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Abstract. We propose a novel method for automatic ROI extraction.
The method is implemented and tested for isolating the inner ear in full
head CT scans. Extracting the ROI with high precision is in this case
critical for surgical insertion of cochlear implants. Different parameters,
such as CT equipment, image quality, anatomical variation, and the sub-
ject’s head orientation during scanning make robust ROI extraction chal-
lenging. We propose to use state-of-the-art communicative multi-agent
reinforcement learning to overcome these difficulties. We specify land-
marks specifically designed to robustly extract orientation parameters
such that all ROIs have the same orientation and include the relevant
anatomy across the dataset. 140 full head CT scans were used to de-
velop and test the ROI extraction pipeline. We report an average overall
estimated error for landmark localization of 1.07 mm. Extracted ROI
presented an intersection over union of 0.84 and a Dice similarity coeffi-
cient of 0.91.

Keywords: Region of interest · Deep reinforcement learning · Com-
puted tomography · Inner ear · Landmarks · Orientation.

1 Introduction

Automatic region of interest (ROI) detection in medical images is a challenging
task as medical images generally present high variability between individuals,
scanners, and image acquisition and postprocessing protocols. ROI extraction is
a necessary step for almost all medical image analysis pipelines. It is also vital
for subsequent image processing tasks that rely on input stability. Accurate
ROI extraction can not only improve retrieval efficiency but can also help to
classify more easily pathological signs within a reduced region especially when
the anatomy is particularly challenging for either the clinicians or the processing
software to interpret [13].

Cochlear implants (CI) are used to restore the hearing capacities of patients
who suffer from severe to profound hearing loss. CIs are common for infants with
congenital deafness. Clinicians evaluate each patient using computed tomogra-
phy (CT) images, the head orientation is important to assess each case and
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successfully obtain the relevant measurements for accurate surgical planning.
Therefore we had developed an approach to automatically locate this region in
clinical full head CT images.

Initially, ROI detection methods were based on bounding boxes from hand-
crafted features [11,3]. Nowadays, the most common technique is deep learning,
where a majority of methods in the literature are designed for 2D medical im-
ages [2,13] and other approaches used 2D methods to locate ROIs in 3D [5,16,8].
These methods fail to use the third dimensionality of CT images and need a big
amount of annotated data that faithfully represents the anatomical variability
and struggle when the anatomy is abnormal. We chose to use a deep reinforce-
ment learning (DRL) based approach that uses landmarks (easier and faster to
annotate) to automatically extract the inner ear ROI from CT images. DRL has
been successful showing outstanding performance for similar tasks of landmark
localization in medical images [1,15]. Other DRL approaches include Navarro et.
al. [10], this paper proposes single reinforcement learning agents for organ local-
ization in the torso. They succeeded in effectively finding a ROI around desired
organs with a relatively small amount of data. We chose to use a landmark-based
approach which we consider will be more robust and could potentially provide
more explainability or even help detect abnormalities from an early processing
stage [6,13].

2 Data

This study uses 140 full head CT scans from the CQ500 dataset [4] which cor-
responds to 102 different patients. The dataset has been provided by the Centre
for Advanced Research in Imaging, Neurosciences and Genomics (CARING),
New Delhi, India [4]. The CT scans are taken from several radiology centers
in New Delhi and are collected using various equipment models [4]. All used
scans are resampled to have the isotropic voxel spacing 0.5 mm. The image
dimensions vary significantly within our dataset. On average the dimensions
are 475 × 475 × 323, but the dimensions x ∈ [400; 576], y ∈ [400; 576] and
z ∈ [128; 730]. All scans are manually labeled with the chosen landmarks using
the software 3D Slicer [7]. All the annotations are made public and can be found
in https://github.com/AnaTeodoraR/annotations.git.

