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Abstract. This work deals with the problem of gathering n oblivious
mobile entities, called robots, at a point (not known beforehand) placed
on an infinite triangular grid. The robots are considered to be myopic,
i.e., robots have limited visibility. Earlier works of gathering mostly con-
sidered the robots either on a plane or on a circle or on a rectangular
grid under both full and limited visibility. In the triangular grid, there
are two works to the best of our knowledge. The first one is by Cicerone
et al. on arbitrary pattern formation where full visibility is considered.
The other one by Shibata et al. which considers seven robots with 2- hop
visibility that form a hexagon with one robot in the center of the hexagon
in a collision-less environment under a fully synchronous scheduler .

In this work, we first show that gathering on a triangular grid with
1-hop vision of robots is not possible even under a fully synchronous
scheduler if the robots do not agree on any axis. So one axis agreement
has been considered in this work (i.e., the robots agree on a direction
and its orientation). We have also shown that the lower bound for time
is Ω(n) epochs when n number of robots are gathering on an infinite
triangular grid. An algorithm is then presented where a swarm of n
number of robots with 1-hop visibility can gather within O(n) epochs
under a semi-synchronous scheduler. So the algorithm presented here is
time optimal.

Keywords: Gathering · Triangular Grid · Swarm robot · Limited Visi-
bility.

1 Introduction

1.1 Background and motivation

A swarm of robots is a collection of a large number of robots with minimal ca-
pabilities. In the present research scenario on robotics, researchers are interested
in these swarms of robots as these inexpensive robots can collectively do many

? The first three authors are full time research scholars in Jadavpur University.

ar
X

iv
:2

20
4.

14
04

2v
4 

 [
cs

.D
C

] 
 2

8 
Se

p 
20

22



2 P.Goswami et al.

tasks which earlier were done by single highly expensive robots with many ca-
pabilities. The wide application of these swarm of robots in different fields (e.g.,
search and rescue operations, military operations, cleaning of large surfaces, dis-
aster management, etc.) grabbed the interest of researchers in the field of swarm
robotics.

The goal of the researches in this field is to find out the minimum capabil-
ities the robots need to have to do some specific tasks like gathering ([11,13])
,dispersion ([3]), arbitrary pattern formation ([5]) etc. These capabilities are con-
sidered when modeling a robot for some specific task. Some of the well known
robot models are OBLOT , FST A, FCOM and LUMI. In each of these mod-
els, the robots are autonomous (i.e. there is no central control for the robots),
anonymous (i.e. the robots do not have any unique identifier), homogeneous (i.e
all the robots upon activation execute the same deterministic algorithm), iden-
tical (i.e robots are physically identical). In the OBLOT model the robots are
considered to be silent(i.e robots do not have any direct means of communica-
tion) and oblivious (i.e. the robots do not have any persistent memory so that
they can remember their earlier state). In FST A model, the robots are silent
but not oblivious. In FCOM, the robots are not silent but are oblivious. And in
LUMI model, the robots are neither silent nor oblivious. Their are many works
that have been done considering these four robot models ([4,5,7,12,13,17]). In
this paper, we have considered the weakest OBLOT model, among these four
models.

The activation time of the robots is a huge factor when it comes to the
robots doing some tasks. A scheduler is said to be controlling the activation of
robots. Mainly there are three types of schedulers that have been used vastly in
literature. Fully synchronous (FSYNC) scheduler where the time is divided into
global rounds of the same length and each robot is activated at the beginning
of each round, semi-synchronous (SSYNC) scheduler where time is divided into
equal-length rounds but all robots may not be activated at the beginning of each
round and asynchronous (ASYNC) scheduler where any robot can get activated
any time as there is no sense of global rounds. Among these, FSYNC and SSYNC
schedulers are considered to be less practical than ASYNC scheduler. Still, it
has been used in many works ([17]) as providing algorithms for a more general
and more realistic ASYNC scheduler is not always easy. In this paper, we have
considered the SSYNC scheduler.

Vision is another important capability that robots have. The vision of a robot
acquires information about the positions of other robots in the environment.
A robot can have either full or restricted visibility. In [4,6,9,11,12,16] authors
have modeled the robots to have infinite or full vision. The biggest drawback
of full vision is that it is not possible in practical applications due to hardware
limitations. So in [2,13,19], authors considered limited visibility. A robot with
limited visibility is called a myopic robot. A myopic robot on the plane is assumed
to see only up to a certain distance called visibility range. In graphs though, the
vision of a robot is assumed to be all the vertices within a certain hop from
the vertex on which the robot is located. Other than limited vision, robots can
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have obstructed vision where even if the vision of a robot is infinite it might get
obstructed by other robots in front of it. This model is also more practical than
using point robots that can see through other robots. So in [7], obstructed vision
model has been considered.

In this paper, we are interested in the problem of gathering. The gathering
problem requires a swarm of robots that are placed either on a plane or on
a graph, to move to a single point that is not known to the robots a priori
(Ideal Gathering Configuration). In this work, we have considered the robots on
an infinite triangular grid having the least possible vision of 1-hop under the
SSYNC scheduler. Our solution also works under obstructed vision model as a
robot needs no information about other robots who are not directly adjacent to
it.

