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We study a well-known communication abstraction called Byzantine Reliable Broadcast 
(BRB). This abstraction is central in the design and implementation of fault-tolerant 
distributed systems, as many fault-tolerant distributed applications require communication 
with provable guarantees on message deliveries. Our study focuses on fault-tolerant 
implementations for message-passing systems that are prone to process-failures, such as 
crashes and malicious behavior.
At PODC 1983, Bracha and Toueg, in short, BT, solved the BRB problem. BT has optimal 
resilience since it can deal with t < n/3 Byzantine processes, where n is the number of 
processes. The present work aims to design an even more robust solution than BT by 
expanding its fault-model with self-stabilization, a vigorous notion of fault-tolerance. In 
addition to tolerating Byzantine and communication failures, self-stabilizing systems can 
recover after the occurrence of arbitrary transient-faults. These transient faults allow the 
model to represent temporary deviations from the assumptions on which the system was 
originally designed to operate (provided that the algorithm code remains intact).
We propose, to the best of our knowledge, the first self-stabilizing Byzantine fault-tolerant 
(BFT) solution for repeated BRB in signature-free message-passing systems (that follows 
BT’s problem specifications). Our contribution includes a self-stabilizing variation on BT 
that solves a single-instance BRB for asynchronous systems. We also consider the problem 
of recycling instances of single-instance BRB. Our self-stabilizing BFT recycling for time-free 
systems facilitates the concurrent handling of a predefined number of BRB invocations and, 
in this way, can serve as the basis for self-stabilizing BFT consensus.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Fault-tolerant distributed systems are known to be hard to design and verify. High-level communication primitives can 
facilitate such complex challenges. These high-level primitives can be based on low-level ones, such as the one that allows 
processes to send a message to only one other process at a time. Hence, when an algorithm wishes to broadcast message m
to all processes, it can send m individually to every other process. Note that if failures occur during this broadcast, it can be 
the case that only some of the processes have received m. Even in the presence of network-level support for broadcasting or 
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Table 1
Glossary.

Notation Meaning

AMP a fault model for asynchronous message-passing systems.

ARQ automatic repeat request.

BAMP a fault model for Byzantine asynchronous message-passing systems.

BFT the design criteria of Byzantine fault-tolerant.

BML a synchrony assumption about bounded message lifetime, λ.

BRB the problem of Byzantine Reliable Broadcast.

BT the studied non-self-stabilizing BFT algorithm by Bracha and Toueg [4,5].

FC the fault model-related assumption about fair communications.

IRC the problem abstraction of Independent Round Counter, which is used for 
implementing the proposed BRB-instance recycling for repeated BRB.

RB the problem of Reliable Broadcast.

SSBFT self-stabilizing Byzantine fault-tolerant.

n number of nodes in the system.

t an upper bound on the number of faulty nodes.

channelCapacity an upper bound on the number of messages in any given communication 
channel.

δ a constant number of concurrent BRB instances.

λ a bound on the BML lifetime.

♦Pmute a class of mute failure detectors.

multicasting, node failures can cause similar inconsistencies. To simplify the design of fault-tolerant distributed algorithms, 
such inconsistencies need to be avoided. Many examples show how fault-tolerant broadcasts can significantly simplify the 
development of fault-tolerant distributed systems, e.g., State Machine Replication [1] and Set-Constrained Delivery Broad-
cast [2]. The weakest variant, named Reliable Broadcast, lets all non-failing processes agree on the set of delivered messages. 
This set includes all the messages broadcast by the non-failing processes. Stronger Reliable Broadcast variants specify addi-
tional requirements on the delivery order. Such requirements can simplify the design of fault-tolerant distributed consensus, 
which allows reaching, despite failures, a common decision based on distributed inputs. Reliable broadcast and consensus 
(as well as message-passing emulation of read/write registers [1]) are closely related problems in the area of distributed 
computing. This work aims to design a reliable broadcast solution that is more fault-tolerant than the state-of-the-art.

The problem. Lamport, Shostak, and Pease [3] said that a process commits a Byzantine failure if it deviates from the 
algorithm instructions, say, by deferring (or omitting) messages that were sent by the algorithm or sending fake messages. 
Such malicious behavior can be the result of hardware malfunctions or software errors as well as coordinated malware 
attacks. Bracha and Toueg [4,5], BT from now on, proposed the communication abstraction of Byzantine Reliable Broadcast 
(BRB), which allows every process to invoke the brbBroadcast(v) operation and raise the brbDeliver() event upon message 
arrival. For convenience, the Glossary is provided in Table 1, see the end of this section. Following Raynal [1, Ch. 4], we 
consider the (single instance) BRB problem.

Single-instance BRB. Definition 1.1 specifies the task of single-instance BRB.

Definition 1.1. We require brbBroadcast(v) and brbDeliver() to satisfy:

• BRB-validity. Suppose a correct process BRB-delivers message m from a correct process pi , where the term correct node 
refers to a non-faulty one. Then, pi had BRB-broadcast m.

• BRB-integrity. No correct process BRB-delivers more than once.
• BRB-no-duplicity. No two correct processes BRB-deliver different messages from pi (which might be faulty).
• BRB-Completion-1. Suppose pi is a correct sender. All correct processes BRB-deliver from pi eventually.
• BRB-Completion-2. Suppose a correct process BRB-delivers a message from pi (who might be faulty). All correct pro-

cesses BRB-deliver pi ’s message eventually.

Note that self-stabilizing systems cannot be quiescent [6, Ch. 2.3]. In that sense, once the completion properties are 
satisfied, the self-stabilizing system cannot stop sending messages. For this reason, we use the name completion when 
referring to these properties rather than the common name in the literature, e.g., [1, Ch. 4], which is termination.

Repeated BRB. Distributed systems may use, over time, an unbounded number of BRB instances. We require our solution to 
use, at any given point in time, a bounded amount of memory. Thus, for the sake of completeness, we also consider the 
problem of recycling an unbounded sequence of BRB invocations using bounded memory. We require the (single-instance) 
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BRB object, O , to have an operation, called recycle(), that allows the recycling mechanism to locally reset O , after all 
non-faulty processes have completed the delivery of O ’s message. Also, we require the mechanism to inform (the possi-
bly recycled) O regarding its availability to take new missions. Specifically, the txAvailable() operation returns True when 
the sender can use O for broadcasting, and rxAvailable(k) returns True when O ’s latest transmission has arrived at the 
receiver pk .

One may observe that the problem statement does not depend on the fault model or the design criteria. However, the 
proposed solution depends on all three. To clarify, we solve the single instance BRB using the requirements presented by 
Raynal [1, Ch. 4]. Then, we solve an extended version of the problem in which each BRB instance needs to be recycled so 
that an unbounded number of BRB instances can appear.

Fault models. Recall that our BRB solution may be a component in a system that solves consensus. Thus, we safeguard 
against Byzantine failures by following the same assumptions that are often used when solving consensus. Specifically, for 
the sake of deterministic and signature-free solvability [7], we assume there are at most t < n/3 crashed or Byzantine pro-
cesses, where n is the total number of processes. The proposed solutions are for message-passing systems that have no 
guarantees on the communication delay and without explicit access to the clock. These systems are also prone to commu-
nication failures, e.g., packet omission and duplication, as long as fair communication (FC) holds, i.e., if pi sends a message 
infinitely often to p j , then p j receives that message infinitely often. An extension of our solution can also deal with packet 
reordering via the use of the automatic repeat request (ARQ) solution presented in [8], cf. § 6.) We use two different fault 
models with notations following Raynal [1]:

• BAMPn,t[FC, t < n/3]. This is a Byzantine Asynchronous Message-Passing model with at most t (out of n) faulty nodes. 
The array [FC, t < n/3] denotes the list of all assumptions, i.e., FC and t < n/3. We use this model for studying the 
problem of single-instance BRB since it has no synchrony assumptions.

• BAMPn,t[FC, t < n/3,♦Pmute,BML]. By Doudou et al. [9], processes commit muteness failures when they stop sending 
specific messages, but they may continue to send “I-am-alive” messages. For studying the problem of BRB instance 
recycling, we enrich BAMPn,t[FC, t < n/3] with a muteness detector of class ♦Pmute and assume bounded message 
lifetime (BML). That is, in any unbounded sequence of BRB invocations, at the time that immediately follows the x-th 
invocation, the messages associated with the (x−λ)-th invocation (or earlier) are either delivered or lost, where λ is a 
known upper-bound.

Raynal [1] refers to an asynchronous system as time-free when it includes synchrony assumptions, e.g., BML. Note that 
BML does not imply bounded communication delay since an unbounded number of messages can be lost between any two 
successful transmissions. Our time-free implementation of the class ♦Pmute muteness detector uses an additional synchrony 
assumption, i.e., there is a known bound, �, on the number of messages that some non-faulty processes can exchange 
without hearing from all non-faulty processes.

Self-stabilization. Dijkstra’s seminal work [10] demonstrated recovery within a finite time after the occurrence of the last 
transient fault, which may corrupt the system state in any manner (as long as the program code stays intact). Dijkstra offered 
an alternative to traditional fault-tolerance, which aims at assuring that the system, at all times, remains in a correct state 
under the assumption that the system state changes only due to the algorithmic steps and specified failures. Alas, the latter 
target is unattainable in the presence of failures that were unforeseen during the algorithm design. To address this concern, 
self-stabilization considers failures that are transient by nature and hard to be observed. Thus, they cannot be specified 
by the fault model, such as the one above, which includes process and communication failures. Therefore, self-stabilizing 
systems are required to recover eventually (in the presence of all foreseen and specified failures) after the occurrence of the 
last unforeseen and transient failure.

In this paper, in addition to the faults specified above, we also aim to recover after the occurrence of the last arbitrary 
transient-fault [11,6]. These transient faults allow the model to represent temporary deviations from the assumptions on 
which the system was originally designed to operate. This includes the corruption of control variables, such as the program 
counter and packet payloads, as well as operational assumptions, such as that at most t < n/3 processes are faulty. Since 
the occurrence of these failures can be arbitrarily combined, we assume these transient-faults can alter the system state in 
unpredictable ways. When modeling the system, Dijkstra assumed that these violations can bring the system to an arbitrary 
state from which a self-stabilizing system should recover [10]. I.e., Dijkstra requires the correctness proof of a self-stabilizing 
system to demonstrate recovery within a finite time after the last occurrence of a transient-fault and once the system has 
recovered, it must never violate the task requirements since no further transient faults occur. Arora and Gouda [12] refer to 
the former property as Convergence and the latter as Closure. Note that the satisfaction of the task requirements, which is 
Definition 1.1 in the case of this paper, holds only when Closure is guaranteed. In other words, only after the system has 
finished recovering from the occurrence of the last transient fault does a self-stabilizing system guarantees the satisfaction 
of the task requirements, for details see [11,6].

Related work. In the context of Reliable Broadcast, there are (non-self-stabilizing) Byzantine fault-tolerant (BFT) solutions [1,
13,14] and (non-BFT) self-stabilizing solutions [15] (even for total order broadcast [15–18]). We focus on BT [4,5] to which 
we propose a self-stabilizing variation. BT is the basis for advanced BFT algorithms for solving consensus, such as the one 
3
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by Mostéfaoui and Raynal [19]. BT is based on a simpler communication abstraction by Toueg that is called no-duplicity 
broadcast [20] (ND-broadcast, from now on). The requirements of ND-broadcast include all of Definition 1.1’s requirements 
except for BRB-Completion-2.

Maurer and Tixeuil [21] consider an abstraction that is somewhat simpler than the one of ND-broadcast since they only 
consider no-duplicity (and none of the other requirements of Definition 1.1). They provide a single-instance synchronous 
broadcast that is self-stabilizing BFT (or SSBFT in short), whereas we consider an asynchronous repeated BRB that follows 
Definition 1.1, which is taken from Raynal [1]. Raynal studies the exact power of all the essential communication abstractions 
in the area of fault-tolerant message-passing systems. We study the more versatile definition provided by Raynal since we 
wish to connect our solution to all relevant protocols in the area.

In the broader context of SSBFT solutions for message-passing systems, we find topology discovery [22], storage [23–25], 
clock synchronization [26,27], approximate agreement [28], asynchronous unison [29], communication in dynamic net-
works [30], and SSBFT state-machine replication [31,32] to name a few. We also propose an SSBFT mechanism for recycling 
single-instance BRB objects, which uses a muteness detector inspired by Doudou et al. [9]. Observe that Doudou et al. 
consider the Consensus problem, whereas we consider BRB.

