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Abstract. Deep-learning-based approaches for retinal lesion segmenta-
tion often require an abundant amount of precise pixel-wise annotated
data. However, coarse annotations such as circles or ellipses for outlining
the lesion area can be six times more efficient than pixel-level annota-
tion. Therefore, this paper proposes an annotation refinement network
to convert a coarse annotation into a pixel-level segmentation mask. Our
main novelty is the application of the prototype learning paradigm to
enhance the generalization ability across different datasets or types of
lesions. We also introduce a prototype weighing module to handle chal-
lenging cases where the lesion is overly small. The proposed method was
trained on the publicly available IDRiD dataset and then generalized to
the public DDR and our real-world private datasets. Experiments show
that our approach substantially improved the initial coarse mask and
outperformed the non-prototypical baseline by a large margin. More-
over, we demonstrate the usefulness of the prototype weighing module
in both cross-dataset and cross-class settings.

Keywords: Prototypical Learning · Retina Lesion Segmentation · Coarse
Annotation Refinement.

1 Introduction

Given the growing demand for retinal screening, automatic segmentation for reti-
nal lesions enjoys increasing clinical relevance. By answering the issue of what
lesions exist in the image and where they are located, retinal lesion segmentation
algorithms assist ophthalmologists in making clinical diagnoses and assessing
disease severity [18]. While recent deep-learning approaches have tremendously
boosted the retinal lesion segmentation accuracy [18,9,4,19], they often require
abundant expert-level-accurate, pixel-wise annotated data, which requires signif-
icant time and expense to acquire. Previous studies show that coarse annotations
such as circles or ellipses for outlining the lesion area can be six times more ef-
ficient than pixel-level annotation [5]. Therefore, it is essential to study novel
methodologies tailored for lower-quality coarse annotations.
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Existing works on exploiting coarse annotations can be categorized into
weakly-supervised segmentation [11,20,15,10,16,1,24], and mask refinement [21,5].
Weakly-supervised segmentation methods rely on prior assumptions such as box
tightness constraint [16] and image contrast constraint [15] to utilize box-level
and image-level coarse annotations. A few high-quality pixel-level retinal lesion
datasets such as IDRiD [12] and DDR [8] provide precise lesion boundaries.
While successful, weakly-supervised segmentation does not utilize these pre-
existing lesion segmentation datasets that provide rich knowledge on lesions’
exact appearance and shape. Instead of further developing weakly-supervised
segmentation methods, we propose to use such datasets by training an annota-
tion refinement model in a data-driven manner to convert a coarse annotation
into a pixel-level segmentation mask. It should be emphasized that our work is
significantly different from the weakly-supervised approach, as it is trained in a
fully supervised way (instead of weakly-supervised) with coarse annotation and
pixel-level ground truth in pairs. Additionally, we note several existing mask re-
finement methods [21,5] which refine initial coarse masks into more accurate seg-
mentation results; however, they are usually optimized for a particular dataset.
In comparison, our method applies the prototype learning paradigm [17,7,14,24]
to enhance generalization across different data sets and lesion types. Good gen-
eralization is the key to putting the coarse annotation refinement algorithm into
practice. For example, we can train the coarse annotation refinement network
on a large-scale dataset for once and reuse the trained model on other datasets
with less fine-tuning or tweakings.

Particularly, our prototype learning averages the features from the coarse
mask region to form a lesion prototype and averages the background features
to create a background prototype. A pixel is classified to the lesion class if its
corresponding feature vector is more similar to the lesion prototype. Since our
prototypical approach generates image-specific prototype to adaptively describe
the image itself, it is less sensitive to the intra-class variance and high distribu-
tion shifts from different datasets or unseen classes. However, averaging features
uniformly may be problematic when the lesion is considerably smaller than the
coarse mask, as the resultant lesion prototype becomes dominated by background
features. We alleviate this issue by a superpixel-guided prototype weighing mod-
ule. The module first divides the coarse mask into several superpixels[7] and the
prototype for each superpixel is obtained. Each prototype’s dis-similarity with
the background prototype is then calculated as a weighting factor. The final
lesion prototype is the weighted combination of these superpixel-guided sub-
prototypes.