Earlier Gathering problem has been considered under limited vision on the
plane ([13]), but movements of robots are not restricted in the plane as there are
infinitely many paths between any two points on a plane. So it would have been
interesting to consider this problem on discrete terrain where the movement of a
robot is restricted. And since grid network has wide application in various fields it
was natural to study this problem under different kinds of grids. Now an infinite
regular tessellation grid is one of the 3 types of infinite regular grids namely,
infinite square grid, infinite triangular grid, and infinite hexagonal grid ([14]).
Our goal is to solve this problem for any infinite regular tessellation grid with
the least possible vision for a robot. In [19] a solution has already been provided
by the authors where the terrain is an infinite square grid embedded on a plane
and the robots can either move diagonally from one grid point to another or
moves along the edges of the grid. But in their work, the robots can see up to
a distance of 2 units (each edge length of the grid is considered to be one unit).
So in this paper, by providing a solution for the infinite triangular grid, where a
robot can see only up to a unit of distance, we reached a little closer to our goal
of providing a solution for this problem for any infinite regular tessellation grid.
Furthermore, we also drew motivation for framing this problem for an infinite
triangular grid from the application perspective of it. In [20], authors have shown
that for some robots with sensors the coverage will be maximum if the robots
are forming a triangular grid and the length of each edge is

√
3s where s is the

sensing radius for the sensors on the robots. So coverage wise triangular grid
is better than any other regular tessellation grid. For these specific reasons, we
have considered this problem on this specific terrain.

The literature on this problem is very rich. In the following subsection, we
have provided a glimpse of the rich literature that lead us to write this paper.

1.2 Earlier works

In this paper, we are specifically focused on the problem of gathering. Earlier
the problem was mainly studied considering the robots on a plane ([1,4]). But
currently, many researchers have been interested in gathering on the discrete
environment as well, ([11,12,15,16]) as movements in graphs become more re-
stricted which is practical in real-life scenarios. In [16], Klasing et al. studied
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the gathering problem on a ring and proved that it is impossible to gather on
a ring without multiplicity detection. In [11], D’Angelo et al. first characterized
the problem of gathering on a tree and finite grid. He has proved that gathering
even with global-strong multiplicity detection is impossible if the configuration
is periodic or, symmetric with the line of symmetry passing through the edges
of the grid.

Another capability of these robots is their vision. After activation, a robot
takes a snapshot of its surroundings to collect information about the positions
of the other robots. Gathering has been studied extensively where robots are
assumed to have full or infinite visibility ([1,4,6,9,10,11,12,15,16]). But in the
application, it is impossible due to hardware limitations. So, in [2] Ando et al.
provided an algorithm where indistinguishable robots with a limited vision on
a plane without any common coordinate system converge to a point under a
semi-synchronous scheduler. In [13] Flocchini et al. have produced a procedure
that guides robots with a limited vision on a plane to gather at a single point
in finite time. In their work, they have assumed the robots have agreement on
the direction and orientation of the axes under an asynchronous scheduler. In
[18], the authors have shown that gathering is possible by robots on a circle with
agreement on the clockwise direction even if a robot can not see the location at
an angle π from it, under a semi-synchronous scheduler. Gathering under limited
visibility where the robots are placed in a discrete environment has been recently
studied by the authors in [19] where algorithms have been provided with both
one and two-axis agreement under viewing range 2 and 3 simultaneously and
square connectivity range

√
2 under asynchronous scheduler.

1.3 Our contribution

Recently, in [8], the authors have provided an algorithm for robots on a triangu-
lar grid to form any arbitrary pattern from any asymmetric initial configuration.
In their work, they have assumed that the target configuration can have multi-
plicities also. So the algorithm provided in [8] can be used for gathering where
the target configuration contains only one location for each robot. But in their
work, they have assumed the robots have full visibility which is impractical as
in application robots can’t have an infinite vision. Also, their algorithm works
only when the initial configuration is asymmetric.

Considering limited vision this problem has earlier been done in the euclidean
plane in [13]. But in the plane, the movement of a robot is not at all restricted
as there are infinitely many paths between any two points on the plane. Also,
the authors have considered two axis agreement which makes the robot more
powerful which is against the motivation of research on swarm robot algorithms
where we need to find the minimum capabilities for the robots to do a specific
task.

In [19], the authors have presented a technique for gathering under limited
visibility under an infinite rectangular grid. In their work, they have presented
two algorithms. In the first algorithm, they have considered two axis agreement
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and a vision of 2× edge length of the grid. And in the second algorithm consid-
ering one axis agreement and vision of 3× edge length of the grid for any robot
they have provided an algorithm where the robots may not gather but will surely
be on a horizontal segment of unit length (Relaxed Gathering Configuration).
Both of these algorithms are not collision-free. Also, observe that none of their
algorithms are able to gather if the visibility for each robot is 1× edge length of
the grid.

In our work, we have given a characterization of the gathering problem of
myopic robots with 1-hop vision on a triangular grid with any connected initial
configuration. We have shown that myopic robots with 1-hop visibility on an
infinite triangular grid which agree on the direction of both axis can not gather
even under a fully synchronous scheduler if they do not agree on the orienta-
tion of any axis. So assuming that myopic robots on an infinite triangular grid
have 1-hop (i.e. 1× length of an edge of the triangular grid) visibility and they
agree on the direction and orientation of any one of the three lines that gen-
erate the infinite triangular grid, we have provided an algorithm 1-hop 1-axis
gather (Algorithm 1) which gathers these robots on a single grid point within
O(n) epochs under semi-synchronous scheduler where n is the number of my-
opic robots on the grid. Where one epoch is a time interval such that within
which each robot has been activated at least once. We have also shown that any
gathering algorithm on a triangular grid must take Ω(n) epochs where n is the
number of robots placed on the infinite triangular grid. Therefore the algorithm
we presented in this paper is asymptotically time optimal.