Our contribution. We present SSBRB, a fundamental module for dependable distributed systems: a Self-Stabilizing BFT 
Reliable Broadcast for asynchronous message-passing systems, i.e., for the model of BAMPn,t[FC, t < n/3]. We obtain this new 
self-stabilizing solution via a transformation of the non-self-stabilizing BT algorithm [4,5] while preserving BT’s resilience 
optimality of t < n/3. As in BT [4,5], in the absence of transient-faults, our asynchronous solution for single-instance BRB 
achieves operation completion within a finite time. After the occurrence of the last transient-fault, the system recovers 
within a bounded time in terms of asynchronous cycles (while assuming execution fairness among the non-faulty processes). 
The amount of memory used by the proposed algorithm is bounded and the communication costs of the studied and 
proposed algorithms are similar, i.e., O(n2) messages per BRB instance. The main difference is that our solution unifies all 
the types of messages sent by BT into a single message that is repeatedly sent. This repetition is imperative since self-
stabilizing systems cannot be quiescent [6, Ch. 2.3].

Our contribution also includes an SSBFT recycling mechanism for time-free systems that are enriched with muteness de-
tectors, i.e., for the BAMPn,t[FC, BML,♦Pmute] model. The mechanism is based on an algorithm that counts communication 
rounds. Since individual BRB broadcasters increment the counter independently, the algorithm is named the Independent 
Round Counter (IRC) algorithm. Implementing an SSBFT IRC is a non-trivial challenge since this counter should facilitate an 
unbounded number of increments, yet it has to use only a constant amount of memory. Using novel techniques for dealing 
with integer overflow events, the proposed solution recovers from transient faults eventually, uses a bounded amount of 
memory, and has a communication cost of O(n) messages per BRB instance.

To the best of our knowledge, we propose the first SSBFT solutions for the problems of IRC and repeated BRB (that follows 
BT’s problem specifications [1, Ch. 4]). As said, BRB and IRC consider different fault models. § 2 defines BAMPn,t[FC, t < n/3]
and self-stabilization. The non-self-stabilizing BT algorithm for BAMPn,t[FC, t < n/3] is studied in § 3. Our self-stabilization 
BFT variation on BT for BAMPn,t[FC, t < n/3] is proposed in § 4. Our SSBTF IRC for BAMPn,t[FC, t < n/3,♦Pmute,BML] is 
presented in § 6. § 7 presents the correct proof of the proposed SSBTF IRC. § 9 compares the overhead of the studied and 
proposed solutions when executing δ BRB instances concurrently. This straightforward extension is imperative for the sake 
of practical deployments.

Recall that our task specifications (Definition 1.1) follow the ones by Raynal [1, Ch. 4], and thus, our SSBRB solution can 
serve as a building block for multivalued consensus [33].

2. System settings for BAMPn,t[FC, t < n/3]

This work focuses on two fault models. The asynchronous model for message-passing systems, BAMPn,t[FC, t < n/3], is 
presented in this section. This model has a time-free enrichment, BAMPn,t[FC, t < n/3,♦Pmute,BML], which we explain in 
§ 6. The BAMPn,t[FC, t < n/3] model requires no guarantees of communication delay. Also, the algorithm cannot explicitly 
access the (local) clock (or use timeout mechanisms). The system consists of a set, P , of n fail-prone nodes (or processes) 
with unique identifiers. Any pair of nodes pi , p j ∈P have access to a bidirectional communication FIFO-channel, channel j,i , 
that, at any time, has at most channelCapacity ∈ Z+ messages on transit from p j to pi (this assumption is due to a known 
impossibility [6, Ch. 3.2]).

In the interleaving model [6], the node’s program is a sequence of (atomic) steps. Each step starts with an internal com-
putation and finishes with a single communication operation, i.e., a message send or receive. The state, si , of node pi ∈ P
includes all of pi ’s variables and all incoming communication FIFO-channels, channel j,i : pi, p j ∈P . The term system state (or 
configuration) refers to the tuple c = (s1, s2, · · · , sn). We define an execution (or run) R = c[0],a[0], c[1],a[1], . . . as an alter-
nating sequence of system states c[x] and steps a[x], such that each c[x + 1], except for the starting one, c[0], is obtained 
from c[x] by a[x]’s execution.

The fault model and self-stabilization. The legal executions (LE) set refers to all the executions in which the requirements 
of task T hold. In this work, TBRB denotes the task of BFT Reliable Broadcast, which § 1 specifies, and the executions in the 
set LEBRB fulfill TBRB’s requirements.
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Benign failures. When the failure occurrence cannot cause the execution to lose legality, i.e., to leave LE , we refer to that 
failure as a benign one.

• Communication failures and fairness. We focus on solutions that are oriented towards asynchronous message-passing sys-
tems and thus they are oblivious to the time at which the packets depart and arrive. We assume that any message can 
reside in a communication channel only for a finite period. Also, the communication channels are prone to packet failures, 
such as loss and duplication. However, if pi sends a message infinitely often to p j , node p j receives that message infinitely 
often. We refer to the latter as the fair communication (FC) assumption. As in [34], we assume that the communication 
channel from a correct node eventually includes only messages that were transmitted by the sender. The BT algorithm as-
sumes reliable communication channels whereas the proposed solution does not make any assumption regarding reliable 
communications. § 4 provides further details regarding the reasons why the proposed solution cannot make this assumption.

• Arbitrary node failures. Byzantine faults model any failure in a node including crashes, and arbitrary malicious behaviors. 
Here, all nodes receive the arriving messages and calculate their state according to the algorithm. However, once a node, 
that is captured by the adversary, sends a message, the adversary can modify the message in any way, delay it for an 
arbitrarily long period or even omit it from the communication channel. The adversary can also send fake messages, i.e., not 
according to the algorithm. Note that the adversary has the power to coordinate such actions without any computational 
(or communication) limitation. For the sake of solvability [3,7,20], the fault model that we consider limits only the number 
of nodes that can be captured by the adversary. That is, the number, t , of Byzantine failures needs to be less than one-third 
of the number, n, of nodes in the system, i.e., 3t + 1 ≤ n. The set of non-faulty indexes is denoted by Correct, such that 
i ∈ Correct when pi is a correct node.

Arbitrary transient-faults. We consider any temporary violation of the assumptions according to which the system was de-
signed to operate. We refer to these violations and deviations as arbitrary transient-faults and assume that they can corrupt 
the system state arbitrarily (while keeping the program code intact). The occurrence of a transient fault is rare. Thus, we 
assume that the last arbitrary transient fault occurs before the system execution starts [6]. Also, it leaves the system to start 
in an arbitrary state.

Dijkstra’s self-stabilization. An algorithm is self-stabilizing w.r.t. LE , when every execution R of the algorithm reaches within 
a finite period a suffix Rlegal ∈ LE that is legal. Namely, Dijkstra [10] requires ∀R : ∃R ′ : R = R ′ ◦ Rlegal ∧ Rlegal ∈ LE ∧|R ′| ∈ Z+ , 
where the operator ◦ denotes that R = R ′ ◦ R ′′ is the concatenation of R ′ with R ′′ . By Arora and Gouda [12], the part of the 
proof that shows the existence of R ′ is called the Convergence (or recovery) proof, and the part that shows that Rlegal ∈ LE
is called the Closure proof.

Complexity measures. The time between the invocation of a BRB-broadcast and the occurrence of all required BRB-deliveries 
is called latency. As in MR [35], we show finite latency without assuming execution fairness, i.e., every correct node that 
has an applicable step infinitely often, takes a step infinitely often.

Stabilization time refers to the period in which the system recovers after the occurrence of the last transient fault. When 
estimating the stabilization time, our analysis assumes that all correct nodes complete roundtrips infinitely often with all 
other correct nodes, where a roundtrip is defined as the successful exchange of request-reply messages. However, once the 
Convergence period is over, no fairness assumption is needed.

The stabilization time is measured in terms of asynchronous cycles. The definition of these cycles uses the constant num-
ber numb , which is the maximum number of broadcasts per iteration of the ‘do forever loop’. Note that all self-stabilizing 
algorithms have such ‘do forever loop’ since these systems cannot be quiescent due to a well-known impossibility [6, 
Ch. 2.3].

The first asynchronous cycle, R ′ , of execution R = R ′ ◦ R ′′ is the shortest prefix of R in which every correct node can 
start and complete at least numb roundtrips with every correct node. The second asynchronous communication round of R
is the first round of the suffix R ′′ , and so on.

3. The non-self-stabilizing BT algorithm

Recall that the BT algorithm [4,5], is a BRB solution for BAMPn,t[FC, t < n/3]. BT is based on the simpler communication 
abstraction, ND-broadcast. The ND-broadcast’s task includes all of the BRB requirements (§ 1) except BRB-Completion-2. We 
review BT after studying the ND-broadcast algorithm [20].

ND-Broadcast. Algorithm 1 brings Toueg’s solution [20]. It assumes that every correct node invokes ND-broadcast at most 
once. Node pi initiates the ND-broadcasts of mi by sending INIT(mi) to all nodes (line 1). Upon the first arrival of this 
message to p j , it disseminates the fact that pi has initiated m’s ND-broadcast by sending ECHO(i, m) to all nodes (line 2). 
In the code of the algorithm, when message INIT(m) arrives from p j , the handling procedure passes the parameter mJ to 
allow access to the field m J . Upon its arrival to pk from more than (n+t)/2 different nodes, pk ND-deliver 〈i, mi〉 (line 3). 
Please note that in lines 3 to 5, the event handler procedure is defined with two parameters: k and mK . These parameter 
names adhere to a convention where pk ’s message is represented as mK .

Byzantine Reliable Broadcast. As explained, we present the BT solution for BRB as an extension of Toueg’s solution for 
ND-broadcast. Algorithm 2 satisfies the BRB requirements (§ 1) assuming t < n/3.
5



R. Duvignau, M. Raynal and E.M. Schiller Theoretical Computer Science 972 (2023) 114070
Algorithm 1: Non-self-stabilizing no-duplicity broadcast (ND-broadcast); code for pi .

1 operation ndBroadcast(m) do broadcast INIT(m);

2 upon INIT(mJ) first arrival from p j do broadcast ECHO( j, mJ);

3 upon ECHO(k, mK ) arrival from p j begin
4 if ECHO(k, mK ) received from at least (n+t)/2 nodes then
5 ndDeliver(k, mK )

Algorithm 2: Non-self-stabilizing Byzantine Reliable Broadcast (BRB); code for pi .

1 operation brbBroadcast(m) do broadcast INIT(m);

2 upon INIT(mJ) first arrival from p j do broadcast ECHO( j, mJ);

3 upon ECHO(k, mK ) arrival from p j begin
4 if ECHO(k, mK ) received from at least (n+t)/2 nodes ∧ READY(k, mK ) not yet broadcast then broadcast READY(k, mK ) ;

5 upon READY(k, mK ) arrival from p j begin
6 if READY(k, mK ) received from (t+1) nodes ∧ READY(k, mK ) not yet broadcast then broadcast READY(k, mK );
7 if READY(k, mK ) received from at least (2t+1) nodes ∧〈k, mK 〉 not yet BRB-Delivered then brbDeliver (k, mK );

The first difference between the ND-broadcast and BRB algorithms is in the consequent clause of the if-statement in 
line 4, where ND-delivery of 〈 j, m〉 is replaced with the broadcast of READY( j, m). This broadcast indicates that pi is ready 
to BRB-deliver 〈 j, m〉 as soon as it receives sufficient support, i.e., the arrival of READY( j, m), which tells that 〈 j, m〉 can be 
BRB-delivered. Note that BRB-no-duplicity protects Algorithm 2 from the case in which pi broadcasts READY( j, m) while p j
broadcasts READY( j, m′), such that m = m′ .

The new part of the BRB algorithm (lines 5 to 7) includes two if-statements. The first one (line 6) makes sure that 
every correct node receives READY( j, m) from at least one correct node before BRB-delivering 〈 j, m〉. This is done via the 
broadcasting of READY( j, m) as soon as pi received it, for the first time, from at least (t+1) different nodes (since t of them 
can be Byzantine).