Contributions. (1) To the best of our knowledge, our method is the first
prototypical approach for the coarse retinal lesion annotation refinement prob-
lem. (2) We present a prototype weighing module to solve the problem of the
actual lesion being overly small. (3) Experiments demonstrate that the proposed
method substantially improved the initial coarse annotation and outperformed
non-prototypical mask refinement baselines. It also confirms the superiority of
the prototype weighing module in both cross-dataset and cross-class settings.



Coarse Retinal Lesion Annotations Refinement via Prototypical Learning 3

2 Methods

This section details the proposed coarse annotation refinement method with the
overall structure shown in Fig. 1. We assume that there exists a set of image
patches and the associated coarse lesion annotations, and our algorithm will
convert them into the corresponding high-quality pixel-level annotations.
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Fig. 1. Framework of our prototype-based coarse annotation refinement network.

2.1 Annotation Refinment via Prototype Learning

Feature extraction The input to the network is the concatenation of the
image patch I ∈ RH×W×3 and its corresponding coarse lesion annotation M ∈
RH×W×1. We use a modified U-Net backbone to extract its feature map F ∈
RH′×W ′×C . Following [14], we remove the last two upsampling blocks in the
U-Net to speed up the calculation. As a result, the resolution of the feature
map is 1/4 of the original input. We concatenate the feature map with the
down-sampled coarse mask M ′ ∈ RH′×W ′×1 in the feature channel dimension to
further incorporate the coarse annotation prior. To get the final fusion feature
map F ′ ∈ RH′×W ′×C′

, we adopt a simple 1-layer network with architecture: 1×1
Conv2d+BatchNorm2d+ReLU.

Coarse Prototype Extraction Given the fused feature map, we want to learn
representative and well-separated prototype vectors for the lesion region and the
background based on the prototypical network. In previous research [17,14,22],
the prototypical network condenses the masked object features in an image into
a single or few prototypes. A relative simple coarse foreground lesion prototype
can be calculated by mask average pooling, as follows:

pfg =

∑
(x,y) F

′(x, y)1[M ′(x, y) = 1]∑
(x,y) 1[M

′(x, y) = 1]
, (1)
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where (x, y) indexes the spatial locations and 1(•) is an indicator function. In
addition, the background prototype is computed by

pbg =

∑
(x,y) F

′(x, y)1[M ′(x, y) = 0]∑
(x,y) 1[M

′(x, y) = 0]
, (2)

where pfg, pbg ∈ RC′
.

Coarse Annotation Refinement Refinement is done using a non-parametric
metric learning method [17]. For each pixel at location (x, y) of the final fusion
feature map F ′, we calculate the distance between its feature vector and the
derived prototypes P =

{
pbg, pfg

}
. Then, we apply the softmax operation over

the distances to get the probability map Pc ∈ RH′×W ′×1 and c ∈ {bg, fg}.
Formally, we have:

Pc(x, y) =
exp(−α · d(F ′(x, y), pc))∑

pj∈P exp(−α · d(F ′(x, y), pj))
, (3)

where α is the scaling factor fixed at 20.
We train our model end-to-end using the sum of dice loss Ldice and binary

cross-entropy loss Lbce between the final probability map Pfg and the well-
annotated ground truth mask Mgt. That is: Lloss = Ldice + Lbce.

During testing, for each image patch I and its corresponding coarse lesion
annotationM , we obtain a corresponding foreground probability map Pfg. When
mapping Pfg back to the original image space (uncropped full image), some of
them will overlap. For each pixel in the overlapping area, we choose the maximum
probability of these probability maps as its value. In the end, thresholding is used
to get the final refined mask.
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Fig. 2. Illustration of superpixel-guided prototype weighting. Boundaries in red, green,
and yellow are actual lesion, coarse lesion, and superpixel regions respectively

2.2 Superpixel-guided prototype weighting

As shown in Fig. 2 when the actual lesion is relatively small compared to the
coarse mask, the coarse foreground prototype defined by Eq. (1) cannot rep-
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resent the actual lesion features. To reduce the impact of false-positive pixels
within the coarse annotation, we divide the initial coarse region into several sub-
regions according to their feature similarity. Concretely, we refer to maskSLIC
[6] to aggregate the feature map within the masked region into multiple super-
pixel clusters. For each superpixel region Si, we can obtain its corresponding
superpixel-based sub-prototype gi according to Eq. (1). We collect the extracted
sub-prototypes and denote them as set G = {gi}, where i ∈ 1, 2, · · · , Nsp (Nsp

is the number of superpixels). We compute the cosine distance to measure the
similarity between each gi and pbg:

d(gi, pbg) = 1− gi · pbg
‖gi‖ · ‖pbg‖

. (4)