In the following Table 1 we have compared our work with the works in [8],
[19] and [13].

SL.
No.

Algorithm Axis Agreement Visibility
Ideal/Relaxed
Gathering

1 Algorithm in [8] No axis agreement Full visibility Ideal

2 Algorithm in [13] Two axis V ∈ R(> 0) Ideal

3
1st Algorithm in
[19]

Two axis 2× edge length Ideal

4
2nd Algorithm in
[19]

One axis 3× edge length Relaxed

5
1-hop 1-axis
gather(This
paper)

One axis 1× edge length Ideal

Table 1: Comparison table
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2 Models and Definitions

2.1 Model

An infinite triangular grid G is a geometric graph where each vertex v is placed
on a plane and has exactly six adjacent vertices and any induced sub-graph K3

forms an equilateral triangle. Let R = {r1, r2, r3, . . . rn} be n robots placed on
the vertices of an infinite triangular grid G.

Robot Model: The robots are considered to be-
autonomous: there is no centralized control.
anonymous: robots do not have any unique identifier (ID).
homogeneous: robots execute same deterministic algorithm.
identical : robots are identical by their physical appearance.

The robots are placed on the vertices of an infinite triangular grid G as a
point. The robots do not have any multiplicity detection ability i.e., a robot
can not decide if a vertex contains more than one robot or not. The robots do
not agree on some global coordinate system, but each robot has its own local
coordinate system with itself at the origin and handedness. However, the robots
may agree on the direction and orientation of the axes. Based on that we consider
the following model.

One axis agreement model: In the one axis agreement model all robots
agree on the direction and orientation of any specific axis. Note that any vertex
v of the infinite triangular grid G is at the intersection of three types of lines. In
this work, the robots will agree on the orientation and direction of any one of
these three types of lines and consider it as its y-axis. Note that in this model
the robots have a common notion of up and down but not about left or right.

As an input, a robot takes a snapshot after waking. This snapshot contains
the position of other robots on G according to the local coordinates of the robot.
In a realistic setting due to limitations of hardware, a robot might not see all
of the grid points in a snapshot. So to limit the visibility of the robots we have
considered the following visibility model.

Visibility: In k-hop visibility model, each robot r can see all the grid points
which are at most at a k-hop distance from r. In this paper, the robots are
considered to have 1-hop visibility (i.e. k = 1). Note that when k = 1, a robot
placed on a vertex v of the infinite triangular grid G can only see the adjacent
six vertices of v.

The robots operate in LOOK-COMPUTE-MOVE (LCM) cycle. In each cycle
a previously inactive or idle robot wakes up and does the following steps:

LOOK: In this step after waking a robot placed on u ∈ V takes a snapshot
of the current configuration visible to it as an input. In this step, a robot gets
the positions of other robots expressed under its local coordinate system.

COMPUTE: In this step a robot computes a destination point x adjacent
to its current position, where x ∈ V according to some deterministic algorithm
with the previously obtained snapshot as input.
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MOVE: After determining a destination point x ∈ V in the previous step
the robot now moves to x through the edge ux ∈ E. Note that if x = u then the
robot does not move.

After completing one LCM cycle a robot becomes inactive and again wakes
up after a finite but unpredictable number of rounds and executes the LCM
cycle again.

Scheduler Model: Based on the activation and timing of the robots there are
mainly three types of schedulers in the literature,

Fully synchronous: In the case of a fully synchronous (FSYNC) scheduler
time can be divided logically into global rounds where the duration of each round
and each step of each round is the same. Also, each robot becomes active at the
start of each round (i.e. the set of the active robot at the beginning of each round
is the whole of R).

Semi-synchronous: A semi-synchronous (SSYNC) scheduler is a more gen-
eral version of a fully synchronous scheduler. In the case of a semi-synchronous
scheduler, the set of active robots at the beginning of a round can be a proper
subset of R. i.e. all the robots might not get activated at the beginning of a
round. However, every robot is activated infinitely often.

Asynchronous: An Asynchronous (ASYNC) scheduler is the most general
model. Here a robot gets activated independently and also executes the LCM
cycles independently. The amount of time spent in each cycle and the inactive
phase may be different for each robot and also for the same robot in two differ-
ent cycles. This amount of time is finite but unbounded and also unpredictable.
Hence there is no common notion of time. Moreover, a robot with delayed com-
putation may compute at a time when other robots have already moved and
changed the configuration. Thus the robot with delayed computation now com-
putes with an obsolete configuration as input.

In this paper, we have considered the scheduler to be semi-synchronous. The
scheduler that controls the time and activation of the robots can be thought of
as an adversary. Observe that the semi-synchronous scheduler can be controlled
as a fully synchronous scheduler as SSYNC is more general than FSYNC but not
vice-versa. Also, an adversary can decide the local coordinate system of a robot
(obeying the agreement rules of axes and orientation). However, after deciding
on the coordinate system of a robot it can not be changed further.

2.2 Notations and definitions

Definition 1 (Infinite Triangular Grid). An infinite triangular grid G is an
infinite geometric graph G = (V,E), where the vertices are placed on R2 having

coordinates {(k,
√
3
2 i) : k ∈ Z, i ∈ 2Z} ∪ {(k + 1

2 ,
√
3
2 i) : k ∈ Z, i ∈ 2Z + 1} and

two vertices are adjacent if the euclidean distance between them is 1 unit.

