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Abstract. Strong static type systems help programmers eliminate many
errors without much burden of supplying type annotations. However, this
flexibility makes it highly non-trivial to diagnose ill-typed programs, es-
pecially for novice programmers. Compared to classic constraint solving
and optimization-based approaches, the data-driven approach has shown
great promise in identifying the root causes of type errors with higher ac-
curacy. Instead of relying on hand-engineered features, this work explores
natural language models for type error localization, which can be trained
in an end-to-end fashion without requiring any features. We demonstrate
that, for novice type error diagnosis, the language model-based approach
significantly outperforms the previous state-of-the-art data-driven ap-
proach. Specifically, our model could predict type errors correctly 62%
of the time, outperforming the state-of-the-art Nate’s data-driven model
by 11%, in a more rigorous accuracy metric. Furthermore, we also apply
structural probes to explain the performance difference between different
language models.

Keywords: Type Error Diagnosis · Language Model · Natural Language
Processing · Type System

1 Introduction

Diagnosing type errors has received much attention from both industry and
academia due to its potential of reducing efforts in computer software develop-
ment. Existing approaches such as standard compilers with type systems, report
type errors through type checking and constraint analysis. Thus, they merely
point to locations where the constraint inconsistencies can occur and such lo-
cations might be far away from the true error source. Moreover, type error lo-
calization would require programmers to understand the functionality of type
systems and check which part of the code contradicts their intent. Languages
such as C and Java force programmers to write annotations which make the
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code neat. It also makes it easier to find the roots of type errors. Strongly typed
functional languages such as OCaml and Haskell, however, programmers need
not bother with annotations, since type systems automatically synthesize the
types. The absence of type annotation comes at a price: novices could easily get
lost in debugging their programs and locations of constraint inconsistencies from
error messages can be misleading.

Joosten et al [7] suggests that beginners usually pay more attention to un-
derlined error locations rather than error messages themselves when fixing pro-
grams. Therefore it is necessary to ameliorate the localizing performance of these
type systems. Let us consider an OCaml ill-type program in 1a. Although the
programmer intends to write a function that sums up all numbers from a list,
they mistakenly put the empty list, [], at line 3 as a base case. This should
instead be 0 as shown in Fig 1b. The compiler identifies the type error in line 5
saying that the head of the list, h, has type list rather than integer as required
by the integer addition operator.

1 let rec sumList xs =

2 match xs with

3 | [] -> [] (* root cause *)

4 | h :: [] -> h

5 | h :: t ->
:
h + sumList t (* misleading complaint *)

6 this expression has type ’a list but was expected of type int

7

(a) an ill-typed OCaml program that aims to sum all the elements from a list

1 match xs with

2 | [] -> 0 (* <= correct fix *)

3 | h :: [] -> h

4 | h :: t -> h + sumList t

(b) the fixed version of the OCaml code above

Fig. 1: A simple example of OCaml type error and its relevant fix.

This illustrates that programmer’s intent plays an important role in localizing
type errors. To tackle this issue, Nate [18] proposes to use data-driven models
to diagnose type errors. In this way, programmers’ intent can be learned and
incorporated into machine learning models. Nate ’s best model could achieve
over 90% accuracy in diagnosing type errors. Although this is an exciting result,
Nate ’s models are evaluated with a rather loose metric and heavily rely on a
considerable amount of hand-designed feature engineering. In addition, these fea-
tures are designed in an ad-hoc fashion which prevents them from being directly
applied to other language compilers.
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Our approach adopts transformer-based language models to avoid consider-
able feature engineering. As we treat programs as natural language texts, these
models do not rely on any knowledge or features about the specific program-
ming language, thus they can be easily applied on any language. This method
may seem to ignore the syntactic structure of a given programming language.
However, we use structural probes [11] to demonstrate the structure is embed-
ded implicitly in the deep learning models’ vector geometry in Section 4. We
also propose a more rigorous metric, and show language models outperform not
only standard OCaml compiler and constraints-based approaches but also the
state-of-the-art Nate ’s models under the new metric.