The second if-statement (line 7) makes sure that no two correct nodes BRB-deliver different pairs (in the presence of 
plausibly fake READY( j, -) messages sent by Byzantine nodes, where the symbol ‘-’ stands for any legal value). That is, the 
delivery of a BRB-broadcast is done only after the first reception of the pair 〈 j, m〉 from at least (2t+1) nodes (out of which 
at most t are Byzantine). The receiver then knows that there are at least t+1 correct nodes that can make sure that the 
condition in line 6 holds eventually for all correct nodes whenever reliable communication channels are assumed.

4. Self-stabilizing Byzantine-tolerant single-instance BRB

Before proposing our solution, we review the challenges of transforming the non-self-stabilizing BT into a self-stabilizing 
one.

Challenges and approaches. We analyze here the behavior of the BT algorithm in the presence of transient-faults. We 
would like to highlight to the reader that our analysis is relevant only in the context of self-stabilization since Bracha and 
Toueg [4,5] do not consider transient-faults in their work. In Section 8, we explain how to coordinate the recycling of BRB 
objects.

Dealing with memory corruption and desynchronized system states. Recall that transient faults can corrupt the system state in 
any manner (as long as the program code remains intact). For example, memory corruption can cause the local state to 
indicate that a certain message has already arrived (line 2) or that a certain broadcast was already performed (line 6). This 
means that some necessary messages will not be broadcast. This will result in indefinite blocking. Our solution avoids such 
situations by unifying all messages and repeatedly broadcasting the unified message (until the BRB object is recycled).

Datagram-based end-to-end communications. Algorithm 2 assumes reliable communication channels when broadcasting in a 
quorum-based manner, i.e., sending the same message to all nodes and then waiting for a reply from n−t nodes. Next, 
we explain why, for the sake of a simpler presentation, we choose not to follow this assumption. Self-stabilizing end-to-
end communications require a known bound on the capacity of the communication channels [6, Ch. 3]. In the context of 
self-stabilization and quorum systems, we must avoid situations in which communicating in a quorum-based manner can 
lead to a contradiction with the system’s assumptions. Dolev, Petig, and Schiller [36] explain that there might be a subset 
of nodes that can complete many roundtrips with a given sender, while other nodes merely accumulate messages in their 
communication channels. The channel-bounded capacity implies that the system has to either block or omit messages before 
their delivery. For this reason, the proposed solution does not assume access to reliable channels. Instead, communications 
are simply repeated by the algorithm’s do-forever loop.
6
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Algorithm 3: SSBFT BRB with instance recycling interface; pi ’s code.

1 types: brbMSG := {init, echo, ready};

2 variables:
3 msg[P][brbMSG] := [[∅, . . . , ∅], . . . , [∅, . . . , ∅]]; // most recently sent/received message
4 wasDelivered[P] := [False, . . . , False]; /* indicates if the message was delivered */

5 required interfaces: txAvailable() and rxAvailable(k);

6 provided interfaces: recycle(k) do {(msg[k], wasDelivered[k]) ← ([∅, ∅, ∅], False)} /* also initialize the communication channel 
with pk [6, Ch. 3.1] */

7 macros:
8 msg() begin
9 let m[P][brbMSG] := [[∅, . . . , ∅], . . . , [∅, . . . , ∅]];

10 m[i][init] ← msg[i][init];
11 foreach pk ∈ P \ {pi} do m[k][init] ← ∅;
12 foreach s ∈ brbMSG \ {init} ∧ pk ∈ P ∧ (i, m) ∈ msg[k][s] do
13 m[k][s] ← m[k][s] ∪ {(i, m)};

14 return m;

15 mrg(m J , j) begin
16 msg[ j][init] ← m J [ j][init];
17 foreach pk ∈ P ∧ s ∈ brbMSG \ {init} do
18 msg[k][s] ← (msg[k][s] \ {( j, -)}) ∪ mJ[k][s];

19 operations:
20 brbBroadcast(v) do {if txAvailable() then recycle(i); msg[i][init] ← {v}};

21 brbDeliver(k) begin
22 if ∃m : (n − t) ≤ |{p� ∈ P : (�,m) ∈ msg[k][ready]}| ∧ rxAvailable(k) then
23 wasDelivered[k] ← m = ⊥; return m;

24 else return ⊥;

25 brbWasDelivered(k) do return wasDelivered[k];
26 do-forever begin
27 foreach pk ∈ P do
28 if |msg[k][init]| = 1 ∨ ∃s = init : ∃p� ∈ P : 

∃(�,m), (�,m′) ∈ msg[k][s] : m = m′ ∨ ∃(�,m) ∈ msg[k][echo] : m /∈ msg[k][init] ∨ ∃(�, m) ∈ msg[k][ready]: ¬((n+t)/2
< |{p�′ ∈ P : (�′, m) ∈ msg[k][echo]}| ∨ (t+1) ≤ |{p�′ ∈ P : (�′, m) ∈ msg[k][ready]}|)∨(wasDelivered[k] ∧ brbDeliver(k) = ⊥) then

29 recycle(k);

30 if ∃m ∈ msg[k][init] then msg[k][echo] ← msg[k][echo] ∪ {(i, m)};
31 if ∃m : (n+t)/2 < |{p� ∈ P : (�, m) ∈ msg[k][echo]}| then
32 msg[k][ready] ← msg[k][ready] ∪ {(i, m)};

33 if ∃m : (t+1) ≤ |{p� ∈ P : (�, m) ∈ msg[k][ready]}| then
34 msg[k][ready] ← msg[k][ready] ∪ {(i, m)};

35 broadcast MSG(msg(), txMSG() );

36 upon MSG(brb J , irc J ) arrival from p j begin

37 rxMSG(brb J , irc J , j);

38 mrg(brb J , j);

Self-stabilizing BFT single-instance solution. Algorithm 3 proposes our SSBRB solution for BAMPn,t[FC, t < n/3]. The key 
ideas are to (i) offer a variance of Algorithm 2, such that its operations always complete even when starting from a corrupted 
state, (ii) offer interfaces for coordinating the recycling of a given BRB object, as well as (iii) offer interfaces for accessing 
the delivered value and current status of the broadcast. This way, the recycling coordination mechanism (§ 6) can make 
sure that no BRB object is recycled before all correct nodes deliver its result. Also, once all correct nodes have delivered 
a message, the BRB object can eventually be recycled. The boxed code fragments in lines 35 to 36 are irrelevant to our 
single-instance BRB implementation. Moreover, in line 28 we use the underline font to denote a clause that is only relevant 
when executing Algorithm 3 as a single instance BRB (and not when running it concurrently with Algorithms 4 and 5). 
Fig. 1 presents an overview of the solution components.

Types, constants, variables, message structure, and macros. As mentioned, the message MSG() unifies the messages of Algo-
rithm 2. The array msg[][] stores both the information that is sent and arrived at these messages. I.e., for any j = i, msgi[ j][]
stores the information related to p j ’s BRB object. Also, we define the type brbMSG := {init, echo, ready} (line 1) 
for storing information related to BRB-broadcast messages, for example, msgi[i][init] stores the information that BRB-
broadcast disseminates of INIT() messages and the results of the content of READY() messages appear in msgi[i][ready]. 
Using the macro msg(), pi can send information that is supported by only pi , i.e., pi ’s init message as well as pi ’s support 
7
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Fig. 1. The solution components.

records (i, m) for phases echo and ready. The macro mrg() allows the integration of received information with the local 
one.

The algorithmic transformation. The brbBroadcast(v) operation (line 20) allows Algorithm 3 to invoke BRB-broadcast with 
message v . The invocation causes Algorithm 3 to follow the logic of the BRB solution in Algorithm 2 in lines 21 to 24
and 30 to 34. Our solution also includes consistency tests at line 28.

Getting delivered values and current status. Algorithms 1 and 2 inform the application about message arrival by raising the 
events of ndDeliver() (line 5), and respectively, brbDeliver() (line 7). As explained in the context of self-stabilization, a single 
transient fault can cause the local state to indicate that the message has already been delivered. Our SSBFT BRB solution 
takes another approach in which the application is pulling information from Algorithm 3 by invoking the brbDeliver() oper-
ation (line 21), which returns message m once it has arrived from at least n − t different nodes (line 23). Otherwise, ⊥ is 
returned since no message is ready to be delivered (line 24). Observe that once brbDeliveri(k) : i, k ∈ Correct returns a non-⊥
value, brbDeliveri(k) returns a non-⊥ value in all subsequent invocations.

Satisfying BRB-integrity (Definition 1.1) in a self-stabilizing manner. Line 23 records the fact that the non-⊥ message was de-
livered at least once by storing True in wasDeliveredi[k]. The application can access the value stored in wasDeliveredi[k]
by invoking brbWasDeliveredi(k) (line 25). In other words, whenever the application at pi tries to pull the arriving message 
from pk , it can first test brbWasDeliveredi(k). If False is returned, brbDeliveri(k) can be invoked. Otherwise, the message from 
pk was already delivered. Note that the use of brbWasDelivered() is needed only for the single-instance BRB implementation 
presented by Algorithm 2 since the repeated BRB version uses the recycling mechanism (§ 6) for providing a simpler way 
to satisfy BRB-integrity.

5. Correctness of Algorithm 3

Definition 5.1 defines the terms active nodes and consistency. Theorem 5.1 shows that Convergence is obtained by consis-
tency regaining (Lemma 5.2). Then, we prove completion from any starting state (Lemma 5.4). The rest of the proof is based 
on the assumption that BRB objects are eventually recycled after their task was completed (§ 1). The Closure proof (§ 5) 
shows that Algorithm 3 satisfies BRB’s requirements (Definition 1.1).

Definition 5.1 (Active nodes and consistent executions of Algorithm 3). Node pi ∈P is said to be active when msgi[i][init] = ∅. 
Let R be an Algorithm 3’s execution, pi, p j ∈ P : i ∈ Correct, and c ∈ R . Suppose in c: (brb.i) The if-statement condition in 
line 28 does not hold w.r.t. any correct node. (brb.ii) any message MSG(brb J = mJ, -) in transit from pi to p j is the result 
of msgi(). In this case, we say that c is consistent w.r.t. pi . Suppose every system state in R is consistent w.r.t. pi . Then we 
say that R is consistent w.r.t. pi .

Note the term active (Definition 5.1) does not distinguish between the cases in which a node is active due to the 
occurrence of a transient fault or the invocation of brbBroadcast(v). Our proof uses the term post-recycled system state 
(Definition 5.2), which is also a consistent one (Definition 5.1).

Definition 5.2 (Post-recycle system states and complete invocation of operations). We say that system state c is post-recycled w.r.t.
pi ∈P : i ∈ Correct if ∀ j ∈ Correct : (msg j[i], wasDelivered j[i]) = ([∅, ∅, ∅], False) holds and no communication channel from 
pi to p j includes MSG(brb J = [∅, . . . , ∅], -). Suppose that execution R starts in the post-recycled system state c and pi
invokes brbBroadcasti(v) exactly once. In this case, we say that R includes a complete BRB invocation w.r.t. pi .
8
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Algorithm 3’s Convergence. Theorem 5.1 bounds the stabilization time of Algorithm 3 using asynchronous cycles (§ 2) 
while considering fair executions in which all correct nodes are assumed to complete roundtrips infinitely often with all 
other correct nodes.

The Convergence proof (Theorem 5.1) shows that, within O(1) asynchronous cycles, w.r.t. any correct pi , the state of 
pi ’s BRB object reaches its post-recycling state (Definition 5.2). Our recycling mechanism facilitates the satisfaction of this 
requirement. That is, within O(1) asynchronous cycles, pi ’s BRB object has either reached a post-recycling state or has 
completed its task, and thus it is ready to be recycled. Specifically, Lemma 5.2 demonstrates consistency within O(1)

asynchronous cycles. Lemma 5.3 shows that if a correct node is not active, its BRB object reaches a post-recycling state 
within O(1) asynchronous cycles. Lemma 5.6 shows that if a correct node is active, the object completes its task within 
O(1) asynchronous cycles, and thus, it can be recycled.

Theorem 5.1 (Algorithm 3’s Convergence). Let R be a fair execution of Algorithm 3. Within O(1) asynchronous cycles, Convergence is 
done.

Proof of Theorem 5.1.