It is to be noted that robots do not have access to this coordinates. This coor-
dinates are used simply for describing the infinite triangular grid G.
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Definition 2 (Configuration). A configuration formed by a set of robots R,
denoted as CR (or, simply C) is the pair (G, f) where, f is a map from V to
{0, 1}. For v ∈ V , f(v) = 1 if and only if there is at least one robot on the vertex
v.

Definition 3 (Visibility Graph). A visibility graph GC for a configuration
C = (G, f) is the sub graph of G induced by set of vertices {v ∈ V : f(v) = 1}.

It is not hard to produce a configuration C with disconnected GC , such that
there exists no deterministic algorithm which can gather a set of robots start-
ing from C. So in this work, it is assumed that initially the visibility graph is
connected and any algorithm that solves the gathering problem should maintain
this connectivity during its complete execution.

Definition 4 (Extreme). A robot r is said to be an extreme robot if the follow-
ing conditions hold in its visibility:

1. There is no other robot on the positive y-axis of r.
2. Either left or right open half of r is empty.

2.3 Problem definition

Suppose, a swarm of n robots is placed on the grid points of an infinite triangular
grid G. The gathering problem requires devising an algorithm such that after
some finite time all robots assemble at exactly one grid point and stay forever
gathered at that grid point.

3 Impossibility Result

Fig. 1: In the diagram the robots agree on direction of both the axes but do not
agree on the orientation of the axes.

Theorem 1. Gathering in a triangular grid is impossible without agreement on
the orientation of any axis even when agreement on direction is present and
under a fully synchronous scheduler and 1-hop visibility.
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Proof. Let Configuration A in Fig 1 is the initial configuration. Let there be
an algorithm AL on finite execution of which two robots r1 and r2 from initial
configuration A gathers on a single vertex of the triangular grid G. Let there
is an adversary who has decided the direction and orientation of both y and x
axes for both the robots as it is in Fig 1. Note that view of r1 and r2 is same
and they agree on the direction of both axes in the diagram. So if r1 moves
through e1 according to AL on activation, r2 also moves through e1. Observe
that, if r1 moves through any other edge other than e1 then r2 moves in such a
way that the visibility graph becomes disconnected. So, both r1 and r2 moves
through edge e1 and the configuration transforms into configuration B. Using a
similar argument it can be shown that Configuration B can only transform into
Configuration A as the vision of the robots are 1-hop. So, a deadlock situation
occurs. So, our assumption must be wrong. Thus we can conclude that there does
not exist any algorithm AL on the execution of which robots on a triangular grid
with a vision of 1-hop gather even under a fully synchronous scheduler without
any axis agreement. To be more precise, even if the robots agree on the direction
of the axes they will still not gather when they do not have any agreement on
the orientation of axes. ut

Due to Theorem 1 we have considered one axis agreement model and devised
an algorithm considering 1-hop vision under semi-synchronous scheduler.

4 Gathering Algorithm

In this section, an algorithm 1-hop 1-axis gather (Algorithm 1) is provided
that will work for a swarm of n myopic robots with one axis agreement and
1-hop visibility under a semi-synchronous scheduler. Note that under one axis
agreement a robot can divide the grids into two halves based on the agreed line
as the y-axis. An extreme robot r will always have either left or right open half
empty. Thus it is easy to see that when any one of the open halves is non-empty
and r is on a grid point v, two adjacent grid points of v on the empty open half
and another adjacent grid point of v on y-axis and above r will always be empty.
In this situation, r can uniquely identify the remaining three adjacent grid points
of v (one on the y-axis and below r and the remaining two are on the non-empty
half) based on the different values of their y−coordinates. So an extreme robot
can uniquely name them as v1, v2 and v3 such that y − coordinate of vi is less
than y − coordinate of vi+1 and i ∈ {1, 2} (Fig.2). We denote position vj of an
extreme robot r as vj(r) where j ∈ {1, 2, 3}. Note that for a non-extreme robot
r, there are two v2(r) and two v3(r) positions as r have either both open halves
empty or both open halves non empty. In the algorithm 1-hop 1-axis Gather
(1), an extreme robot r moves to v1(r) if there is a robot on v1(r) and there
is no robot on v3(r). r does not move when there is only a robot on v3(r) or
there are robots only on v3(r) and v1(r). In the other remaining cases, if r sees
at least one robot on the adjacent vertices it moves to v2(r). An extreme robot
terminates when it does not see any other robot on the adjacent vertices.
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If r is not an extreme robot, then it only moves if there is no robot with
y − coordinate greater than zero within its vision and there are two robots on
both of its v2(r) positions. In this scenario the robot r moves to v1(r).

In Fig. 3 we have shown all possible views when a robot r moves and in which
direction it moves. In Fig. 3 suppose a robot r is placed on the node denoted
by a black solid circle. The grid points that are encircled are occupied by other
robots. For all the views of r in V iew− I, r moves to v1(r) and for all the views
of r in V iew − II, r moves to v2(r).

Algorithm 1: 1-hop 1-axis gather (for a robot r)

Data: Position of the robots on the adjacent grid points of r on triangular
grid G.