Intuitively, the prototypes dissimilar to the background prototype are more
important parts for the final foreground prototype. Therefore, we can derive a
weight coefficient for each prototype in set G:

wi =
exp(β · d(gi, pbg))∑

gj∈G exp(β · d(gj , pbg))
, (5)

where β is the scaling factor fixed at 10. The final foreground prototype is then
given by

pweighted =
∑
gi∈G

wi · gi. (6)

As shown later, our proposed superpixel weighted prototype pweighted is a more
representative foreground prototype that performed better in various experi-
ments.

3 Experiments and Results

3.1 Experimental Setup

Coarse Annotation Generation There is no public available retinal lesion
dataset with paired coarse annotation and pixel-level segmentation mask. To
construct such paired dataset, we develop a simple coarse annotation generation
method. Firstly, the coarse annotations are simulated from the well-annotated
fine masks by applying the following chain of operations: smoothing, dilating,
expanding, clustering the connected components using DBSCAN [2] and fitting
ellipses to each cluster. Secondly, the fundus image is cropped around each ellipse
in the corresponding coarse annotation. Finally, these cropped image patch and
coarse annotation pairs are resized to fixed dimensions H ×W for subsequent
model training and testing.

Datasets and Evaluation Metrics. We evaluate the proposed methods on
publicly IDRiD and DDR datasets, and our real-world private dataset. IDRiD
contains 81 fundus images (54 training images, 27 testing images) with pixel-level
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annotations for hard exudates (EX), hemorrhages (HE), microaneurysms (MA),
and soft exudates (SE). Similarly, the testing part of DDR contains 225 fundus
images with pixel-level annotations for EX, HE, MA, and SE. Our real-world
private testing dataset collects 211 fundus images with pixel-level annotations
for drusen (Drus) and pre-retinal hemorrhages (Prh) labeled by two experienced
ophthalmologists. To train our annotation refinement network, we collect 32985
training patch pairs (EX:9957, HE:7752, MA:14387, SE:889) from the IDRiD
training images using our coarse annotation generation algorithm. We also apply
the mask generation algorithm to generate coarse mask for each testing image. To
compare different refinement methods, we calculate the Intersection over Union
(IoU) between the refined annotation and ground-truth mask.

Baselines. We implement several non-prototypical mask refinement baseline
models, taking in an image patch and a coarse mask as the input. In detail, we
choose three widely used feature extraction backbones, Res18 [3], HRNet18 [23],
and U-Net [13] attached with the coarse mask fusion module to perform feature
extraction. The feature extraction process is identical to the one described in
Sec.2.1 except for the feature backbone. After that, we attach a 1x1 Conv2d
layer as a binary classifier to obtain a refined segmentation score map.

Implementation Details. For the prototypical methods, we set the superpixel
number Nsp = 20. All training patch pairs are resized to 256 × 256 and aug-
mented by RandomShiftScaleRotate, RandomBlur, and RandomBrightnessCon-
trast. All models are implemented by PyTorch and trained from scratch using
Adam optimizer with a batch size of 64 for 120 epochs. The initial learning rate
is 10−4 and reduces according to ReduceLROnPlateau strategy.

3.2 Results

Same-Dataset Experiments We train the proposed coarse annotation refine-
ment network using all four lesion types on IDRiD and evaluate the performance
on the IDRiD testing set. As shown in Table 1, “Initial Coarse” denotes the IoU
of actual lesion region versus coarse annotation region. Our prototypical method
improves the initial coarse mask considerably. It also consistently obtains better
refinement performance than the non-prototypical baselines on all four lesion
classes in terms of IoU score, with average IoU score improving by more than
5.2%. This experiment demonstrates our advantages when training and testing
images are from the same dataset.

Cross-Dataset and Cross-Class Experiments We directly evaluate the per-
formance on the DDR testing set and our real-world private dataset using models
trained on the IDRiD dataset without further fine-tuning. As shown in Table
2, our method exceeds the U-Net baseline by 4.3% on both DDR and private
datasets. For DDR, our superpixel weighted prototype performs better for all
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Table 1. The image-level average IoU (%) and its standard deviations (%) of on IDRiD.
"w/ superpixel" means with superpixel-guided prototype weighing.