Lemma 5.2 (Consistency). Let i ∈ Correct. Within O(1) asynchronous cycles, the system reaches a state c ∈ R that starts a consistent 
execution w.r.t. pi (Definition 5.1).

Proof of Lemma 5.2. Suppose that R ’s starting state is not consistent w.r.t. pi . Specifically, suppose that Invariant (brb.i) 
does not hold. I.e., the if-statement condition in line 28 holds. Since R is fair, within O(1) asynchronous cycles, pi takes a 
step that includes the execution of line 29, which assures that R becomes consistent w.r.t. pi (brb.i). By Algorithm 3’s code, 
once Invariant (brb.i) holds w.r.t. pi in c ∈ R , it holds in state c′ ∈ R that follows c.

Let m be a message that in R ’s starting state resides in a channel from pi . Since the channel preserves the FIFO order, 
if m is ever delivered during R , then it does so within O(1) asynchronous cycles. By line 35, within O(1) asynchronous 
cycles, (brb.ii) holds since it is sufficient to consider only messages that were sent during R from nodes in which (brb.i) 
holds. �Lemma 5.2

Lemma 5.3 (Completion starting from any system state and no active broadcaster). Suppose pi ∈ P : i ∈ Correct is not active. Within 
O(1) asynchronous cycles, ∀ j ∈ Correct : (msg j[i], wasDelivered j[i]) = ([∅, ∅, ∅], False).

Proof of Lemma 5.3. The proof follows from the assumption that msgi[i][init] = ∅ throughout R , Argument (1), and 
Lemma 5.2.

Argument (1) Within O(1) asynchronous cycles, msgi[i][init] = msg j[i][init] holds if msgi[i][init]’s values do not change 
during R. Since pi is correct, it broadcasts MSG(brb J = msgi, -) within O(1) asynchronous cycles. Since R is fair, every cor-
rect p j ∈P receives MSG(brb J , -) within O(1) asynchronous cycles. Thus, the argument holds (due to line 16). �Lemma 5.3

Lemma 5.4 (Completion starting from any system state and an active broadcaster). Suppose pi ∈ P : i ∈ Correct is active throughout 
R. Within O(1) asynchronous cycles, ∀i, j ∈ Correct : brbDeliver j(i) = ⊥.

Proof of Lemma 5.4. Since pi is active, msgi[i][init] = {m}. By Lemma 5.3’s Argument (1), msg j[i][init] = {m} within 
O(1) asynchronous cycles. Also, ∀ j ∈ Correct : msg j[ j][echo] ⊇ {(i, m)} since node p j obverses that the if-statement 
condition in line 30 holds (for the case of k j = i). Then, p j broadcasts MSG(brb J = msg j, -) at least once in every 
O(1) asynchronous cycles. Since R is fair, every correct p� ∈ P receives MSG(brb J , -) within O(1) asynchronous cy-
cles. Thus, ∀ j, � ∈ Correct : msg�[ j][echo] ⊇ {(i, m)} (line 17). Since n−t > (n+t)/2, p� observes that (n+t)/2 < |{px ∈
P : (x, m) ∈ msg�[i][echo]}| holds, i.e., the if-statement condition in line 31 holds, and thus, msg�[�][ready] ⊇ {(i, m)}
holds. Note t < (n+t)/2, faulty nodes cannot prevent a correct node from broadcasting MSG(brb J = m J , -) : mJ[i][ready] ⊇
{(i, m)} at least once every O(1) asynchronous cycles, say, by colluding and sending MSG(brb J = m J , -) : mJ[i][ready] ⊇
{(i, m′)} ∧ m′ = m. Since R is fair, any correct p y ∈ P receives MSG(brb J = m J , -) within O(1) asynchronous cycles. Thus, 
∀ j, y ∈ Correct : msg y[ j][ready] ⊇ {(i, m)} holds (line 17). When p y invokes brbDelivery(i) (line 21), ∃m(n − t) ≤ |{p� ∈ P :
(�,m) ∈ msg y[ky = i][ready]}| holds and m is returned. �Lemma 5.4 �Theorem 5.1

Closure of BRB-broadcast. The Closure proof considers post-recycled system states and complete invocation of operations 
(Definition 5.2).

Theorem 5.5 (BRB Closure). Let R be an Algorithm 3’s execution that starts in a post-recycled and in which every correct node eventu-
ally invokes a complete BRB-broadcast. R demonstrates a BRB construction.
9
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Proof of Theorem 5.5. Lemma 5.6 shows operation completion within a finite time. Lemma 5.6’s proof is by similar argu-
ments to the ones of Lemma 5.4. The main difference is that fairness assumptions are not considered (§ 2), and thus, we 
demonstrate that BRB-Completion-1 holds eventually.

Lemma 5.6 (BRB-Completion-1). BRB-Completion-1 holds.

Proof of Lemma 5.6. Since pi is correct, it broadcasts MSG(brb J = msgi, -) infinitely often, where msgi[i][init] = {m}. By 
fair communication, every correct p j receives MSG(brb J , -) eventually. Thus, ∀ j ∈ Correct : msg j[i][init] = {m} (line 17). 
Also, ∀ j ∈ Correct : msg j[ j][echo] ⊇ {(i, m)} since p j ’s if-statement in line 30 holds (for the case of k j = i). Then, p j
broadcasts MSG(brb J = msg j, -) infinitely often. By fair communication, every correct p� receives MSG(brb J , -) eventu-
ally. Thus, ∀ j, � ∈ Correct : msg�[ j][echo] ⊇ {(i, m)} (line 17). Since n−t > (n+t)/2, p� observes that (n+t)/2 < |{px ∈
P : (x, m) ∈ msg�[i][echo]}| holds, i.e., the if-statement in line 31 holds, and thus, msg�[i][ready] ⊇ {(i, m)} holds. Note 
that, since t < (n+t)/2, faulty nodes cannot prevent a correct node from broadcasting MSG(brb J = m J , -) : mJ[i][ready] ⊇
{(i, m)} infinitely often, say, by colluding and sending MSG(brb J = m J , -) : mJ[i][ready] ⊇ {(i, m′)} ∧ m′ = m. By fair 
communication, every correct p y ∈ P receives MSG(brb J = m J , -) eventually. Thus, ∀ j, y ∈ Correct : msg y[ j][ready] ⊇
{(i, m)} holds (line 17). Therefore, whenever p y invokes brbDelivery(i) (line 21), the condition ∃m(n − t) ≤ |{p� ∈ P :
(�,m) ∈ msg y[i][ready]}| holds, and thus, m is returned. �Lemma 5.6

Lemma 5.7 (BRB-Completion-2). BRB-Completion-2 holds.

Proof of Lemma 5.7. By line 22, pi can BRB-deliver m from p j only once ∃m(n − t) ≤ |{p� ∈ P : (�,m) ∈ msgi[ j][ready]}|
holds. Due to the assumption that R ’s starting state is post-recycled, only lines 18 and 32 to 34 can add items to 
msgi[ j][ready]. Let MSG(mJ, -) be a message such that (�, m) ∈ mJ[ j][ready]. Specifically, line 18 adds to msgi[ j][ready]
items according to information in MSG(mJ, -) messages coming from, say, p� . I.e., infinitely often, at least t + 1 dis-
tinct and correct nodes, p� , broadcast MSG(mJ, -) : (�, m) ∈ mJ[ j][ready]. By fair communication and line 18, all correct 
nodes, px , eventually receive MSG(mJ, -) : (�, m) ∈ mJ[ j][ready] from at least t + 1 distinct nodes, p� , and make sure that 
(�, m) ∈ msgx[ j][ready]. By line 34, msgx[ j][ready] ⊇ {(x, m)}, i.e., every correct node broadcasts MSG(mJ, -) : (x, m) ∈
mJ[ j][ready] infinitely often. By fair communication and line 18, all correct p y receive MSG(mJ, -) : (x, m) ∈ mJ[ j][ready]
from at least n − t distinct nodes, px , eventually. I.e., ∃m(n − t) ≤ |{px ∈P : (x,m) ∈ msg y[ j][ready]}| holds (due to line 18) 
and ∀i ∈ Correct : brbDeliveri( j) = ⊥. �Lemma 5.7

Lemma 5.8. The BRB-integrity property holds.

Proof of Lemma 5.8. Suppose brbDeliveri(k) = m = ⊥ holds in c ∈ R , where i ∈ Correct ∧ pk ∈ P . Also, (towards a con-
tradiction) brbDeliveri(k) = m′ /∈ {⊥, m} holds in c′ ∈ R , where c′ appears after c in R . In other words, ∃m(n − t) ≤
|{p� ∈ P : (�,m) ∈ msgi[k][ready]}| in c and ∃m′ (n − t) ≤ |{p� ∈ P : (�,m′) ∈ msgi[k][ready]}| in c′ . Since n ≥ 3t + 1
and R starts in a post-recycling state (and thus consistent), there is p� ∈ P , such that (�, m) ∈ msgi[k][ready] in c and 
(�, m′) ∈ msgi[k][ready] in c′ . Algorithm 3 does not remove elements from any entry msg[][] since R is consistent. This 
means that msgi[k][ready] includes both (�, m) and (�, m′) in c′ . However, this contradicts the fact that c′ is consistent 
(Lemma 5.2). Thus, �c′ ∈ R and BRB-integrity holds. �Lemma 5.8

Lemma 5.9 (BRB-validity). BRB-validity holds.

Proof of Lemma 5.9. Let i, j ∈ Correct. Suppose p j BRB-delivers m from pi . The proof shows that pi BRB-broadcasts m. 
I.e., suppose the adversary, who captures up to t (Byzantine) nodes, sends “fake” messages of (i, m) ∈ msg j[i][echo] or 
msg j[i][ready], but pi , who is correct, never invoked brbBroadcast(m). In this case, our proof shows that no correct node 
BRB-delivers 〈i, m〉. This is because there are at most t nodes that can broadcast “fake” messages. Thus, brbDeliver(k) (line 21) 
cannot deliver 〈i, m〉 since t < n − t , i.e., �m(n − t) ≤ |{p� ∈P : (�,m) ∈ msgi[i][ready]}|. �Lemma 5.9

Lemma 5.10 (BRB-no-duplicity). BRB-no-duplicity holds.

Proof of Lemma 5.10. Let i, j ∈ Correct and pk ∈ P . Suppose that pi and p j broadcast MSG(mJ, -) : mJ[k][ready] = {(i, m)}, 
and respect., MSG(mJ, -) : mJ[k][ready] = {( j, m′)}. We prove BRB-no-duplicity by showing that m = m′ . Since R is post-
recycling, there must be a step in R in which the element (x, -) is added to msgx[k][ready] for the first time during R , 
where px ∈ {pi, p j}. The correctness proof considers the following two cases.

• Both pi and p j add (x, -) due to line 32. Suppose, towards a contradiction, that m = m′ . Since the if-statement condition 
in line 32 holds for both pi and p j , we know that ∃m(n+t)/2 < |{p� ∈ P : (�, m) ∈ msgi[k][echo]}| and ∃m′ (n+t)/2 <
|{p� ∈ P : (�, m′) ∈ msg j[k][echo]}| hold. Since R is post-recycling, this can only happen if pi and p j received MSG(mJ, -) :
mJ[k][echo] ⊇ {(�, m)}, and respect., MSG(mJ, -) : mJ[k][echo] ⊇ {(�, m′)} from (n+t)/2 distinct nodes, p� . Note that ∃px ∈
10
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Q 1 ∩ Q 2 : x ∈ Correct, where Q 1, Q 2 ⊆ P : |Q 1|, |Q 2| ≥ 1+(n+t)/2 (as in Raynal [1], item (c) of Lemma 3). But, any correct 
node, px , sends at most one element in msgx[k][echo] (lines 8 to 14 and 35) during R . Thus, m = m′ , which contradicts the 
case assumption.

• There is px ∈ {pi, p j} that adds (x, -) due to line 34. I.e., ∃m′′(t+1) ≤ |{p� ∈ P : (�, m′′) ∈ msgx[k][ready]}| ∧ m′′ ∈ {m, m′}. 
Since there are at most t faulty nodes, px received MSG(mJ) : mJ[k][ready] = {(�, m′′)} from at least one correct node, say 
px1 , which received MSG(mJ) : mJ[k][ready] = {(k, m′′)} from px2 , and so on. This chain cannot be longer than n and it 
must be originated by the previous case in which (x, -) is added due to line 32. Thus, m = m′ . �Lemma 5.10�Theorem 5.5

6. Self-stabilizing BRB object recycling in message-passing systems

We present the Independent Round Counter (IRC) task, which can implement txAvailable() and rxAvailable(k) (Fig. 4 and Al-
gorithm 3) for the model of BAMPn,t[FC, t < n/3,♦Pmute,BML]. This section also explains how to enrich the model presented 
in § 2 with muteness detectors and the BML assumption.