Result: A vertex on G adjacent to r, as destination point of r.
if r is extreme then

if There is no robot on the adjacent grid points then
terminate;

else if There is a robot only on v3(r) or there are robots only on both
v1(r) and v3(r) then

do not move;

else if There is a robot on v1(r) and no robot on v3(r) then
move to v1(r);

else
move to v2(r);

else
if There is a robot on both v2(r) and no robot on the vertices with
y − coordinate > 0 then

move to v1(r);

else
do not move;

Fig. 2: e is an extreme robot it can uniquely identify the positions of v1, v2 and
v3 if it sees right or left open half non empty.
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direction

Fig. 3: All possible views of a robot r placed on a node indicated by a black
solid circle when r decides to move. Encircled point represents a robot occupied
node For all views in V iew − I, r moves to v1(r) position and for all views in
V iew − II, r moves to v2(r) position.

4.1 Correctness results:

The intuition of the algorithm 1 is that the width of the configuration decreases
while the visibility graph stays connected by the movement of the robots. The
following results will make this intuition more concrete. Before that let us have
some definitions which will be needed in the proof of the results.

Definition 5 (Layer). Let H be a straight line perpendicular to the agreed
direction of y−axis such that there is at least one robot on some grid points on
H, then H is called a layer.

Definition 6 (Top most layer, Ht). Ht or top most layer of a configuration
C is a layer such that there is no layer above it.

Definition 7 (Vertical line, Lv). Let Lv be a line that is parallel to the agreed
direction of the y-axis such that there is at least one robot on some grid point on
Lv, then Lv is called a vertical line.

Definition 8 (Left edge, el). Left edge of a configuration C or, el is the vertical
line such that there is no other vertical line on the left of el.

Definition 9 (Right edge, er). Right edge of a configuration C or, er is the
vertical line such that there is no other vertical line on the right of er.

Definition 10 (Width of a configuration C). Width of a configuration w(C)
is defined as the distance between el and er.

Definition 11 (Depth of a vertical line Lv). Depth of a vertical line Lv is
defined as the distance between the layers Ht and the layer on which the lowest
robot on Lv is located. We denote the depth of line Lv as d(Lv).
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Fig 4 shows all the entities of the above definitions. A brief overview of the
correctness proof is given below along with the statements of the results.

Overview of the correctness proof: In Lemma 1, we have proved that the
visibility graph will remain connected throughout the execution of the algorithm.
It is necessary to prove this as otherwise, the robots may gather in several clusters
on the infinite triangular grid. Then we have shown that in Lemma 6 the width
of the configuration will decrease in finite time. Now when the width of the
configuration becomes one then there are only two vertical lines that contain
robots. These lines are left edge el and right edge er. Now in this scenario from
Lemma 2 the robots on the topmost layer will always move below and the depth
of both el and er never increases (by Lemma 5). So the depth of both the right
and left edge now decreases in each epoch. Hence within finite time, the depth
will also become one for either el or er. And in this scenario when the topmost
layer shifts down again, all the robots gather at one grid vertex (Theorem 2).

Fig. 4: diagram of a configuration C mentioning layer (H), top most layer (Ht),
vertical line (Lv), left edge (el), right edge (er), width of the C (w(C)) and depth
of the vertical line el (d(el)).

Lemma 1. If at the start of some round the configuration formed by the robots
has connected visibility graph then after execution of Algorithm 1 at the end of
that round the visibility graph of the configuration remains connected.

Proof. Let us consider for some t > 0, the configuration is denoted as C at the
beginning of round t. Then the visibility graph at the beginning of round t is
denoted as GC . We will now prove this lemma with the argument that during
this specific round t, if a robot say r, decides to move then no edge in GC of
which r is an end vertex before its move, disappears after the move of r. This
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will imply movement of any robot during the round t does not lose any edge
in GC . It is also assumed that for the initial configuration GC is connected. So,
this argument is sufficient to prove that GC will stay connected throughout the
execution of the algorithm 1. If the vertex on which r is located has more than
one robot and at least one robot is not activated during the round t, it stays
connected to r even if r moves during the round t, as even after the move of r,
the distance from the previous vertex to the vertex r reaches after the move is
1-hop. So without loss of generality let r be singleton on its location. We now
have two cases:

Case-I: Let us consider r is not an extreme robot. And during the round t, r
decides to move. This implies during the look phase of that round, r has seen at
least two robots on both of its v2(r) positions and no robot with y− coordinate
greater than zero. Let r1 be any robot on one of the v2(r) position and r2 any
robot on another v2(r) position of r. Now there are two sub-cases.

Case-I(a): For the first case, let us consider the case where r does not see any
robot on v1(r) position during the look phase of round t. Note that in this case
before the move of r, r is end vertex of the edges rr1 and rr2. Also note that even
if r1 and r2 are extreme and active during the round t, they do not move during
this round as r1 and r2 see robot r at v3(r1) and v3(r2) positions respectively
and does not see any robot on v2(r1) = v2(r2) . Also, they do not move if they
are not extreme as both of them see r at a position with y− coordinate greater
than zero. So in this case r moves to v1(r) during the move phase of round t.
Note that v1(r) is 1-hop away from both the v2(r) position of r before it moves.
So after r reaches v1(r), rr1 and rr2 are both still edges of GC this is true for
any r1 and r2 on both the v2(r) positions respectively before r moves.

Case-I(b): For the second case, let us consider there is at least a robot at
v1(r) during the look phase of round t. Let r3 be any robot on v1(r). Then before
the move of r, it is the end vertex of the edges rr1, rr2 and rr3. In this case note
that if r3 gets activated during round t, it can not be extreme as it sees r on its
positive y−axis. Also, for this reason, r3 does not move during the round t. Now
if r1 and r2 are not extreme they will not move during round t even if they are
activated and r moves to v1(r) to the location of r3. Now with a similar argument
for the above case, we can say rr1, rr2 and rr3 will still be edges after the move
of r. So let us consider either r1 or r2 is extreme and activated during the round
t. Without loss of generality let r1 is extreme and it is activated during round
t along with r. Now r1 will see robots either in the positions v3(r1) and v2(r1)
or on the positions v3(r1), v2(r1) and v1(r1). In both of these cases r1 moves to
v2(r1) to the location of r3 along with r. So after the move of r, rr1, rr2 and rr3
are still edges of GC . Hence we can conclude that move of a non extreme robot
r, does not lose any edge of GC of which r was an end vertex.