Transformer-based models have achieved great success in a wide range of do-
mains in computer science including natural language processing. BERT [4] and
GPT [15,1], popular transformer variants, have shown incredible capability of
understanding natural languages. Together with its pre-training and fine-tuning
paradigm, these models can transfer knowledge learned from a large text corpus
to many downstream tasks such as token classification and next sentence predic-
tion. Empirical results suggest that the performance of these language models
even exceeds the human level in several benchmarks. In this work, we show how
to take advantage of these powerful language models to localize type errors.
First, we process programs as if they were natural language text and decompose
the processed programs at the term or subterm level into token sequences so
that they can be fed to language models. This allows us to turn the type er-
ror diagnosis problem into a token classification problem. In this way, language
models can learn how to localize type errors in an end-to-end fashion.

Contributions We propose a natural language model-based approach to the
type error localization problem. Our main contributions are as follows:

• Without any feature engineering or constraints analysis, we apply different
language models including BERT, CodeBERT, and Bidirectional LSTM to
type error localization.

• We study training methodology such as positive/negative transfer to im-
prove our models’ performance. Instead of using a loose evaluation metric as
proposed in previous work, we define a more rigorous, yet realistic, accuracy
metric of type error diagnosis.

• Empirical results suggest that our best model can correctly predict expres-
sions responsible for type error 62% of the time, 24 points higher than SHEr-
rLoc and 11 points higher than the state-of-the-art Nate tool.

• We study the interpretability of our models using structural probes and
identify the link between language models’ performance with their ability of
encoding structural information of programs such as AST.

We start by presenting the baseline, our model architecture and the structural
probe in Section 2. Section 3 introduces the dataset and evaluation metric, while
Section 4 presents the experiential results and our discussion. Then, Section 5
gives an overview of related work. Finally, Section 6 concludes the whole paper
and proposes some directions for future work.



4 Authors Suppressed Due to Excessive Length

2 Approach

In this section, we introduce deep learning-based language models including
RNN, BERT, and CodeBERT. We take advantage of the pre-training and fine-
tuning paradigm of language models and show how to transform the type error
diagnosis problem to a token classification problem, a common downstream task
in fine-tuning. We also present the structural probe which allows us to find the
embedded structural information of programs from models’ vector geometry.

2.1 Language models

Deep learning has achieved great success in modelling languages since the inven-
tion of recurrent neural networks (RNNs) [9]. RNNs adopt “internal memory”
to retain information of prior states to facilitate the computation of the current
state. Unlike traditional deep neural networks, the output of RNNs depends on
the prior elements within the sequence which make them ideal for processing
sequential inputs such as natural languages and programs.

In this study, we also choose a bidirectional long-short term memory (Bidi-
rectional LSTM) [16] as our baseline model. However, RNNs are known to have
several drawbacks such as a lack of parallelization and weak long-range depen-
dencies. These two limitations are later addressed by the self-attention mecha-
nism introduced by the transformer. Self attention [20] is an attention mechanism
relating different positions of a single sequence in order to compute a represen-
tation of the sequence. Transformers also follow an encoder-decoder architecture
as other successful neural sequential models. Both its encoder and decoder have
been studied and shown great capabilities for modelling natural languages and
solving many downstream tasks.

BERT, which stands for Bidirectional Encoder Representations from Trans-
formers takes advantage of the encoder part of the transformer while the GPT-n
series are based on the decoder. In this work, we focus on BERT rather than
GPT-3 [1] for several reasons. First, BERT requires a fine-tuning process which
alters the pre-trained model for specific downstream tasks. This fits our formal-
ization of treating type error diagnosis as a downstream task. Second, the size
of GPT-3 is enormous compared to BERT, making it hard to train and infer.
Third, BERT is an open-source tool and easily available for users to access while
GPT-3 is not open-sourced.

2.2 The pre-training and fine-tuning scheme

The pre-training and fine-tuning scheme allows machine learning models to apply
knowledge gained from solving one task to different yet related tasks. Compared
to fine-tuning, pre-training is more essential as it determines what knowledge
is learned and stored in machine learning models. As a result, there are some
recent works on improving the pre-training scheme of language models.