In non-self-stabilizing node-failure-free systems, the operations txAvailable() and rxAvailable(k) can be implemented using 
prevailing mechanisms for ARQ, which use unbounded counters. These mechanisms are often used for guaranteeing reliable 
communications by letting the sender collect acknowledgments from all receivers. Each message is associated with a unique 
message number, which the sender obtains by adding one to the previous message number after all acknowledgments 
arrived. From that point in time, the previous message number is obsolete and can be recycled.

For the case of self-stabilizing node-failure-free systems, the challenge is to deal with integer overflow events. Specifically, 
when an algorithm considers the counters to be unbounded but the studied system has bounded memory, transient faults 
can trigger integer overflow events. The solution presented here shows how to overcome this challenge via a mild synchrony 
assumption and muteness detection.

Independent Round Counters (IRCs). The IRC task (Definition 6.1) considers n independent counters. Each counter, cnti , can 
be incremented only by a unique node, pi ∈ P , via the invocation of the incrementi() operation, which returns the new 
round number or ⊥ when the invocation is (temporarily) disabled. Suppose pi , p j ∈ P are correct. Every node p j ∈ P can 
fetch cnti ’s value via the invocation of the fetch j(i) operation, which returns the most recent and non-fetched cnti ’s value or 
⊥ when such value is currently unavailable. Algorithms that satisfy Definition 6.1 provide an implementation of txAvailable()

and rxAvailable(k) by returning increment() = ⊥ and fetch(k) = ⊥, respectively.

Definition 6.1 (Independent Round Counters (IRCs)). We define the IRC task using the following requirements.

• IRC-validity. Suppose p j IRC-fetches s from cnti . Then, pi had IRC-incremented cnti to s.
• IRC-integrity-1. No correct node IRC-fetches a value more than once from the counter of any other correct node 

(considering the B most recent IRC-fetches). In detail, let Si, j = (s0, . . . , sx) : x < B be a sequence of pi ’s round num-
bers that p j fetched—we are only interested in B most recent ones, where B is a predefined constant. It holds that 
∀sy ∈ Si, j : y < B − 1 =⇒ sy + 1 mod (B + 1) = sy+1. In other words, Si, j is a sequence that includes all the integers 
that s takes when incrementing s modulo B + 1, starting from s0 and ending at sx .

• IRC-integrity-2. Correct nodes that IRC-fetch numbers from cnti do so in the order in which cnti was incremented 
(considering the B most recent IRC-fetches).

• IRC-preemption. Suppose pi IRC-increments cnti to s. IRC-increment is (temporarily) disabled until all correct nodes 
have fetched s from pi ’s counter.

• IRC-completion. Suppose all correct nodes IRC-fetch pi ’s counter infinitely often. Node pi ’s IRC-increment is enabled 
infinitely often.

Bounded message lifetime (BML). Consider a scenario in which, due to a transient fault, pi ’s copy of its round counter is 
smaller than p j ’s copy of pi ’s counter, say, by x ∈Z+ , thus node pi will have to complete x rounds before p j could IRC-fetch 
a non-⊥ value. BAMPn,t[FC, t < n/3,♦Pmute,BML] overcomes this challenge by following Assumption 6.1.

Assumption 6.1 (Bounded message lifetime, BML). Let R be an execution in which a correct pi ∈ P repeatedly broadcasts the 
protocol messages and completes an unbounded number of roundtrips with every correct, p j ∈ P . Suppose p j receives 
message m(s) from pi immediately before c ∈ R , where s ∈Z+ is the round number. We assume (rndi − s) mod (B + 1) ≤ λ

in c, where rndi is pi ’s round number, λ ∈ Z+ : channelCapacity < λ < B/6 is a known upper-bound, channelCapacity is 
defined in § 2, and B is a predefined bound on integer size.

We would like to clarify that Assumption 6.1 accounts for the scenario where the value of s can differ from rndi dur-
ing Convergence. As mentioned in Section 2, the latter refers to the recovery period that follows the last transient fault 
occurrence.

Muteness Detection. BAMPn,t[FC, t < n/3,♦Pmute,BML] also provides an SSBFT detector for muteness failures of class 
♦Pmute .
11
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Algorithm 4: SSBFT IRC; code for pi .

39 constants: B: a predefined bound on the integer size, say, 264 − 1;

40 variables: cur[P] = [−1, . . . , −1] and nxt[P] = [−1, . . . , −1]: a pair of round number arrays. Each entry in each array is associated with a single 
system node. The entry cur[i] is pi ’s current round number. Also, cur[ j] stores the most recently received round number from p j . The array nxt[]
stores on the j-th entry the next sequence number to be recycled (once it is delivered to all);

41 txLbl[P] = [0, . . . , 0]: sender-side round-trip labels that are used in the context of round number cur[i], where txLbl[ j] stores the most recently 
received label from the receiver p j . Also, the assignment of a new round number to cur[i] leads to txLbl[ j]’s nullification, cf. line 73. ;

42 rxLbl[P] = [0, . . . , 0] receiver-side round-trip labels, where rxLbl[ j] stores the most recently received label from the sender p j ;

43 required interfaces: recycle(k), trusted(), invoc(), rtComp( j);

44 provided interface:
45 txAvailable() do {return increment() = ⊥};
46 rxAvailable(k) do {return fetch(k) = ⊥};

47 macro: behind(d, s, c) do {return s ∈ {x mod (B + 1) : x ∈ {c − dλ, . . . , c}}};

48 operation increment() begin
49 if cur[i] = −1 ∧ ∃ j ∈ trusted():txLbl[ j] ≤ 2(channelCapacity + 1) then return ⊥;
50 else
51 invoc();

52 (cur[i], txLbl[]) ← ((cur[i] + 1) mod (B + 1), [0, . . . , 0]);
53 recycle(i);
54 return cur[i];

55 operation fetch(k) begin
56 if behind(1, cur[k], nxt[k]) then return ⊥;
57 else {nxt[k] ← cur[k]; return nxt[k]};

58 operation txMSG( j) {return (cur[i], nxt[ j], txLbl[ j], rxLbl[ j])};

59 operation rxMSG(brb J , irc J = (cur J , nxt J , tx�J, rx�J), j) begin
60 if behind(2, cur[i], nxt J ) ∧ txLbl[ j] = rx� J then
61 rtComp( j);

62 txLbl[ j] ← min{B, txLbl[ j] + 1};

63 else
64 if ¬behind(1, cur J , cur[ j]) then {cur[ j] ← cur J ; recycle( j)};
65 rxLbl[ j] ← tx�J;

66 do forever foreach p j ∈ P send MSG(msg(), txMSG( j));

67 upon MSG(brb J , irc J ) arrival from p j begin
68 rxMSG(brb J , irc J , j);
69 mrg(brb J , j);

Muteness Failures. Let us consider an algorithm, Alg , that attaches a round number, seq ∈ Z+ , to every message, m(seq)

that it sends. Suppose there is a system state cτ ∈ R after which p j stops forever replying to pi ’s messages, m(seq), where 
pi, p j ∈P . In this case, we say that p j is mute to pi w.r.t. message m(seq). We clarify that a Byzantine node is not mute if it 
forever sends all the messages required by Alg . For the sake of a simple presentation, we assume that the syntax of m(seq)

corresponds to the syntax of a message generated by Alg (since, otherwise, the receiver may simply omit messages with 
syntax errors). Naturally, the data load of those messages can be wrong. Observe that the set of mute nodes also includes 
all crashed nodes.

Muteness Detection. The class ♦Pmute of muteness detectors (Definition 6.2) assumes the availability of the interface function, 
trusted().

Definition 6.2 (Specifications of eventual muteness failure detector). The function trusted() returns the set of unsuspected node 
identifiers, such that:

• Strong Completeness: Eventually, every mute node is forever suspected w.r.t. round number s by every correct node 
(or the round number changes).

• Eventual Strong Accuracy: Eventually, the system reaches a state cτ ∈ R in which no correct node is suspected.

SSBFT IRC for BAMPn,t[FC, t < n/3,♦Pmute,BML]. Algorithm 4 makes sure that any node that had IRC-incremented its round 
counter defers any further IRC-increments until all nodes have acknowledged the latest IRC-increment. Algorithm 4’s line 
numbers continue the ones of Algorithm 3. Also, we defer the presentation of the boxed code in lines 51 and 61 until 
we present the implementation of our muteness detector (Algorithm 5). We clarify that when these boxed code lines are 
12
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excluded, Algorithm 4 loses its ability to tolerate node failures, even when considering only crashes. Thus, it is imperative 
for the correctness proof (§ 7) to consider both the boxed code lines and Algorithm 5 when demonstrating the properties 
of Algorithm 4. In other words, the division between Algorithms 4 and 5 serves the sole purpose of presentation simplicity.

Constants and variables. All integers used by Algorithm 4 have a maximum value, which we denote by B (line 39), that is 
required to be large, say, 264 − 1. The arrays cur[] and nxt[] (line 40) store round numbers. The entry cur[i] is pi ’s current 
round number and cur[ j] stores the most recently received round number from each other node p j . The array nxt[] stores 
on the j-th entry the next sequence number to be recycled (once it is delivered to all). The array txLbl[] holds labels that are 
used for counting the number of round-trips that pi is able to complete in the context of the current round number, cur[i], 
where txLbl[ j] is the most recently received label from p j (line 40). The array rxLbl[P] = [0, . . . , 0] holds the receiver-side 
round-trip labels, where rxLbl[ j] stores the most recently received label from the sender p j . These values allow the receiver 
to acknowledge the arriving labels back to the sender.

Interfaces. We remind the implementation of interface function recycle() (line 43) is provided by Algorithm 3, line 6. Algo-
rithm 4 offers implementations for the interfaces txAvailable() (line 45) and rxAvailable(k) (line 46).

Macros. The macro behind(d, s, c) (line 47) takes three input parameters, i.e., d ∈ {1, 2} and two sequence numbers, s and 
c. It allows Algorithm 4 to test whether s is a member of the set of numbers that are between c − dλ and c while taking 
integer overflow considerations using modulo B + 1 operations, where λ is a bound on the message lifetime (BML), see 
Assumption 6.1. Note that the parameter d ∈ {1, 2} allows behind(d, s, c) to test whether c is not ‘too old’ when simple 
transmissions (d = 1) or roundtrip exchanges (d = 2) are considered.

The increment() operation. This operation allows the caller to IRC-increment the value of its round number modulo B + 1 and 
nullify all labels in txLbl[] (line 52) as well as recycle the relevant BRB object (line 53) and return the new round number 
(line 54). However, if the previous invocation has not finished, the operation is disabled and the ⊥ value is returned. Line 49
tests whether the round number is ready to be incremented. In detail, line 49 checks whether this is the first round, i.e.,
a round number of −1, or the previous round has finished, i.e., the labels indicate that every node has completed at least 
2(channelCapacity + 1) roundtrips. By exchanging at least 2(channelCapacity + 1) labels, the proposed solution overcomes 
packet loss and duplication over FIFO channels, see [8] for a more efficient variation on this technique that also deals with 
packet reordering.

The fetch(k) operation. This operation returns, exactly once, the most recently received round number. Line 56 tests whether a 
new round number has arrived. If this is not the case, then ⊥ is returned. Otherwise, the value of the new round number is 
returned (line 57). In detail, due to Assumption 6.1, immediately after the arrival of message m(s) to p j from pi , the fact that 
s /∈ {x mod (B +1) : x ∈ {c −1λ, . . . , c}} holds implies that s is newer than cur j[i]. Thus, pi can use behindi(1, curi[k], nxti[k])
(line 56) for testing the freshness of the round number stored in curi [k] w.r.t. nxti[k]. In case the number is indeed fresh, 
fetchi() updates nxti[k] with the returned round number.