Case-II: Let us consider r is an extreme robot that decides to move during
a round t. Then There are five possible views of r during round t.

Case-II(a): r only sees robots at v2(r) during look phase of round t. Let r1
be a robot on v2(r). Note that before r moves, rr1 is an edge of GC of which r
is an end vertex (for any r1 on v2(r)). Now in this case even if r1 is activated
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during the round t, it either sees only r on v3(r1) or sees robots on v3(r1) and
v1(r1) during look phase of the round t. For both of the cases, r1 does not move
during round t. Now r moves to v2(r) at the location of r1. So it is evident that
even after r moves rr1 still is an edge of GC .

Case-II(b): r only sees robots at v1(r) during the look phase of round t.
Let r1 be a robot on v1(r). For any r1 at v1(r), rr1 is an edge of GC before r
moves. Note that r1 is not an extreme robot and it sees r with y − coordinate
greater than zero. So, during round t even if r1 is activated, it never moves. Now
r moves to v1(r) to the location of r1. So it is obvious that rr1 will still be an
edge of GC even after r moves.

Case-II(c): r only sees robots at v3(r) and v2(r) during the look phase of
round t. Note that before the move of r, for any r1 at v3(r) and r2 at v2(r),
rr1 and rr2 are the edges of GC of which r is an end vertex. Now if r1 and r2
are not activated at round t, then r moves to v2(r) at the position of r2. Now
since r2 and r1 are only 1-hop distance apart, after the move of r, it still will be
the end vertices of the edges rr1 and rr2. Note that during the round t, even if
r2 is activated it never moves as it is not an extreme robot and it sees r1 with
y − coordinate greater than zero. So let us now consider the case where both r
and r1 are activated during the round t. In this case if r1 is not extreme and it
moves during round t it moves to the location v1(r1) = v2(r), to the location of
r2. Now if r1 is extreme it can see robots only on v2(r1) and v1(r1). In this case
also r1 moves to v1(r1) = v2(r), to the location of r2. r also moves to the location
of r2. So even if r and r1 both moves during the round t, after the movement
rr1 and rr2 are still edges of GC .

Case-II(d): r only sees robots say at v2(r) and v1(r) during the look phase
of round t. Observe that for any r1 at v2(r) and for any r2 at v1(r), r is an end
vertex of the edges rr1 and rr2 in GC before it moves. Note that if r1 and r2
does not move during round t, then r moves to v2(r), at the location of r2. Now
since r2 is at 1-hop distance from r1, after the move r still is end vertex of the
edges rr1 and rr2 of GC . Observe that even if r2 is activated during the round t,
it does not move as it sees r with y − coordinate is greater than zero. So let us
consider r and r1 both are activated at round t and both decides to move. This
implies r1 is extreme and during the look phase of round t, r1 either sees robots
at the positions v3(r1) and v2(r1) or sees robots at the locations v3(r1), v2(r1)
and v1(r1). For both the views r1 moves to v2(r1) = v1(r) i.e, at the location of
r2 . Also r moves to v1(r) = v2(r1) i.e at the location of r2. So even if both r
and r1 moves during the round t, they both moves to r2 during round t. So after
their move rr1 and rr2 are still edges of GC .

Case-II(e): r only sees robots say at the positions v1(r), v2(r) and v3(r)
during the look phase of round t. Note that before it moves, r is end vertices
of the edges rr1, rr2 and rr3 in GC for any r1 at v1(r), r2 at v2(r) and r3 at
v3(r). Now if none of r1, r2 and r3 are activated or does not move during the
round t , then after r moves to v2(r) i.e to the location of r2 it is still at most
1-hop distance apart from r1, r2 and r3. So, rr1, rr2 and rr3 are still edges in GC .
Now observe that even if r1 and r2 are activated they do not move during round
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t as r1 and r2 both sees r and r3 directly above them (i.e on their respective
positive y−axis) respectively. So let us consider that only r and r3 are activated
during the round t. r moves to v2(r), at the location of r2. Now if r3 is extreme
then it sees r and r2 at the positions v2(r3) and v1(r3) respectively during the
look phase of the round t. So r3 moves to v1(r3) = v2(r), i.e the location of r2.
Observe that all of r1, r2 and r3 are still at most 1-hop away from r. So even if
both r and r3 are extreme and both of them moves during round t, rr1, rr2 and
rr3 are still edges of GC . Now let us consider the case where r3 is not extreme

but it decides to move during the round t. Again both of r and r3 moves to
v1(r3) = v2(r) and with the similar argument we can conclude, rr1, rr2 and rr3
still remains edges of GC even after both r and r3 moves during round t.

For all the cases and for any robot r that decides to move during a round t,
we showed that all the edges in GC of which r is an end vertex before the move
does not get disappeared after r moves during the round t. Now since the Initial
configuration is connected, the graph GC stays connected in each round. Hence
the lemma. ut

Fig. 5: r1, r2, r3, r4 and r5 are robots on Ht. Any robot on Ht will always have
the view same as one of ri, where i ∈ {1, 2, 3, 4, 5}. And for each of these 5 views,
a robot always moves to another layer below Ht.