BERT stands out by proposing two critical unsupervised tasks during pre-
training - Masked Language Modeling (MLM) and Next Sentence Prediction
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(NSP) [4]. MLM requires the model to predict masked-out tokens conditioned
on other tokens within sentences whereas NSP forces the model to predict if the
input two sentences are next to each other in the original document. These two
training tasks or objectives allow the model to understand the natural language
from a statistical perspective, and empirical results of BERT have shown that
pre-training on large text corpus using these two objectives facilitates a wide
range of downstream tasks.

2.3 Type error diagnosis as token classification

Fig. 2: The type error diagnosis as a token classification task. After an input
program is split into a sequence of tokens by a tokenizer, each token is fed into
BERT to get an embedding representation. A simple classification head takes
each token representation and outputs a predicted probability which indicates
the model’s belief of the current token being related to type error.

Token classification [4] is a downstream task which uses a pre-trained Bert
model with a token classification head on top to make a prediction for each
token in a sentence. One of the most common token classification tasks is Named
Entity Recognition (NER). The goal of NER is to find a label for each entity
in a sentence, such as a person, location or organization. Type error diagnosis
can be naturally viewed as a token classification problem. Note that type error
diagnosis attempts to find type error locations within a piece of code, so we can
reformulate it to a token classification task if we assign label 1 to all the tokens
that contribute to the type error and label 0 to those tokens that are unrelated
to type error. Figure 2 gives an overview of using token classification to achieve
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type error diagnosis. As a fine-tuning task, token classification requires labelled
data to provide ground truth to help the model learn. In the context of type
error diagnosis, this means we need to have a dataset consisting of many ill-
typed programs along with their true type error locations. We will discuss our
dataset more in Section 3.

Given that large language models are extremely expensive to train, even
for industrial companies, a common practice is to fine-tune pre-trained large
language models on a new dataset. In our case, we choose different configurations
of BERT to explore the optimal model for type error diagnosis. Our models are
as follows:

– Bidirectional LSTM: The model is trained directly on the fine-tuned
dataset from scratch. This model serves as our baseline.

– BERT from scratch: To compare with Bidirectional LSTM, we train the
BERT to do token classification from scratch, without any pre-training pro-
cess.

– BERT Small, BERT Medium, BERT Base, and BERT Large:
As the name suggests, these four models are different in terms of size. Al-
though they are pre-trained on the same dataset, we hypothesize that the
size would affect the representation power of models and therefore would
affect the performance of type error diagnosis.

– CodeBERT: CodeBert [5] is a pre-trained bimodal model for program-
ming language (PL) and natural language (NL). It is pre-trained on several
programming languages including Ruby, Javascript, Go, Python, Java, and
PHP. As it is pre-trained on such programming languages that ask program-
mers to specify the type, we postulate that it may not work well on OCaml
programs. However, we are still curious to see if these programming lan-
guages may share some patterns with OCaml which can enhance its error
localization ability during the fine-tuning process.

– BERT pre-trained on OCaml: Since BERT is pre-trained on natural lan-
guage texts which do not contain OCaml programs, we collect two datasets
of OCaml programs, one from industry and the other one from students’
homework submission. Then we pre-train BERT Base and BERT Large on
them with the same training objectives. This technique is also called domain
shift which could help the model perform better on downstream tasks which
have different data distribution from that of the original input. Together
with CodeBERT, these models allow us to explore how domain shift affects
models’ performance.

2.4 Structural probe

We attempt to use the structural probe method [11] to find structural informa-
tion embedded implicitly in the deep learning models’ vector geometry.

In deep learning, each token has a vector representation after feeding into the
model. The method finds a distance metric that can approximate the result of



Novice Type Error Diagnosis with Natural Language Models 7

Fig. 3: Syntax tree of example OCaml program “let x = 3 in let y = 4 in x + y”

the distance metric defined by the syntax tree from applying to any two tokens
of a program. More specifically, it defines a linear transform of the space in which
squared L2 distance between vectors best reconstructs tree path distance, and
thus the structure of the tree is demonstrated by the geometry of the vector
space. Figure 3 gives an overview of using the structural probe to reconstruct
tree structure information of programs.

3 Dataset and evaluation metric

In this section, we present the datasets and the evaluation metric that we use
in our work. The training datasets that we use are the same ones used in the
baseline. However, we propose a different metric of accuracy. Notice this metric
has been applied to every model, so data produced by Nate’s models may look
different from their original paper. To explore the capability of language mod-
els, we also create two pre-training datasets consisting of over 370,000 OCaml
programs in total.