Choosing relevant landmarks is necessary to characterize the inner ear orien-
tation. The landmarks must be uniquely defined within their structure, so they
are easily differentiated from other anatomical points nearby. Eleven landmarks
are chosen in total, five assigned for each inner ear ROI and one common for
both. The five landmarks for each ROI are the same anatomical points but lo-
cated on their respective side of the CT scan. All landmarks are associated with
a number; Numbers 1-5 are in connection to the right ROI, 6-10 for the left,
and 11 is common. Two landmarks are within the inner ear; cochlear apex (nr.
1 and 6) and superior semi-circular canal peak (nr. 4 and 9). Additionally, two
landmarks in the cochlea nerve; the midpoint below the base of the cochlea (nr.
2 and 7) and of both the CN and FN further down (nr. 3 and 8). To aid in

https://github.com/AnaTeodoraR/annotations.git
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Fig. 1: Landmarks 1-5 and 11 are shown on CT scan nr. 6 and additionally
landmarks 1-4 are shown on a 3D representation of an inner ear (edited from
[14]). Landmarks 1-5 are for the right inner ear ROI, but the corresponding
landmarks 6-10 are placed at the same anatomical points on the left side of the
head.

obtaining a similar orientation the remaining landmarks are; At the top of the
condyle in the mandible where the temporomandibular joint starts (nr. 5 and
10) and lastly the nasion (nr. 11).

3 Methods

The strategy used for detecting the landmarks is DRL specifically the com-
municative multi-agent reinforcement learning (C-MARL) model proposed by
Leroy et al. [9]. This model uses DRL with multiple agents that communicate
and are based on a deep Q-learning network (DQN). The environment is de-
fined as the entire 3D medical scan while an agent is moved voxel by voxel. A
DQN is used to predict the optimal Q values given a certain state. As input the
network takes states - a 3D patch centered around the agent - and outputs the
Q values for each of the possible actions - 3D movement (up, down, left, right,
forward, and backward) [9]. The architecture for two agents is shown in figure
2. All the agents share the weights of the convolutional layers (implicit commu-
nication) while each agent has its own fully connected (FC) layers only sharing
the average output from each FC layer (explicit communication) [9]. The agents
use multi-scale which enables them to have a spatially higher view of the image
in its state. In our implementation, the agents used four scales including the
isotropic voxel spacings 3, 2, 1, and 0.5 mm for the patch to represent the state.
Initially, the agents will observe the states with the coarsest spacing, but when
they start oscillating the spacing will decrease to the next, finer, resolution. The
final model uses 11 agents, one per landmark, thus resulting in 11 FC layers and
a discount rate of 0.8. The data is divided into training, validation, and test sets
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Fig. 2: Visualization of the CNN architecture, when using two agents. The fully
connected layers for each agent are colored differently. Edited from [9].

each being 112, 14, and 14 CT scans respectively (≈ 80%, ≈ 10%, and ≈ 10%).
The model was trained on a 12 GB GPU for five days. The training uses an
ϵ-greedy strategy (ϵ ∈ [0.1; 1[). The model which has the best performance on
the validation set is further used for testing.

The aim of this study is to extract the two ROIs with similar orientation in a
two-step approach. The first step aims to rotate the images to align all heads. The
landmarks are used to define the relevant rotation angles that characterize the
head orientation. The second step is a regular axis-aligned crop of the inner ear
on the newly rotated image. To rotate a 3D medical image, three rotation angles
denoted α, β, and γ are used, also known as yaw, roll, and pitch respectively.
They describe the head movement in 3D as shown in figure 3.

The rotation angles α and β have the potential to be estimated based on
the assumption that the corresponding left and right anatomical structures are
symmetrical as is the case for the ear anatomy [12]. Technically, α and β are
found by projecting the line between the same two anatomical points onto the
axial plane and coronal plane respectively, and finding the deviation from the
horizontal line, see figure 3a and 3b. Four independent estimations of these angles
are found using the landmark pairs (1,6), (2,7), (3,8), and (5,10) and a median
of these estimations is applied as the final rotation angle. Likewise, γ is found
assuming landmark 5 or 10 and landmark 11 are at an angle of θ = 20◦ when
projected on the sagittal plane as seen in figure 3c. Humans are anatomically
different but we estimate 20◦ to be a good estimation of this anatomy. Finally, γ
is defined as the angle which corrects the difference between θ and the estimated
ones using the landmarks (figure 3c). Once more two different γ values can be
estimated, so a median of these will be used as the final γ.