Lemma 2. Ht of the configuration C, always shift down in one epoch until the
gathering is complete.

Proof. Let r be a robot on Ht. If the gathering is not complete then r must see
other robots on its adjacent vertices.

Now, there are two cases.
Case-I: If r is not extreme then upon activation r must see two robots on

each of it’s v2(r) position and no robot with y − coordinate greater than zero.
So upon activation r moves to v1(r) which is below Ht.

Case-II: If r is extreme, then there are three cases. Firstly if r sees a robot
only on v2(r) upon activation, then it moves down to v2(r) which is below Ht.
Secondly and thirdly, if r sees robot on only v1(r) or sees robots both on v1(r)
and v2(r). For both second and third case, r moves to v1(r) which is also below
Ht.
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Since in one epoch, all robots on Ht must be activated once they must move
below Ht. Hence, Ht of the configuration C always shifts down in one epoch.
(Fig.5). ut

Lemma 3. Robots on el or er which are not extreme do not move.

Proof. Let r be a robot on el or on er which is not extreme. Note that r only
moves when it sees there is no robot above (i.e no robots with y−coordinate > 0)
and both of its v2(r) are occupied by some other robots. Now since r is on el or
on er, at least one of it’s v2(r) is empty. So r does not move. ut

Fig. 6: All possible view of the lowest extreme robot r on el. In each view r never
moves directly below to v1(r).

Lemma 4. A robot r which is lowest on el or er never moves down to v1(r).

Proof. We will proof this lemma considering r on el. If r is on er the proof will
be similar. Let r is the lowest robot on el. By lemma 3, if r is not extreme it
does not move. Now if r is extreme then no robot will move to v1(r) from a
different vertical line as v1(r) is empty. So, r never moves to v1(r) as it can not
see any robot on it’s v1(r) position (Fig 6). So, r will never move to v1(r). ut

Lemma 5. Neither d(el) nor d(er) ever increase as long as the position of the
corresponding vertical line is same.

Proof. We will prove this lemma for el only. For er the proof will be similar.
Observe that if d(el) increase it can not be increased the by the lowest robot
(say, r) on el (by lemma 4). So the lowest robot can not increase d(el). Also, no
robot moves above the layer it is on. So, no robot on el moves up to increase
d(el).
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Now it might be possible that d(el) is increased by a robot that moves below
the lowest robot r of el from the immediate right vertical line. Note that a robot
moves from a vertical line to another vertical line only if it is extreme. Now, an
extreme robot, if moves, never go to a position that is not occupied by any other
robot before the movement according to algorithm 1(Fig 3). Since, to increase
d(el), a robot must move to a position that does not contain any other robot
before the movement, no robot will come below r.

So, d(el) never increases. Similarly we can say d(er) never increases. Thus
the result. ut

Lemma 6. If w(C) > 0 at a round t0 then there exists a round t > t0 such that
w(C) decreases.

Proof. Let w(C) > 0. Note that no robot from el moves left and no robots from
er moves to its right. So w(C) never increases. Now If possible let w(C) never
decreases. This implies the vertical lines el and er never shifts to right and left
respectively. Now by lemma 5 we can say that d(el) and d(er) never increases.
Also by lemma 2 Ht shifts down always in one epoch. So from these two lemmas
we can conclude that there exists t1 > t0 such that at the round t1 either d(el)
or, d(er) becomes 0. Note that when d(el) (or, d(er)) is 0 then el (or, er) contains
exactly one vertex v having robots. Let r be a robot on that vertex v. Note that
r is extreme and by Lemma 1 since GC is connected r sees robots only on v2(r).
So, r moves to v2(r) which is on the next vertical line on its right (or, left). So
after a finite epoch either el shifts right or er shifts left and thus we arrive at a
contradiction. Hence the lemma. ut

Theorem 2. Algorithm 1-hop 1-axis Gather guarantees that there exists a
round t > 0 such that a swarm of n myopic robots on an infinite triangular grid G
with 1-hop visibility and one axis agreement will always gather after completion of
round t under semi-synchronous scheduler starting from any initial configuration
for which visibility graph GC is connected.

Proof. From lemma 6 we can conclude that after a finite number of rounds w(C)
becomes zero. Observe that when w(C) = 0 all the robots are on a vertical line
el. Also, note that when all the robots are on a single line then el is the same
as er. In this situation if d(el) = 0 that means gathering is complete. So let us
assume d(el) > 0. Note that in this scenario, since no non extreme robot r sees
two robots on both of its v2(r) position and no extreme robot r′ sees a robot in
a location other than v1(r′), no robot will move to a different vertical line from
el = er. Now by lemma2 and lemma 5 , Ht shifts down until there is only one
grid point having robots on el (i.e d(el) = 0). So we can conclude that there
exists a round t > 0 such that gathering is complete after the completion of
round t. ut

4.2 Complexity Analysis

First we observe in Theorem 3 that it will take at least Ω(n) epochs to gather n
number of robots. The theorem is stated and proved formally in the following.
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Theorem 3. Any gathering algorithm on a triangular grid takes Ω(n) epoch.

