKU-Net
is conceptually simple, easy to implement, and has achieved state-of-the-art re-
sults, which proves U-Net is still competitive if devised properly. LKU-Net, how-
ever, is tested for uni-modality deformable image registration, and we will extend
it to estimate deformations across different modalities.
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