The txMSG() and rxMSG() operations. The operations txMSG() and rxMSG() let the sender, and respectively the receiver, 
process messages. Algorithm 4 sends via the message M SG() two fields: brb J and irc J , where the field brb J corresponds to 
the one of Algorithm 3. Recall that when a message arrives from p j , the receiving-side adds the suffix J to the field name, 
i.e., brb J and irc J . The field irc J is composed of the fields ack, which indicates whether a reply is required, seq, which is 
the sender’s round number, and lbl, which, during legal executions, is the corresponding label to seq that the sender uses 
for the receiver. The operation txMSG() (line 58) is used when the sender transmits a message (line 66). It includes the 
sender’s current round number, i.e., cur[i], and the corresponding label that the sender uses for the receiver p j ∈ P , i.e.,
txLbl[ j]. It also includes the values that are needed for letting the receiver to send an acknowledgment back to the sender, 
p j , i.e., nxt[ j], and the corresponding label, i.e., rxLbl[ j].

The operation rxMSG() processes messages arriving to the sender and the receiver. On the sender-side (lines 60 to 62), 
when an acknowledgment arrives from the receiver, p j , the sender checks whether the arriving message has a fresh round 
number and label (line 60). In this case, the label is incremented (line 62) in order to indicate that at least one roundtrip 
was completed. In detail, pi uses behindi(2, curi[ j], sJ) for testing whether the arriving round number, sJ, is fresh by asking 
whether sJ is not a member of the set {cur j[i] − 2λ, . . . , cur j[i]}, see Assumption 6.1. As we will see in the next paragraph, 
there is a need to take into account the receiver’s test (line 64), which can cause a non-fresh value to be a member of the 
set {x mod (B + 1) : x ∈ {c − 2λ, . . . , c}}, but not the set {x mod (B + 1) : x ∈ {c − λ, . . . , c}}.

On the receiver-side (lines 64 and 65), pi uses behindi(1, sJ, curi[ j]) to test whether a new round number arrived, i.e.,
testing whether the arriving number, sJ, is a member of {cur j[i] − λ, . . . , cur j[i]}. In this case, the local round number is 
updated (line 64) and the interface function recyclei( j) is called. Note that whenever the receiver gets a message, it stores 
the arriving sender’s label (line 65) so that it could be acknowledged (line 66). That acknowledgment includes the most 
recently delivered round number, i.e., nxt[i], and the arriving label, �J’s value, which is stored at rxLbli[ j].
The ‘do forever loop’ and message arrival. Note that the processing of messages (for sending and receiving) is along the lines 
of Algorithm 3. The ‘do forever loop’ broadcasts the message MSG() to every node in the system (line 66). The operation 
txMSG() is used for setting the value of the irc J field. Upon message arrival, as in Algorithm 3, the receiver merges the 
arriving information (line 67) and passes the arriving values to rxMSG() for processing.
13
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Fig. 2. Blanchard et al.’s implementation with � = 6 and no Byzantine failures. In this scenario, node p j crashes after a single communication round. The 
dashed line marks the point in time in which pi suspects p j to be faulty once nodes pk and p� complete three additional rounds. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Blanchard et al.’s implementation with � = 6 and a single Byzantine node, p j . In this scenario, p j sends six fake replies to messages before their 
arrival. This leads pi to falsely suspect the correct nodes pk and p� , see the dashed red line.

Our SSBFT implementation of ♦Pmute . As mentioned, Algorithm 4 is our SSBFT recycling mechanism for BAMPn,t[FC, t < n/3,

♦Pmute,BML], which requires the implementation of ♦Pmute (Definition 6.2). We present our ♦Pmute ’s implementation (Al-
gorithm 5) and its interface with Algorithm 4, see the boxed code lines. Algorithm 5’s line numbers continue the ones of 
Algorithm 4. Specifically, Algorithm 4 lets pi restart the local state of the muteness detector via a call to invoci() (line 51). 
It uses rtCompi( j) (line 61) for taking into account the completion of a roundtrip between pi and p j .

Related solutions. In the context of self-stabilizing Byzantine-free (crash-prone) systems, Blanchard et al. [37] designed a 
solution for crash-tolerant systems, rather than BFT one. They implemented perfect failure detectors, specifically class P , by 
allowing node pi to suspect any node p j ∈ P when pi is able to complete � roundtrips with other nodes in P but not 
with p j , where � is a predefined constant. Fig. 2 illustrates the fact that any node p j that has crashed is unable to respond 
to messages from pi , while any correct node can successfully complete roundtrips with pi . As pi completes more and more 
roundtrips with the correct nodes, it eventually suspects node p j since no roundtrips are completed with p j . Blanchard et 
al.’s solution protects the system against adversarial attacks that cause all message deliveries to be deferred in the network, 
as it is free from assumptions regarding the time it takes to complete a round trip. Blanchard et al.’s time-free solution 
simply requires the knowledge of an appropriate value for �.

Since the studied fault model includes Byzantine failures, we cannot directly borrow such earlier proposals, such as the 
one by Blanchard et al. Consider, for example, a Byzantine node that anticipates the sender’s messages and transmits ac-
knowledgments before the arrival of prospective messages. Using this attack of speculative acknowledgments, the adversity 
may accelerate the (false) completion of roundtrips and let the unreliable failure-detector suspect non-faulty nodes. Fig. 3
illustrates such attacks on Blanchard et al., which was designed to be crash-tolerant rather than BFT.

Our solution in a nutshell. As we explain next, our solution relies on Assumption 6.2, which facilitates the defense against the 
above attacks that use speculative acknowledgments. Specifically, when testing whether the � threshold has been exceeded, 
pi ignores the roundtrips that were completed with the top t nodes, say w.l.o.g., p1, . . . , pt , that had the highest number 
of roundtrips with pi . Suppose, w.l.o.g., that nodes pbyz

n−t , . . . , p
byz
n−1 are captured by the adversary. On the one hand, the 

adversary aims at letting pbyz
n−t , . . . , p

byz
n−1 to rapidly complete roundtrips with pi (since it tries to fool the muteness detector 

and cause it to suspect correct nodes). While on the other hand, if any of the nodes pbyz
n−t , . . . , p

byz
n−1 complete roundtrips 

with pi faster than any of the nodes p1, . . . , pt , the former, pbyz
k , is ignored by pi when testing whether the � threshold 

has been exceeded. In other words, any adversarial strategy that lets any of the nodes pbyz
n−t , . . . , p

byz
n−1 to complete more 

roundtrips with pi than the nodes p1, . . . , pt cannot cause a ‘haste’ muteness detection of a correct node. For example in 
Fig. 3, the proposed muteness detector of node pi would have ignored p j ’s fake replies, and thus, never falsely suspects pk
and p� .

Implementation. As shown in Fig. 4, Algorithm 5 does not send independent messages as it merely provides three interface 
functions to Algorithm 4, i.e., invoc(), rtComp( j), and trusted(). The algorithm’s state is based on the array rt[][] (line 71), 
which stores the number of roundtrips that node pi has completed with p j . Note that rt[][] counts separately the number 
of roundtrips pi and pk can complete during any period in which pi and p j are attempting to complete a single roundtrip.

The function invoc() (line 73) nullifies rt[][]. We require pi , upon completion of a roundtrip with p j , to call rtComp( j)
(lines 74 to 76). It increments, for every pk ∈ P \ {pi, p j}, the counter in rti[k][ j] (line 75). Then, rtComp( j) assigns zero 
14
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Algorithm 5: Class ♦Pmute detector; code for pi .

70 constants: B: a predefined bound on the integer size, say, 264 − 1.

71 variables: rt[P \ {pi}][P \ {pi}]: roundtrip counters, initially all entries are zero;

72 interface functions:
73 invoc() do {rt ← [[0, . . . , 0], . . . , [0, . . . , 0]]} ;
74 rtComp( j) begin
75 foreach pk ∈ P \ {pi , p j} do rt[k][ j] ← min{B, rt[k][ j] + 1};
76 rt[ j] ← [0, . . . , 0];
77 trusted() do return {p j : � > ∑

x∈withoutTopItems(t, j) x} where {rt[ j][�]}p�∈P is a multi-set with all the values in rt[ j][] and withoutTopItems(t, j) is the 
same multi-set after the removal of the top t values;

Fig. 4. Integrating BRB (§ 4) as well as IRC and ♦Pmute (§ 6).

to every entry in rti[ j] (line 76). The function trusted() returns the set of unsuspected nodes. Its implementation relies on 
Assumption 6.2, which answers the above challenge of speculative acknowledgments. As a defense against the above attacks, 
pi ignores the top t roundtrip counters when testing whether the � threshold has been exceeded.

Assumption 6.2. Let R be an execution, pi ∈ P a correct node that repeatedly broadcasts m(s) : s ∈ Z+ and completes an 
unbounded number of roundtrips with every correct node. Let rti,c : P × P → Z+ be a mapping of p j, pk ∈ P with the 
number of roundtrips that pi has completed with pk between c′ ∈ R and c ∈ R , where c′ is the first system state that 
immediately follows the last time pi has completed a roundtrip with p j , or the start of R (in case pi has not completed 
any roundtrip with p j between R ’s start and c). Let 

∑
x∈withoutTopItemsi,c(t, j) x be the total number of roundtrips that pi has 

completed until c when excluding the top t values of rti,c of nodes that have completed with pi the greatest number 
of roundtrips. We assume that if � ≤ ∑

x∈withoutTopItemsi,c(t, j) x then p j is mute to pi w.r.t. m(s), where � is a predefined 
constant.

7. Correctness of Algorithm 4 and Algorithm 5

Our correctness proof shows Convergence (Theorem 7.1) and Closure (Theorem 7.21). Theorem 7.1 demonstrates that the 
system completes the first part of the Convergence within O(� + channelCapacity · λ) asynchronous cycles assuming exe-
cution fairness among the correct nodes, as explained in § 2. It does so by showing that the system reaches a consistent 
system state, which Definition 7.1 specifies. This proof also includes the demonstration, in Claims 7.6 and 7.7, that Algo-
rithm 5 satisfies ♦Pmute ’s requirements (Definition 6.2). Once Convergence is done, no execution fairness is needed when 
demonstrating Closure. This is done in Theorem 7.21, which shows that Algorithms 4 and 5 satisfy the requirements of the 
IRC task (Definition 6.1). Theorem 7.21’s proof uses Theorem 7.11, which states that IRC-completion and ♦Pmute ’s require-
ments can be demonstrated using similar arguments to the ones in Theorem 7.1 while assuming a consistent starting state 
(and without assuming execution fairness).

Definition 7.1 (Consistent system states for the IRC task in Definition 6.1). Let R be an execution of Algorithm 4, pi, p j ∈ P , and 
c ∈ R be a system state of R . We say that c is consistent if the following holds.

1. txLbli[ j] = 0 ∧ curi[i] = (cur j[i] + 1) mod (B + 1) ∧ cur j[i] = (nxt j[i] + 1) mod (B + 1) holds in c.
2. Given c ∈ R and s = curi[i], let Lc,i(s) be all pairs (s, �) in MSG(-, (sJ = s, -, �J = �, -)) message in transit channeli, j

and MSG(-, (-, sJ = s, -, �J = �)) in channel j,i as well as pi ’s variables, curi[i] = s and txLbli[ j] = �, and p j ’s variables, 
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cur j[i] = s and rxLbl j[i] (line 59). Lc,i(s) does not include values that were present in every system state between R ’s 
starting state and c. I.e., every value in Lc,i(s) was introduced (or reintroduced) between R ’s start and c.

Theorem 7.1 (Convergence of Algorithms 4 and 5). Let R be an execution of Algorithm 4 for which we assume fairness among the 
correct nodes, as explained in § 2. We also assume that Algorithm 4 uses the procedures presented in Algorithm 5 and that R satisfies 
Assumption 6.2. Let pi be a correct node. Throughout R, suppose all correct nodes, p j , IRC-fetch pi ’s counter, at least once in every O(1)

asynchronous cycles, and pi invokes IRC-increment, at least once in every O(1) asynchronous cycles. Within O(� + channelCapacity ·
λ) asynchronous cycles, the system reaches a consistent system state (Definition 7.1).

Proof of Theorem 7.1. The proof is implied by Lemmas 7.2 to 7.10.

Lemma 7.2. Within O(� + channelCapacity) asynchronous cycles, IRC-increment is enabled at least once, i.e., incrementi() returns a 
non-⊥ value.