After obtaining the three angles for a single 3D medical scan, the image is
rotated accordingly using three individual rotation transformations. The ROI is
extracted on the rotated image as a 3D axis-aligned crop from a center point
with a customized size. The center point is set to the middle point between two
landmarks (landmarks 1 and 2 for the right, 6 and 7 for the left). The radii, rx,
ry and rz, of the 3D box, are found as the furthest distance to a set of landmark’s
respective x, y, and z coordinates (landmarks 1, 2, 3, and 4 for the right ROI,
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Fig. 3: Sketch of α, β, and γ where the rotation angles have been exaggerated.
The angle θ = 20◦ describes the desired head position for γ. a) Axial view b)
Coronal view c) Sagittal view and γ for the two different orientations.

while 6, 7, 8, and 9 for the left). Moreover, rx = ry = max(rx, ry), which results
in the ROIs having quadratic axial slices.

A robustness analysis is made by applying a grid of different rotations to an
image. The chosen image is the one where the sum of absolute calculated angles
(from the annotations) is the smallest, hence the image closest to the reference
pose. This image has the estimated angles; α = 0.19◦, β = 1.08◦, γ = 0.70◦,
hence its sum is 1.97◦. For our robustness analysis, we exhaustively sampled all
3D rotations on a uniform grid: α′, β′ ∈ {−15,−10,−5, 0, 5, 10, 15} and γ′ ∈
{−20,−10, 0, 10, 20, 30}, where α′, β′, and γ′ are the applied rotation along the
third, second and first axis respectively. This results in 7 · 7 · 6 = 294 manually
rotated images. For all generated images their landmarks will be predicted using
the C-MARL model. Furthermore, the angle calculation method is applied using
the predicted landmarks and compared to the applied rotation. Consequently,
the applied rotation will have the opposite sign of the predicted (if predicted
correctly).

4 Results

Different C-MARL models have been trained and it was empirically found that
using a discount rate of 0.8 and a single agent per landmark, performed best.
Using multiple agents per landmark showed only to have a relevant influence
on detecting landmark 11. The results of the final model on the test set can
be seen in table 1. Observing the table, the model performs particularly well at
detecting landmarks within the inner ear and cochlear nerve (landmarks 1, 2, 3,
4, 6, 7, 8, and 9). For these eight landmarks, the mean distance error is below
one millimeter. Depending on the landmark, the estimated errors vary between
0.79− 2.11 mm.

Figure 4a shows box-plots of the rotation angle differences across the test
images. Here the rotation angle difference is between the predicted angles and
the ones found from the landmark annotations. The maximum deviation of the
predicted angle from the estimated (calculated from the annotated landmarks)
for α and β is below 1◦ and the difference for γ is capped at 1.8◦, with its upper
quartile is below 1◦. Figure 4a additionally illustrates a box-plot of the sum of
the three differences in a test image which ranges from 0.36◦ − 2.68◦.
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Now we evaluate the ROI extraction performance. Figure 4b illustrates the
intersection over union (IoU) and Dice similarity coefficient (DSC) for both ROIs,
additionally, we show the distribution between right and left ROIs. The IoU
and DSC are found by comparison with an estimated ROI using the annotated
landmarks. Observing Figure 4b, a small difference between the right and left
ROI’s prediction exists. The scores for the right and left ROI appear unimodal
having a single peak.

The results of the robustness analysis are shown in figure 5. Observing the two
figures, each 3D point represents a manually rotated image whose three applied
rotation angles (α′, β′, and γ′) are its x, y, and z coordinates. The points are
color-coded depending on the performance. Looking at figure 5a, many of the
rotated images have an estimated error of 1 − 2 mm (purple color). A general
tendency of more purple colors for smaller and negative γ′ is observed and a
decline in performance is seen as γ′ increases. The lowest accuracy tends to be
gathered at highly negative α′, positive β′, and positive γ′ rotations. Similar

Landmark 1 2 3 4 5 6 7 8 9 10 11 Overall
mean(dError) [mm] 0.84 0.79 0.87 0.87 1.63 0.83 0.85 0.82 0.99 2.11 1.24 1.07
σError [mm] 0.38 0.42 0.64 0.44 1.14 0.28 0.39 0.56 0.31 1.04 0.64 0.75
< 1 mm [%] 64.3 78.6 78.6 64.3 35.7 78.6 57.1 85.7 57.1 7.1 50 -