Num. of programs
Average num.

of tokens
Has ground-
truth label

Usage

NATE
SP14 2,712 136 Yes Fine-tuning

(training and testing)FA15 2,365 133 Yes

GitHub 350,000 121 N/A
Pre-training

Homework 20,000 99 N/A

Table 1: Statistics of pre-training and fine-tuning datasets

3.1 Pre-training dataset

The pre-training procedure plays an important role in transformer-based lan-
guage models. The purpose of pre-training is to train the model on large-text cor-
pus in an unsupervised fashion. After pre-training, models should have weights
that encode the probabilities of a given sequence of words occurring in sentences.
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The success of modern language models is often attributed to large pre-training
datasets. Motivated by this observation, we collect the following two datasets.

– GitHub-OCaml dataset Based on the default ranking configuration pro-
vided by GitHub, we collected top-500 OCaml GitHub repositories, which
has been identified as an instance of “fair use” [13]. Given that most sam-
ples of our GitHub dataset are from the industry, we perform some post-
processing work by filtering out programs that are automatically generated
by lexer and parser. Even though, some of them are still quite different from
programs written by novice programmers. The resulting dataset contains
over 350,000 OCaml programs.

– Student-OCaml dataset To collect OCaml programs written by novice
programmers, we collected around 2, 000 homework submissions made by
over 350 students from an undergraduate programming languages course
taught at McGill University. Each homework submission consists of 10 sub-
tasks (e.g., functions for a specific coding question) on average. This gives
us 20,000 OCaml data samples.

In Section 4, we study how pre-training on these two datasets affects the
performance of type error diagnosis.

3.2 Fine-tuning dataset

Fine-tuning, on the other hand, requires labelled data as supervision to facili-
tate model learning. This means we need a set of ill-typed programs along with
the correct locations of type errors as ground truth. Manual ground truth anno-
tation and ill-typed program collection can be troublesome. Fortunately, Nate
provides a dataset consisting of 5,000 labelled programs that cover many types
and locations of the errors that beginners make in practice, together with the
corresponding fixes.

Nate’s dataset was collected from an undergraduate Programming Lan-
guages course at UC San Diego in Spring 2014 and Fall 2015, which are named
SP14 and FA15 respectively. Besides providing supervision, Nate’s dataset can
also be used as a test-bed so we can compare our models with Nate’s fairly.

3.3 Evaluation metric

Nate processes programs to sub-tree sets and then filters the sub-trees that are
not related to type errors to get true error locations — the ground truths. As
a consequence, if a large sub-tree, T, is the ground truth, many of its sub-trees
are treated as true error locations as well. Then, if a model predicts any of these
sub-trees, the prediction accuracy would be 100% under the Nate’s metric. We
illustrate this using an example as shown in Fig 4. As we can see in 4a, the model
blames the token, clone, which happens to match the error token, clone, in 4b.
It is not easy to see why clone is an error location because we only highlighted
the union of all error spans. It ends up to be one since it is a strongly-related
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1 let rec clone x n = if n <= 0 then []

2 else x :: (clone x (n - 1))

3 let rec helper x = if x = 0 then 1 else 10 * helper (x - 1)

4 let padZero l1 l2 =

5 if (List.length l1) < (List.length l2)

6 then (( clone "0" List.length l2) - (List.length l1)) :: l1

7 else (( clone "0" List.length l1) - (List.length l2)) :: l2

(a) An ill-typed OCaml program. Highlighted tokens on line 6 and 7 are predictions
made by Nate’s model.

1 let rec clone x n = if n <= 0 then []

2 else x :: (clone x (n - 1))

3 (*let rec helper x = if x = 0 then 1 else 10 * helper (x -

1) *)

4 let padZero l1 l2 =

5 if (List.length l1) < (List.length l2)

6 then (((clone 0 ((List.length l2) - (List.length l1))) @ l1), l2)

7 else (((clone 0 ((List.length l1) - (List.length l2))) @ l2), l1)

(b) Fixed version of the OCaml program above. Highlighted tokens on line 6 and 7
form the ground truth, whereas the change on line 3 does not.