Proof of Lemma 7.2. Whenever pi ’s IRC-increment is enabled (lines 50 to 54), the return of a non-⊥ value implies that the 
value of curi[i] changes. For the case of curi[i] = −1, IRC-increment is clearly enabled (line 49). Thus, towards a contradic-
tion, assume curi[i] = s ≥ 0 holds in every system state of R ′ , where R ′ is a prefix of R that has at least O(channelCapacity)
asynchronous cycles.

Claims 7.3 to 7.8 show the needed contradiction since the latter claim implies the execution of line 52, which increments 
curi[i].

Claim 7.3. Within O(1) asynchronous cycles, the system reaches a state in which behind j(1, cur j[i] = s, cur j[i]) holds.

Proof of Claim 7.3. Within O(1) asynchronous cycles, node pi broadcasts MSG(-, (curi[i] = s, •)) (line 66). Thus, p j receives 
MSG(-, (curi[i] = s, •)) within O(1) asynchronous cycles. In the system state that immediately follows this message arrival 
(lines 67 to 68), the condition behind j(1, s, cur j[i]) holds due to the if-statement and its assignment to cur j [i] in line 64. �Claim 7.3

Claim 7.4. Within O(1) asynchronous cycles, the system reaches a state in which behind j(1, cur j[i] = s, nxt j[i]) holds.

Proof of Claim 7.4. By the assumption that p j invokes fetch j(i) within O(1) asynchronous cycles, we know that the if-
statement condition in line 56 eventually holds. Since otherwise the if-statement condition in line 56 does not hold and the 
assignment nxt j[i] ← cur j[i] (line 57) occurs. �Claim 7.4

Claim 7.5. Within O(1) asynchronous cycles, the system reaches a state in which the if-statement condition in line 60 holds w.r.t. pi .

Proof of Claim 7.5. By the proof of Claim 7.3, within O(1) asynchronous cycles, pi sends MSG(-, (curi[i] = s, -, txLbli[ j] =
�, -)) to p j and then p j receives MSG(-, (s, -, �, -)) and assign � to rxLbl j[i] (line 65) before replying with MSG(-, (-, nxt j[i] =
s′, -, �)) (line 66). By Claims 7.3 and 7.4, we know that both behind j(1, cur j[i] = s, cur j[i]) and behind j(1, cur j[i] = s, nxt j[i] =
s′) hold. By the assumption that curi[i] = s holds throughout R ′ and the definition of behind j() (line 47), we know that 
behind j(2, curi[i] = s, nxt j[i] = s′) holds when p j ’s reply, MSG(-, (-, nxt j[i] = s′, -, �)), arrives at pi . The rest of the proof is 
implied from lines 67 to 68 and then lines 59 to 60. �Claim 7.5

Claim 7.6. Within O(�) asynchronous cycles, R demonstrates the property of Strong Completeness (Definition 6.2).

Proof of Claim 7.6. Let us consider the sequence of values of rti[ j′][k] in the different system states c ∈ R , where pi, p j′ , pk ∈
P . Note that this sequence is defined by the function rti,c(k, j′) (Assumption 6.2). Thus, by line 77, we know that j′ ∈
trustedi() if, and only if, � ≤ ∑

x∈withoutTopItemsi,c(t, j′) x.
We demonstrate Strong Completeness in R by showing that, within O(�) asynchronous cycles, every mute node, p j′ , is 

forever suspected w.r.t. round number curi[i] = s (or the round number in curi[i] becomes different than s).

Argument (1) Within O(1) asynchronous cycles, pi calls rtCompi( j′) (line 61).
By Claim 7.4, the if-statement condition in line 64 holds within O(1) asynchronous cycles. By Claim 7.5, line 61 is 

executed within O(1) asynchronous cycles.

Argument (2) Within O(�) asynchronous cycles, every mute node, pm ∈ P , is forever suspected (w.r.t. round number s) by every 
correct node (or the round number changes and stops being s). By Argument (1), pi calls rtCompi( j′) (line 61) within O(1) asyn-
chronous cycles. I.e., for every correct node pk ∈P \ {pi, p j′ }, the value of rti[k][ j′] is incremented, every O(1) asynchronous 
cycles. Thus, within O(�) asynchronous cycles p j′ /∈ trustedi() holds. �Claim 7.6
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Claim 7.7. Within O(�) asynchronous cycles, R demonstrates the property of Eventual Strong Accuracy (Definition 6.2).

Proof of Claim 7.7. As in the proof of Claim 7.6, consider the sequence rti[ j′][k], which is defined by rti,c(k, j′) (Assump-
tion 6.2). I.e., j′ ∈ trustedi() if, and only if, � ≤ ∑

x∈withoutTopItemsi,c(t, j′) x. We demonstrate Eventual Strong Accuracy in R by 
showing that, within O(�) asynchronous cycles, the system reaches a state cτ ∈ R in which every correct node, p j′ , is not 
suspected w.r.t. round number curi[i] = s (or the round number in curi[i] becomes different than s). By Argument (1) of 
Claim 7.6, since both pi and p j′ are correct, we know that pi completes a roundtrip (that has a fresh label) with p j′ within 
O(�) asynchronous cycles. Whenever such a roundtrip is completed, pi assigns [0, . . . , 0] to rti[ j′] (due to line 76) and the 
condition � >

∑
x∈withoutTopItemsi(t, j′) x (line 77) holds until the next roundtrip completion (Assumption 6.2). �Claim 7.7

Claim 7.8. Suppose R satisfies ♦Pmute ’s requirements (Definition 6.2). Within O(channelCapacity) asynchronous cycles, the system 
reaches a state in which the if-statement condition in line 49 does not hold w.r.t. pi .

Proof of Claim 7.8. By the proof of Claim 7.3, within O(1) asynchronous cycles, pi sends MSG(-, (curi[i] = s, -, txLbli[ j] =
�, -)) to every p j ∈ P . Then, p j receives MSG(-, (s, -, �, -)) before assigning � to rxLbl j[i] (line 65). By Claim 7.14, nxt j[i]
stores the value s′ for which behind j(1, s, s′) holds eventually. Thus, p j eventually send to pi the message MSG(-, (-, nxt j[i] =
s′, -, �)) (line 66). By Claim 7.5, the arrival of the latter message to pi implies that pi increments txLbli[ j] or that txLbli[ j] = B
(line 62). Therefore, within O(channelCapacity) asynchronous cycles, there is no trusted node p j ∈ trustedi() for which 
txLbli[ j] ≤ 2(channelCapacity + 1) holds. Thus, the if-statement condition in line 49 does not hold w.r.t. pi . �Claim 7.8�Lemma 7.2

Lemma 7.9. Within O(� + channelCapacity · λ) asynchronous cycles, pi executes line 52, which causes p j to execute line 64 and 
leads the system to a state in which for all nodes, p j ∈P , it holds that cur j[i] = curi[i].

Proof of Lemma 7.9. Let us consider a suffix, R ′ , of execution R , of length O(� + channelCapacity · λ) asynchronous cycles, 
during which there is at least one node, p j ∈ trustedi(), for which cur j[i] = curi[i] holds throughout R ′ . From all the possible 
choices, let p j to be a node for which, at the starting system state of R ′ , the value of xi, j = (cur j[i] − curi[i]) mod (B + 1)

is higher (or equal) to the value of xi,k = (curk[i] − curi[i]) mod (B + 1), for any pk ∈ trustedi().

Argument (1) Only line 52 can introduce a new pi ’s round number value to the system, which p j may assign to cur j[i]. By the code 
of Algorithm 4, only lines 52 and 64 update the value of cur[i]. The former is at the sender-side, i.e., curi[i], whereas the 
latter is at the receiver-side, i.e., cur j[i].
Argument (2) The assignment cur j[i] ← s occurs within O(� + channelCapacity · λ) asynchronous cycles, where s is the value of 
curi[i] immediately after it was incremented. By Claim 7.8, within O(channelCapacity) asynchronous cycles, pi executes line 52, 
which increments the value of curi[i], say, to s. Also, between any consecutive pair of such increments, p j executes line 64
(see the proof of Claim 7.3), which tests whether ¬behind(1, s, cur j[i]) holds, where s is a round number that arrived from 
pi after it was assigned to curi[i] in line 52. If this if-statement condition holds, the assignment cur j [i] ← s occurs. By 
behind()’s definition and the pigeonhole principle, there are at most λ increments to curi[i] without reaching a state in 
which ¬behind(1, s, cur j[i]) does not hold.

Argument (3) The claim holds. By Claim 7.8 and Argument (2), (i) curi[i] is incremented to s within O(� + channelCapacity ·
λ) asynchronous cycles, (ii) the value s arrives to p j , (iii) the value s is assigned to cur j[i]. Due to Argument (1) and 
Assumption 6.1, (iv) cur j[i]’s value does not change before a new assignment to curi[i] occurs. Invariants (i) to (iv) imply 
the lemma. �Lemma 7.9

Lemma 7.10. Within O(� + channelCapacity · λ) asynchronous cycles, the system reaches a consistent state (Definition 7.1).

Proof of Lemma 7.10. We show that, within O(� + channelCapacity · λ) asynchronous cycles, invariants (1) and (2) hold. 
Within O(� + channelCapacity · λ) asynchronous cycles, pi executes line 52, which causes p j to execute line 64 and for 
cur j[i] = curi[i] to hold (Lemma 7.9). Let c be a system state that imminently follows the second time in which pi executes 
line 52 in a way that leads to a state in which for all nodes, p j ∈P , it holds that cur j[i] = curi[i].
Argument (1) Definition 7.1’s Invariant (1) holds. In c, txLbli[ j] = 0 holds due to the assignment in line 52. Also, by the proof 
of Lemma 7.9, such changes to the value of curi[i], via increments by one module B + 1, introduce to the system state a 
round number that line 64 uses to update cur j[i]. Imminently after such a change, curi[i] = (cur j[i] + 1) mod (B + 1) holds 
(Lemma 7.9). By the proof of Claim 7.4, the (first) change also leads to cur j [i] = nxt j[i]. Since c imminently follows the 
second change, both curi[i] = (cur j[i] + 1) mod (B + 1) and cur j[i] = (nxt j[i] + 1) mod (B + 1) hold.

Argument (2) Definition 7.1’s Invariant (2) holds. The proof is based on the one in [6, Ch. 4.2]. Due to Assumption 6.1, our proof 
is simpler. Let c′ ∈ R . By Algorithm 4 and Definition 7.1, Lc′,i(s) cannot include more than 2(channelCapacity + 1) different 
pairs since (a) channeli, j and channel j,i include at most channelCapacity pairs each as well as (b) curi[i] and txLbli[ j] are 
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the only variable in c that may contribute a unique set to Lc′,i(s), because �J (line 59) is an automatic (temporary) variable. 
Node pi cannot change cnti[i]’s value twice before counting the reception of 2(channelCapacity+1) different labels (line 49). 
Invariant (2) holds since during the period in which incrementi() returns non-⊥ values twice, the messages in the FIFO-
channels (between pi and p j) and pi ’s variables, curi[i] and txLbli[i], do not hold values that have not changed since the 
starting system state of R ′ . �Lemma 7.10 �Theorem 7.1

The proof of Theorem 7.11 is written using similar arguments to the ones in Theorem 7.1 without requiring fairness yet 
assuming that the system starts in a consistent state (Definition 7.1). This is done by letting the word ‘eventually’ substitute 
the parts in the proofs that quantify time in terms of asynchronous cycles, e.g., ‘within O(1) asynchronous cycles’. We also 
note that when a correct node, pi , sends, infinitely often, message m to another correct node, p j , we know that m arrives 
at p j infinitely often (due to the fair communication assumption, see § 2). Thus, this substitution satisfies the requirement 
to complete the roundtrips (cf. complete iterations in § 2) without requiring execution fairness. Similarly, it is also possible 
to show the satisfaction of Definition 6.2’s requirements for ♦Pmute ’s class of muteness detectors. We bring hereafter the 
entire proof for the sake of completeness.