Proof. Let us consider the configuration in Fig. 7. Let us define the height of
the configuration as the distance between the topmost and lowest layer of the
configuration. Note that in Fig. 7 the height of the configuration is n (i.e., the
number of robots). When considering the worst case, a robot can only be acti-
vated once in each epoch. Hence, the height of the configuration decreases by
at most 2 units in each epoch. Now the robots will gather when the height of
the configuration and width of the configuration both becomes 0. Since in each
epoch, height decreases by 2 units, at least n

2 rounds will be needed to gather
the n robots. Hence the result. ut

Fig. 7: All of the n robots are on a straight line on the triangular grid. Height of
the configuration is n.

Now we shall prove that the robots executing our proposed algorithm do not
go downwards by much. First, we define the smallest enclosing rectangle for the
initial configuration.

Definition 12 (SER). A rectangle R = ABCD is said to be the smallest en-
closing rectangle (SER) (Figure 8) of the initial configuration if it is the smallest
in dimension satisfying the following:

1. All robots in the initial configuration are inside R
2. All vertices of ABCD are on some grid points
3. AB and CD side is parallel to the axis agreed by all the robots
4. BC is the lower side of the rectangle.

Next, we define a polygon that shall contain all the robots throughout the algo-
rithm.

Definition 13 (Bounding Polygon). Let R = ABCD be the SER of the
initial configuration. Let P the point below BC line such that ∠CBP = ∠BCP =
π/6. Then the polygon P = ABPCDA is said to be the Bounding Polygon.
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Fig. 8: ABCD, smallest enclosing rectangle

We show that no robot executing Algorithm 1 ever steps out of the bound-
ing polygon (Lemma 7). Using Lemma 7, Theorem 4 proves that Algorithm 1
terminates within O(n) epochs.

Lemma 7. No robot executing the Algorithm 1 ever steps out of the bounding
polygon.

Proof. Let P = ABPCDA be the bounding polygon (Fig. 8). Note that, the
point P is on some grid point. Opposite to our claim, let there be some robots
that step out of P and kth round is the earliest round when some robots stepped
out P. Let r be such a robot. Note that at the end of (k − 1)th round, no robot
is outside of P. Firstly since no robot ever moves upward, so no robot can step
out of P through the AD side and goes above to the AD side. Then r can step
out of P through any side of P but AD. Note that, in this case, r must land on
that side in some round before. Hence at the start of kth round r must be on
that side.

Let r has stepped out of P through AB side. If r is on any point but B then
to cross the AB line and step out of P it has to change its vertical line. This
is only allowed for an extreme robot according to our algorithm. So if r has to
cross the vertical line while stepping out of P then r must be an extreme robot
at kth round. But according to our algorithm, since an extreme robot never
occupies an empty grid point, this yields a contradiction. Even if r is at B and
steps out of P without changing its vertical line then it must go down as a non
extreme robot. But since the left v2(r) position of r is empty, so according to
our algorithm, r wouldn’t go down as a non extreme robot. Hence r can not
step out of P through the AB line. With a similar argument, one can similarly
show that r can not step out of P through the CD line.

Now let the robot r step out of P through the BP line or PC line. We already
showed that r can not be at B or C at the start of kth round. Let r be at some
point on PB line or PC line. Now using the same argument as the previous
case one can show that r can not be an extreme robot at the start of kth round
because r occupies an empty grid point in this round. Now we see r also cannot
be a non extreme robot at the start of kth round. Because a non extreme robot
only moves when both of its v2(r) position is nonempty. But this can not be true
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in this case for robot r. Hence this shows r cannot step out of P at all, which
contradicts our assumption that some robots have stepped out of P. ut

Theorem 4. The algorithm 1-hop 1-axis Gather takes at most O(n) epochs to
gather all the robots.

Proof. Let R = ABCD be the SER of the initial configuration and P =
ABPCDA be the bounding polygon. Since the total number of robots is n,

from simple geometry |BC| ≤ (n + 1)

√
3

2
and so |BC| ≤ n + 1. Also the max-

imum distance from AD to P is
5

4
(n + 1). Therefore the maximum distance of

Ht of the initial configuration from P is
5

4
(n+ 1).

Now from Lemma 2 we can say that Ht shifts down at least half a unit in
one epoch till the gathering is not done. And since the maximum distance of Ht

of the initial configuration from P is
5

4
(n+1), so within 2× 5

4
(n+1) =

5

2
(n+1)

epochs the gathering must be complete. Hence the result follows. ut

5 Conclusion

Gathering is a classical problem in the field of swarm robotics. The literature
on the gathering problem is vast as it can be considered under many differ-
ent robot models, scheduler models, and environments. Limited vision is very
practical when it comes to robot models. To practically implement any algo-
rithm considering a robot swarm having full visibility is impossible. So, we have
to transfer the research interest towards providing algorithms that work under
limited visibility also. This paper is one achievement towards that goal.

In this paper, we have done a characterization of gathering on an infinite
triangular grid by showing that it would not be possible to gather from any
initial configuration to a point on the grid if the myopic robots having a vision
of 1-hop do not have any axis agreement even under the FSYNC scheduler. Thus,
considering one axis agreement we have provided an algorithm that gathers n
myopic robots with a vision of 1-hop under the SSYNC scheduler within O(n)
epochs. We have also shown that the lower bound of time for gathering n robots
on an infinite triangular grid is Ω(n). So our algorithm is time optimal.

For an immediate course of future research, one can think of solving the
gathering problem by considering myopic robots on an infinite triangular grid
making the algorithm collision-free (where no collision occurs except at the ver-
tex of gathering) and under an asynchronous scheduler. Another interesting work
would be to find out if there is any class of configurations for which gathering
on a triangular grid will be solvable even without one axis agreement.
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