Fig. 4: An ill-typed OCaml program and its corresponding fix.

subtree of the ground truth highlighted in blue at line 6. Therefore, the prediction
matches to the ground truth, resulting in an accuracy of 100% under Nate’s
metric. However, such prediction is merely a tiny portion of the union of all error
spans highlighted in blue which makes this an over-evaluation.

As a result, Nate’s metric overestimates the prediction accuracy of not only
its own machine learning models but also our language models. To visualize the
over-evaluation from a data point of view, we test Nate’s models and some of
our models under Nate’s metric. We use BERT Small, Base and Large models,
and they achieve Top-3 accuracies of 80%, 84% and 87% respectively. Generally
speaking, they are comparable to Nate’s models, whose accuracies range from
84% to 90%.

We solve the overestimation issue by treating programs as consecutive token
sequences rather than trees. Hence by counting the number of correctly predicted
tokens, we can get a more precise and strict accuracy between 0% and 100%
rather than just 0 (miss) or 1 (hit). To be more specific, our models estimate
the probabilities of type error blame for each token in a binary classification
setting. By converting predicted probabilities to label 0 or 1 using a default
threshold value of 0.5, gives us a collection of predicted token sequences, P . By
transforming the ground truth denoted by L to token sequences as well, the
correctly predicted token set is simply the intersection of them, P ∧L. However,
a trivial prediction which simply predicates each token as type error, i.e. P =
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{1, 1, 1, ..., 1, 1}, could achieve 100% accuracy due to P ∧L = L. To prevent this
from happening, we divide the size of P ∧ L by that of P ∨ L.

Accuracy(P,L) =
|P ∧ L|
|P ∨ L|

4 Evaluation

In this section, we empirically evaluate several approaches to type error diagnosis
with particular focus on the following research questions:1

RQ1: How well do language models and other baseline methods perform on type
error diagnosis?
RQ2: To what extent do model size and transfer learning affect models’ perfor-
mance?
RQ3: How well do language models generalize to unseen data?
RQ4: Does the model’s ability of encoding structure information contribute to
prediction accuracy?

Implementation and training. We implement our experiments using Py-
Torch, Tensorflow and HuggingFace library. We use a batch size of 32 for both
pre-training and fine-tuning processes. For pre-training, we pre-train BERT Base
and BERT Large on both pre-training datasets for 10 epochs. For fine-tuning, all
BERT models are fine-tuned on Nate’s training dataset for 30 epochs. We set
the initial learning rate to 0.00003 and use a scheduler to alter the learning rate
during fine-tuning. To avoid stochasticity, we run each experiment three times
and take the average. All our models are trained on a Tesla P100-PCIE-16GB
GPU.

Configurations of language models. We explore different configurations of
BERT to find the best model. We call BERT Base and BERT Large (BERT+)
pre-trained on the homework OCaml dataset OCamlBERT Base (OBERT) and
OCamlBERT Large (OBERT+). As for the BERT Base pretrained on the GitHub
OCaml dataset, we call it BERT pre-GitHub (PBERT). We also trained a BERT
Base from scratch without leveraging pre-trained weights and name it BERT Init
(IBERT).

Baselines. We compare our language model-based approach with three baselines
as follows:

• OCaml, which extracts the type error location from the error message from
the standard OCaml compiler. It is worth noting that the standard OCaml
compiler stops compiling immediately when any type check fails and thus
cannot report multiple errors.

• SHErrLoc, which identifies the minimum set of locations to patch a type
error using Bayesian inference [10].

1 Our artifact is available at [6].
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• Nate, which predicts the top-K most likely ASTs that contribute to the type
errors based on 282 hand-designed features [18]. Specifically, Nate uses five
different machine learning models — logistic regression (Logistic), deci-
sion tree (Tree), random forests (Forest), and two multi-layer perception
models (MLP-10 and MLP-500) with a single hidden layer of 10 and 500
neurons, respectively.

4.1 Performance of different models (RQ1)

Fig. 5: Comparison of accuracy of type error diagnosis methods.