Table 1: The estimated error (mean distance error, dError) and standard deviation
(σError) on the test set. The model predicts the landmarks three times on each
test image and a median is used as the final prediction. The last row shows the
percentage of detections below one millimeter.
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Fig. 4: Left: Box-plot of the angle differences on the test images (both the indi-
vidual ones and their sum in an image). Right: Violin-plot of IoU and DSC on
the test images. The line represents the median, the stripes the upper and lower
quartile, and the white dot the mean.
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Fig. 5: Each point represents an image that has been manually rotated, the
rotation angles used are illustrated as its x, y, and z coordinates. The colors
illustrate the estimated error for a landmark (right) and the sum of the angle
prediction errors (left). The coloring has a logarithmic scale.

patterns can be observed in the corresponding figure for the angle error (figure
5b). The error here is the sum of differences between the predicted rotation
angles and the applied (with opposite sign). Only a few rotated images have an
angle error below 2◦ (blue and black colors), while the general error tends to be
around 4− 10◦ (green, lime, and yellow colors).

5 Discussion

We found the landmark accuracy shown in this work sufficient for the ROI extrac-
tion task. Studying the performance of the individual landmarks, a few points
can be made. The agents looking for landmarks 1-4 (and 6-9) are searching close
by one another, and potentially benefiting more from the communication. Thus,
a reason as to why the highest precision for landmark localization is achieved
for these eight landmarks. Interestingly, landmark 11 is isolated from the rest,
hence why the single agent has more trouble detecting it. Landmarks 5 and 10
emerge as the most difficult to locate. These landmarks mark the peak of the
condyle where the jaw joint starts. The peak is a slightly curved surface, more-
over, if a patient has a rotating head when taking the CT scan, other parts of the
mandible become visible at the same axial slice. These matters make landmarks
5 and 10 difficult to place, both for the annotator and agents.

Multi-scale is of importance [1], especially if agents are looking for a small
structure within a big image. It is important that the agents quickly get an
idea of which region the landmark is in. The multi-scale enables the agents
to view a larger section of the image and quickly narrow down which region
their landmark is located. We implemented 4 levels of multi-scale that were
sufficient for our task. The preciseness of the landmark localization influences
the angle prediction. Moreover, γ is predicted using the landmarks with the
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lowest localization precision (landmarks 5, 10, and 11), why this rotation angle
has the lowest prediction performance of the three (figure 4a).

Regarding the robustness analysis in figure 5, negative γ′ corresponds to
rotating the head downwards in the sagittal plane. This is a more common posi-
tion of the head, why the model performs better at these rotations. Additionally,
±10◦ with α′ and β′ further worsens the performance, however, it is also less
common for a patient to have these rotations when taking a CT scan. Thus, the
results of the robustness analysis reveal that rotations that mirror usual head
positions perform best. Data augmentation could potentially help the model to
be more robust with extreme head rotations.

Considering the ROI extraction, the overall predictions have on average an
IoU score of 0.84 and DSC of 0.91. Since the IoU penalizes false positives and
false negatives more than the DSC, it explains the lower scores observed for the
IoU. Additionally, the regions are not all fixed to be the same size, so it might be
the case that a predicted ROI is contained within an estimated (or oppositely).
These cases result in a lower IoU and DSC. We compared our ROI extraction
method with another state of the art method as seen in table 2. Table 2 compares
the highest average IoU (the liver) achieved by Navarro et. al. [10] with the left
and right ROI results. Both inner ear ROIs have on average a higher IoU than
the liver ROI. Our presented method is specifically designed to extract the inner
ears with likewise orientation. On the other hand, Navarro et. al. [10] strives to
achieve a general axis-aligned ROI detection framework (using DRL) for organs
in the torso.

6 Conclusion

This study successfully used a DRL framework for landmark detection in full
head CT scans, and utilize it for ROI extraction of the inner ears. Landmarks
were localized with an estimated error between 0.78− 2.11 mm (on average 1.07
mm) within this difficult anatomical structure. The defined rotation angles gave
the ROIs the desired orientation. Two ROIs were extracted from the detected
landmarks with an overall average IoU of 0.84 and DSC of 0.91. The method out-
performs other DRL approaches for ROI detection as is the proposed by Navarro
et. al. [10]. Through this study, we explored the capability of implementing C-
MARL for predicting fine structures in full head CT scans. This paves the way
for analysis of inner ear ROIs for surgical use.

Navarro
et. al. [10]

This model
right ROI

This model
left ROI

Avg IoU 0.80 0.836 0.835

Table 2: Comparing the average IoU for the left and right ROI with the average
IoU for the liver (best organ result) from Navarro et. al.
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