Methods MA SE EX HE Average
Initial Coarse 9.6 (2.6) 49.3 (10.4) 15.0 (5.2) 33.2 (8.6) 26.8 (6.7)
Res18 [3] 73.9 (7.3) 68.4 (14.2) 54.1 (9.4) 62.6 (10.9) 64.7 (10.5)
HRNet18 [23] 79.1 (7.5) 78.1 (5.3) 56.8 (9.1) 64.8 (11.8) 69.7 (8.4)
U-Net [13] 77.6 (6.8) 75.6 (12.6) 58.9 (8.9) 67.9 (11.4) 70.0 (9.9)
Our methods 84.2 (6.2) 80.7 (9.2) 65.3 (8.1) 69.9 (13.9) 75.0 (9.4)
w/ superpixel 84.1 (6.2) 79.6 (9.9) 65.9 (8.7) 71.1 (11.2) 75.2 (9.0)

lesion types compared to the non-weighted prototype. Similarly, the weighted
prototype is notably better than the non-weighted one on the private dataset,
especially for the class Prh (56.3% → 62.6%). Overall, we see a general trend
that our model can generalize well to new datasets or unseen classes.

Table 2. The image-level average IoU (%) and its standard deviations (%) on DDR
and our real-world private dataset having 2 unseen classes.

DDR Private
Methods MA SE EX HE Average Drus Prh Average
Initial Coarse 6.9 (3.4) 32.3 (10.8) 14.8 (8.8) 23.1 (11.4) 19.3 (8.6) 33.6 (19.1) 49.7 (13.0) 41.6 (16.0)
Res18 [3] 56.3 (12.4) 67.6 (13.6) 52.3 (13.2) 54.4 (13.3) 57.6 (13.1) 43.9 (16.6) 52.9 (15.2) 48.4 (15.9)
HRNet18 [23] 65.1 (13.5) 68.2 (12.6) 54.2 (13.9) 58.5 (12.9) 61.5 (13.3) 44.2 (21.1) 57.5 (16.4) 50.9 (18.8)
U-Net [13] 60.9 (13.2) 70.2 (15.0) 55.4 (12.8) 59.8 (12.7) 61.6 (13.4) 45.2 (20.9) 57.9 (16.4) 51.6 (18.6)
Our methods 68.8 (12.0) 71.2 (16.9) 58.4 (12.7) 61.3 (15.7) 64.9 (14.3) 47.9 (23.4) 56.3 (20.7) 52.1 (22.1)
w/ superpixel 69.8 (11.9) 72.0 (17.5) 58.9 (12.4) 62.9 (14.5) 65.9 (14.1) 49.1 (23.0) 62.6 (15.3) 55.9 (19.1)

Coarse Mask Reduction Factors Since ophthalmologists tend to draw a sin-
gle rough ellipse to cover several unconnected lesion regions, we simulate the
process by setting different reduction factors to the DBSCAN clustering algo-
rithm. Actually, the number of the generated ellipses is the number of connected
lesion regions divided by the reduction factor. In other words, with a higher re-
duction factor, the generated coarse mask will be more coarse. As shown in Fig.
3, although the refinement performance of all methods degrades as the reduc-
tion factor ranges from 1.0 to 2.0, our prototypical method has less degradation
compared to the U-Net baseline. It implies our method is more robust against
coarser annotations.

Visual results Fig. 4 presents some visualization of refinement results. Despite
the vast variation in lesion scales, colors, and low contrast to surrounding regions,
the first three rows show our proposed superpixel weighted prototype approach
generates the most accurate lesion boundary. The last row shows a failure case
when the coarse mask contains two distinct lesion classes, EX and Drus, at the
same time.
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Fig. 4. Visualization of refinement results on four categories of lesions.

4 Conclusions

This paper proposes a novel prototype-based network to convert a coarse anno-
tation into a pixel-level segmentation mask. The proposed network first extracts
the lesion and background prototypes and labels the image pixel as the lesion
class if its feature is more similar to the lesion prototype. A superpixel-guided
prototype weighing module is then proposed to tackle the issue of the actual
lesion being overly small compared to the coarse mask. On the IDRiD dataset,
our model outperformed non-prototypical baselines by a large margin. Extensive
experiments on DDR and our real-world private dataset also demonstrate the
proposed model enjoys better generalizability to new datasets and some unseen
lesion classes.
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