Fig 5 summarizes our main results. We observe that both optimization-based
approaches like SHErrLoc and data-driven based approaches like Nate and
various language models (i.e., BERT, BERT+, OCBERT, OCBERT+) outper-
form the standard OCaml compiler in terms of localizing root causes of type
errors. Furthermore, data-driven approaches generally outperform optimization-
based approaches, indicating that data plays a more important role compared
to the pure optimization algorithm as adopted by SHErrLoc. Among the five
models used by Nate, it is a bit surprising that Logistic achieves similar
performance as multi-layer perceptrons. We believe this is due to the rich hand-
designed features which make simple models like logistic regression very effective.

Nevertheless, we observe that our language model-based approaches signif-
icantly outperform Nate, which suggests that the embeddings learned in an
end-to-end fashion are more effective than hand-designed features.

Both Nate’s and BERTs’ output can be interpreted as a probability. Nor-
mally, we set the threshold to be 0.5, so if the output probability is greater
than 0.5, the prediction will be 1, and 0 otherwise. The change in accuracy of
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Fig. 6: Impact of different thresholds on accuracy.

models along with varying thresholds is reported in Fig 6. We notice that if we
increase the threshold, BERTs’ accuracy is robust whereas Nate drops signif-
icantly. This suggests that BERT models are much more confident with their
predictions compared to Nate.

4.2 Effectiveness of model sizes and transfer learning (RQ2)

Larger model leads to higher accuracy (not overfitting). To study the
effectiveness of different model sizes, we evaluate four modes of different sizes —
Small (L=4, H=256), Medium (L=8, H=512), Base (L=12, H=768), and Large
(L=16, H=1024). Fig 7(a) presents training loss curves of the four models of
different sizes. This is somewhat expected since larger models usually tend to
have lower training loss but may have an overfitting concern. This then may not
lead to better accuracy.

We further evaluate the testing accuracies of models of different sizes, which
is summarized in Table 2. The top half of Table 2 shows the testing accuracies
of four Bert models on four different train/test setups. The accuracy increases
consistently when the model size increases on all train/test setups. This is very
interesting because the train/test dataset is fixed with only the model size in-
creasing, that is, with the same dataset, the larger model usually leads to higher
accuracy instead of overfitting.

Positive/Negative transfer of learning To study this objective, we focus
on BERT, BERT pre-GitHub, CodeBERT, and OCamlBERT. Fig 7(b) presents
the training loss curves of these four models. Since OCamlBERT is pretrained
on only 20k code samples whereas BERT pre-GitHub is pretrained on 350k sam-
ples, it is quite surprising to notice that OCamlBERT has the lowest training loss
whereas BERT pre-GitHub has the highest one. This is kind of counter-intuitive
as models usually perform better when trained on a larger dataset. The bottom
part of Table 2 shows the testing accuracies of four Bert models on four differ-
ent train/test setups. BERT pre-GitHub reports 51% accuracy, 8 points lower
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Fig. 7: Impact on training loss. (a) shows how model size affects training loss
while (b) illustrates how data distribution affects training loss.

than OCamlBERT which is consistent with training loss curves. The difference
in accuracy could be explained by the positive/negative transfer of learning ef-
fect. As OCamlBERT is pretrained on code samples written by students/novice
programmers (although from different universities working on different program-
ming assignments), the similar data distribution in the fine-tuning process affects
positively on accuracy [22]. On the other hand, transfer learning impacts Code-
BERT’s and BERT pre-GitHub’s accuracy due to disparate data distribution.

SP14/SP14 FA15/FA15 SP14/FA15 FA15/SP14
(Acc) (Acc) (Acc) (Acc)

Bert Small 68.83 63.05 50.45 51.37
Bert Medium 71.53 65.08 53.39 53.52
Bert Base 74.10 69.89 57.62 57.52
Bert Large 77.57 74.36 59.72 58.89

Bi-LSTM 44.15 40.51 7.25 8.79
Bert Init 60.70 57.02 45.37 43.98
Bert pre-GitHub 68.52 59.59 51.84 51.43
CodeBert 71.94 69.35 56.40 55.98
OCamlBert Base 74.72 70.11 59.24 59.34
OCamlBert Large 78.76 74.78 61.40 61.84

Table 2: Accuracies of different models evaluated on four train/test setups.