Theorem 7.11 (IRC-completion and Algorithm 5’s Closure). Let R be an Algorithm 4’s execution that starts in a consistent system state 
(Definition 7.1). We also assume that Algorithm 4 uses the procedures presented in Algorithm 5 and that R satisfies Assumption 6.2. Let 
pi be a correct node. Throughout R, suppose all correct nodes, p j , IRC-fetch pi ’s counter, infinitely often, and pi invokes IRC-increment, 
infinitely often. Eventually, R demonstrates IRC-completion (Definition 6.1). Also, R satisfies Definition 6.2’s requirements for class 
♦Pmute muteness detector.

Proof of Theorem 7.11. The proof is implied by Lemmas 7.12 to 7.20.

Lemma 7.12. Eventually, IRC-increment is enabled at least once, i.e., incrementi() returns a non-⊥ value.

Proof of Lemma 7.12. Whenever pi ’s IRC-increment is enabled (lines 50 to 54), the return of a non-⊥ value implies that the 
value of curi[i] changes. For the case of curi[i] = −1, IRC-increment is clearly enabled (line 49). Thus, towards a contradic-
tion, assume curi[i] = s ≥ 0 holds in every system state of R ′ , where R ′ is a finite prefix of R . Claims 7.13 to 7.18 show the 
needed contradiction since the latter claim implies the execution of line 52, which increments curi[i].

Claim 7.13. Eventually behind j(1, cur j[i] = s, cur j[i]) holds.

Proof of Claim 7.13. Eventually, pi broadcasts MSG(-, (curi[i] = s, •)) (line 66). Thus, p j receives MSG(-, (curi[i] = s, •))

eventually. In the state that immediately follows this message’s arrival (lines 67 to 68), the condition behind j(1, s, cur j[i])
holds due to the assignment to cur j[i] in line 64. �Claim 7.13

Claim 7.14. Eventually, behind j(1, cur j[i] = s, nxt j[i]) holds.

Proof of Claim 7.14. By the assumption that p j invokes fetch j(i) eventually, the if-statement in line 56 eventually holds due 
to line 57. �Claim 7.14

Claim 7.15. Eventually, the if-statement condition in line 60 holds w.r.t. pi .

Proof of Claim 7.15. By Claim 7.13, eventually, pi sends MSG(-, (curi[i] = s, -, txLbli[ j] = �, -)) to p j and then p j receives 
MSG(-, (s, -, �, -)) before assigning � to rxLbl j[i] (line 65). By Claim 7.14, nxt j[i] stores the value s′ for which behind j(1, s, s′)
holds eventually. Thus, p j eventually send to pi the message MSG(-, (-, nxt j[i] = s′, -, �)) (line 66). By Claims 7.13 and 7.14, 
both behind j(1, cur j[i] = s, cur j[i]) and behind j(1, cur j[i] = s, nxt j[i] = s′) hold. By the assumption that curi[i] = s holds 
throughout R ′ and the definition of behind j() (line 47), we know that behind j(2, curi[i] = s, nxt j[i] = s′) holds when p j ’s 
reply, MSG(-, (-, nxt j[i] = s′, -, �)), arrives at pi . The rest of the proof is implied from lines 67 to 68 and then lines 59 to 60. �Claim 7.15

Claim 7.16. Eventually, Strong Completeness (Definition 6.2) holds.

Proof of Claim 7.16. As in Claim 7.6, consider the sequence rti[ j′][k]. We demonstrate Strong Completeness in R by showing 
that, eventually, every mute node, p j′ , is forever suspected w.r.t. round curi[i] = s (or curi[i] becomes different than s).

Argument (1) Eventually, pi calls rtCompi( j′) (line 61). The if-statement in line 60 holds eventually (Claim 7.15). Thus, line 61
is executed eventually.
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Argument (2) Eventually, every mute node, pm ∈P , is forever suspected w.r.t. s by every correct node (or the round number changes).
By Argument (1), pi calls rtCompi( j′) (line 61) eventually. I.e., every correct pk ∈ P \ {pi, p j′ }, rti[k][ j′] is incremented, 
infinitely often. Eventually p j′ /∈ trustedi(). �Claim 7.16

Claim 7.17. Eventually, Eventual Strong Accuracy (Definition 6.2) holds.

Proof of Claim 7.17. As in Claim 7.6, consider the sequence rti[ j′][k]. We demonstrate Eventual Strong Accuracy in R by 
showing that, eventually, the system reaches cτ ∈ R in which every correct p j′ is not suspected w.r.t. curi[i] = s (or curi[i]
becomes different than s). By Argument (1) of Claim 7.16, since both pi and p j′ are correct, we know that pi completes 
a roundtrip (that has a fresh label) with p j′ eventually. Whenever such a roundtrip is completed, pi assigns [0, . . . , 0] to 
rti[ j′] (due to line 76) and � >

∑
x∈withoutTopItemsi(t, j′) x (line 77) holds until the next roundtrip completion. �Claim 7.16

Claim 7.18. Suppose R satisfies ♦Pmute ’s requirements (Definition 6.2). Eventually, the if-statement condition in line 49 does not hold
w.r.t. pi .

Proof of Claim 7.18. By the proof of Claim 7.13, pi sends MSG(-, (curi[i] = s, -, txLbli[ j] = �, -)) to every p j ∈ P eventually. 
Then, node p j receives MSG(-, (s, -, �, -)) before assigning � to rxLbl j[i] (line 65). By Claim 7.14, nxt j[i] stores the value s′
for which behind j(1, s, s′) holds eventually. Thus, p j eventually send to pi the message MSG(-, (-, nxt j[i] = s′, -, �)) (line 66). 
By Claim 7.15, the arrival of the latter message to pi implies that pi increments txLbli[ j] or that txLbli[ j] = B (line 62). 
Therefore, eventually, there is no p j ∈ trustedi() for which txLbli[ j] ≤ 2(channelCapacity + 1) holds. Thus, the if-statement 
condition in line 49 does not hold w.r.t. pi . �Claim 7.18 �Lemma 7.12

Lemma 7.19. Eventually, pi executes line 52, which causes p j to execute line 64 and leads the system to a state in which for all nodes, 
p j ∈P , it holds that cur j[i] = curi[i].

Proof of Lemma 7.19. Eventually, pi executes line 52, which causes p j to execute line 64 and for cur j[i] = curi[i] to hold 
(Lemma 7.19). Let c be a system state that imminently follows the second time in which pi executes line 52 in a way 
that leads to a state in which for all nodes, p j ∈ P , it holds that cur j[i] = curi[i]. The rest of the proof demonstrates 
that Definition 7.1’s invariants (1) and (2) hold. The proof is identical to the ones of Claim 7.10’s arguments (1) and (2). �Lemma 7.19

Lemma 7.20. Eventually, the system reaches a consistent state (Definition 7.1).

Proof of Lemma 7.20. Eventually, pi executes line 52, which causes p j to execute line 64 and for cur j[i] = curi[i] to hold 
(Lemma 7.19). Let c be a system state that imminently follows the second time in which pi executes line 52 in a way that 
leads to a state in which for all nodes, p j ∈P , it holds that cur j[i] = curi[i]. The rest of the proof is identical to arguments 
(1) and (2) in Lemma 7.10. �Lemma 7.20 �Theorem 7.11

Theorem 7.21 (Algorithm 4’s Closure). Let pi ∈ P be a correct node and R be an Algorithm 4’s execution that starts in a consistent 
system state (Definition 7.1) as well as Algorithm 5 satisfies the requirements for class ♦Pmute muteness detector (Definition 6.2). 
Suppose all correct nodes, p j , IRC-fetch pi ’s counter infinitely often and pi invokes IRC-increment infinitely often. R demonstrates an 
IRC construction (Definition 6.1).

Proof of Theorem 7.21. IRC-completion is implied by Theorem 7.11.

IRC-validity. Suppose a correct node, p j , IRC-fetches s in a j ∈ R from pi ’s counter. We show that pi had IRC-incremented 
cnti to s in step ai , which appears in R before a j . Suppose, towards a contradiction, �ai ∈ R , yet a j returns s = ⊥ from 
fetch j(i) when executing line 57.

By the assumption that a j returns s = ⊥ from fetch j(i), we know that cur j[i] = s immediately before a j (line 57). Node 
p j assigns s to cur j[i] : i = j only in line 64 when it processes a message coming from the sender pi . However, pi can 
assign s to curi[i] only at line 52, i.e., ai exists.

IRC-preemption. Suppose that there is a correct node, pk ∈ P , that does not IRC-fetch s from pi ’s round counter during R
even after ai (in which pi IRC-increment cnti to s = −1). Also, let a′

i be a step that appears in R after ai and includes an 
IRC-increment invocation by pi . We show that a′

i ’s invocation returns ⊥, i.e., a′
i ’s invocation is disabled.

Since there is no step in which fetchk(i) returns s, it implies that nxtk[i] = s holds in any system state during R (line 57), 
when considering the last B pi ’s IRC-increments. Therefore, pk does not send MSG(-, (-, nxt[ j] = s, •)) to pi (line 66). This 
means that, as long as curi[i] = s, it holds that txLbli[ j] = 0. Also, as long as curi[i] = s, whenever pi invokes incrementi(), 
the if-statement condition in line 49 holds. Thus, incrementi() returns ⊥ in step a′ .
i
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IRC-integrity-1. Lines 56 to 57 and behind()’s definition imply that no correct node, pi , can IRC-fetch the same value twice 
from the counter of the same node, say, p j (when considering the last B IRC-increments done by pi ).

IRC-integrity-2. Suppose p j IRC-fetches s′ from pi ’s counter in step a′
j that appears in R after a j (in which p j IRC-fetches 

s). We show that pi IRC-incremented cnti to s and then to s′ . Step a′
i appears in R after a j (IRC-preemption, -validity, and 

line 52) and a j after ai (IRC-validity). Since s = s′ (IRC-integrity-1), ai = a′
i holds. By line 52, s was IRC-incremented before 

s′ when considering the B IRC-increments preceding a′
i . �Theorem 7.21

8. Coordinating the recycling of BRB objects

We sketch an integration approach between the components proposed in this paper. Fig. 4 presents Algorithm 3’s in-
terface for recycling of BRB instances, i.e., recycle(), txAvailable(), and rxAvailable() operations. (The interface between IRC 
and ♦Pmute is irrelevant to Algorithm 3.) The function recyclei(k) (line 6) lets the recycling mechanism reset msgi[k][]. The 
notation f i() says that pi executes the function f (). For the single-instance BRB (without recycling), define txAvailable()

and rxAvailable(k) (line 5) to return True. We redefine these implementations in § 6 as a preliminary integration approach 
between BRB and IRC via message piggybacking (lines 35 to 36).

The two SSBFT algorithms are integrated via specified interfaces and message piggybacking (Fig. 4). Thus, our SSBFT 
repeated BRB solution increases BT’s message size only by a constant per BRB, but the number of messages per instance 
stays similar. The integrated solution can run an unbounded number of (concurrent and independent) BRB instances. The 
advantage is that the more communication-intensive component, i.e., SSBFT BRB, is not associated with any synchrony as-
sumptions. Specifically, one can run δ concurrent BRB instances, where δ is a parameter for balancing the trade-off between 
fault recovery time and the number of BRB instances that can be used (before the next δ concurrent instances can start). 
The above extension mitigates the effect of the fact that, for the repeated BRB problem, muteness detectors are used and 
mild synchrony assumptions are made to circumvent well-known impossibilities, e.g., [38]. Those additional assumptions are 
required for the entire integrated solution to work. To the best of our knowledge, there is no proposal for a weaker set of 
assumptions for solving the studied problem in a self-stabilizing manner.

The above extension facilitates the implementation of FIFO-ordered delivery SSBFT repeated BRB. Here, each of the δ
instances is associated with a unique label � ∈ {0, . . . , δ − 1}. The implementation makes sure that no node pi delivers a 
BRB message with label � > 0 before all the BRB messages with labels in {0, . . . , � − 1}. (For the case of � = 0, the delivery 
is unconditional.)

9. Conclusion

To the best of our knowledge, this paper presents the first SSBFT algorithms for IRC and repeated BRB (that follows 
Definition 1.1) for hybrid asynchronous/time-free systems. As in BT, the SSBFT BRB algorithm takes several communi-
cation rounds of O(n2) messages per instance whereas the IRC algorithm takes O(n) messages but requires synchrony 
assumptions. We hope that the proposed solutions, e.g., the proposed recycling mechanism and the hybrid composition of 
asynchronous/time-free system settings, will facilitate new SSBFT building blocks.
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