4.3 Generalization ability of language models (RQ3)

The generalization ability is an important property of our models as it measures
how well a trained model performs on unseen program questions [12].
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(a) (b)

(c)

Fig. 8: AST edge reconstruction from learned embeddings (edges in red are recon-
structed by BERT Large model; edges in blue are reconstructed by Bidirectional
LSTM model).

To study this property, we focus on accuracy drops when evaluating different
program problem sets, for instance, training on SP14 yet evaluating on FA15.
We calculate accuracy drops using the difference between the first and last two
columns of Table 2. We observe that relatively simple language models such
as the Bidirectional LSTM model (Bi-LSTM) experience a large accuracy drop
of over 30% on unseen data. In addition, it achieves only 7.25% and 8.79%
accuracies on the generalization tasks, which makes it almost useless in the real
world. In contrast, the severest accuracy drop of BERTs accuracy is merely 17%.
This indicates that BERTs may have learned more robust and critical features
which facilitate localizing type errors compared to Bi-LSTM.

In short, we should always consider large and powerful language models
rather than small and simple ones when solving difficult tasks such as type
error diagnosis.

4.4 Explaining performance difference by the structural probe
(RQ4)

We use the structural probe to reconstruct structural information of programs
based on both BERT’s and Bi-LSTM’s embedding representation. We hypothe-
size the difference in the ability of encoding structure information of programs
could explain the performance gap between these two models. To gain some
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insights, we conduct a number of qualitative case studies. Fig 8 shows three
examples of reconstructed AST of OCaml program using the structural probe.

Although the reconstructed ASTs are not adequate, we observe AST recon-
structed from BERT embeddings turns to have many more meaningful structures
than the AST reconstructed from Bi-LSTM embeddings. To be more specific,
in Fig 8(a), BERT’s AST connects edge (+, 5), (2, *) and (*, a) whereas
Bi-LSTM’s AST only has one meaningful edge (*, a). Similarly, in Fig 8(b),
BERT’s AST has an edge (+, y) while Bi-LSTM’s AST fails to do so. In exam-
ple (c), BERT’s AST has an edge (+, x) and (+, y) which Bi-LSTM’s AST
omits. Compared to Bi-LSTM, BERT is able to encode richer structural infor-
mation, which may explain the huge 54% performance gap between these two
models.

5 Related Work

Some recent works on type error diagnosis, such as SHErrLoc [10] and My-
croft [21], aim to analyze a set of typing constraints to find their minimum weight
subsets [8]. A minimum weight subset means omitting this subset will make the
remaining constraints satisfiable and the subterms yielding the minimum weight
subset inherit the blame. However, this approach has a few disadvantages. First,
they are limited in terms of language choice. Different languages tend to em-
ploy different type systems and constraints. Thus, an approach designed for one
type system can be hard to transfer to others. Secondly, the weights assigned
are based on researchers’ prior knowledge of the most likely errors instead of
the most likely mistakes in practice [10]. Moreover, constraint-based approaches
could blame a number of locations equally without taking the author’s intent
into account.

In contrast, data-driven approaches such as Nate employ machine learning
models to learn to localize type error from a large data set. While constraint
analysis is not mandatory, Nate’s machine learning models require consider-
able feature engineering. To be more specific, Nate employs over 282 hand-
designed features annotated by human experts which are then fed into ma-
chine learning models to make the final prediction. However, Nate and other
data-driven approaches still suffer from some disadvantages mentioned above.
Although Nate doesn’t perform constraint analysis, feature engineering also re-
quires prior knowledge, making it difficult to transfer to other type systems. In
addition, data-driven methods may implicitly consider the programmer’s intent
when making predictions, but there is no guarantee that such intent can be
understood by models. In our study, we also show that the accuracy metric of
Nate can be problematic in certain conditions.

There are also approaches that provide instructions to help novice program-
mers debug. Seidel et al. creates a dynamic model that generates counterexample
witness inputs to show how the program goes wrong [17]. When given a function
with type errors, the algorithm symbolically executes the program and synthe-
sizes witness the wrong values. Then the procedure is extended to a graph that
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shows the witness execution. Experimental results suggest their algorithm can
generate witnesses 88% of the time and in these successful programs, the al-
gorithm yields counterexample successfully 81% of the time. The advantage of
this algorithm is that by using graphs and counterexamples, students can learn
how to write code easily and understand the logic of the programming language.
However, people who are familiar with the language but not that skilled, do not
need such detailed suggestions. All they need is the precise location of the error.
Chen et al. develops a type debugging system that asks programmers to provide
type specifications during the debugging process and then generate suggestions
that help to fix the type error [2]. The advantage of this system is instead of
aiming exclusively at the removal of type errors, it collects user feedback about
result types to give useful suggestions, which include almost all possible correc-
tions. This will help novices to debug more easily as they only need to choose
from options given by the system. However, to achieve their goal, the authors
systematically generate all potential type changes, which, when compared to our
model, is more time-consuming in construction and needs more human judgment
to make corrections.

There are also approaches which adopt SAT and SMT solvers to solve the
type error localization. Pavlinovic et al. designs an algorithm that finds all min-
imum error sources, where ’minimum’ is defined in terms of a compiler-specific
ranking criterion [14]. With these error sources, a compiler is able to offer more
useful reports. Then the authors try to reduce the search for minimum error
sources to an optimization problem by implementing weighted maximum sat-
isfiability modulo theories (MaxSMT). In this way, they leverage SMT solvers,
making it easier to extend to multiple type systems and abstract from the con-
crete criterion that is used for ranking the error sources. The evaluation results on
existing OCaml benchmarks for type error localization are also quite promising.
In another work [8], Jose et al. aims to reduce the error localization problem to a
maximal satisfiability problem (MAX-SAT), which finds the maximum number
of clauses that are simultaneously satisfied by an assignment. Three steps are
involved when an error should be reported. First, it encodes the denotation of a
bounded unrolling of the program to a boolean formula. Then they construct an
unsatisfiable formula for the failing program execution. In the last step, a MAX-
SAT solver is used to find the largest set of clauses that can be satisfied at the
same time, after which they output complement set as result, which is treated as
potential locations of type error. Experimental results suggest the algorithm can
find a few lines of code that are probable to be blamed for type error. Compared
with our algorithm, the location it gives is too general. For novices, it is difficult
for them to find the precise location of the type error when given such a large
span of possible locations.

There are some other works that aim to diagnose the root causes of pro-
grams with typing errors. Chitil et al. uses a compositional type explanation
graph created based on the Hindley-Milner type system [3]. More specifically,
this work relies on structural type information such as trees with principal typ-
ings. Tsushima et al. builds a type debugger without implementing any dedicated
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type inferencer [19]. The type debugger avoids re-implementing an independent
type inference algorithm by leveraging the compiler’s type inference engine. In
contrast to their work, we train natural language models to capture patterns in
code changes. Our models do not require additional information beyond the code
and can predict multiple error locations simultaneously. Our approach provides
an orthogonal angle for (novice) type error diagnosis, and we believe that incor-
porating explicit type information can further improve our current approach.

6 Conclusions and Future Work

Many techniques have been developed to address the type error localization prob-
lem. While most of them employ static analysis on programs such as SHErrLoc,
Nate’s success suggests that data-driven methods are also promising. Our ex-
perimental results suggest transformer-based language models outperform the
state-of-art Nate and SHErrLoc under a stricter yet more realistic accuracy
metric.

Although being a black-box model, we show that language models can encode
structural information of programs which may explain their better performance.
Moreover, our models simply view a program as a sequence of tokens, thus they
do not rely on any special knowledge of OCaml. It is the large amount of data
(programs in our context) that plays an essential role in the performance. Since
no feature engineering and constraints analysis are required, our approach can
be transferred to other programming languages easily. We plan to investigate
the effectiveness of our model on new languages like Go and Rust in the future.
Through experiments, we identify several factors which help improve model ac-
curacy such as size and positive transfer. We believe these factors may also be
beneficial to solving other programming language-related tasks using language
models.

In this work, our approach treats programs as natural language texts. This,
however, fails to utilize the structural information of programs. Although we
show language models could encode some structures, it is unclear how the en-
coded structural information leads to the final prediction. In contrast, constraint-
based approaches such as SHErrLoc take advantage of structural information
and have much better interpretability. We plan to explore how to combine lan-
guage models and the structural information of programs in our future work.
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