Skip to main content

A Neural Network Approach for Text Classification Using Low Dimensional Joint Embeddings of Words and Knowledge

  • Conference paper
  • First Online:
Book cover Information Integration and Web Intelligence (iiWAS 2022)

Abstract

The continuous expansion of textual data collection and dissemination in electronic means has made text classification a crucial task to help exploit, in a variety of applications, massive amounts of digital texts available nowadays. Knowledge Graphs (KGs) or their embeddings can provide additional semantics to improve text classification. However, most proposals from the literature rely solely on words found in the texts to classify them. A few text classification approaches employ knowledge embeddings besides word embeddings, but which are produced separately and not integrated into the same vector space. Different from previous proposals, this work applies an existing solution for generating text and knowledge embeddings in an integrated way to feed neural classifiers. Experiments using these joint embeddings with 50 dimensions yielded results comparable to those of state-of-the-art approaches on the AG News dataset and slightly superior to the BBC news dataset.

Supported by Foundation for Research Support of Santa Catarina (FAPESC), the Print CAPES-UFSC Automation 4.0 Project, and the Brazilian National Laboratory for Scientific Computing (LNCC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.idc.com/.

  2. 2.

    https://wiki.dbpedia.org.

  3. 3.

    http://www.yago-knowledge.org/.

  4. 4.

    https://github.com/facebookresearch/fastText.

  5. 5.

    http://wiki.dbpedia.org/services-resources/documentation/ datasets#MappingbasedObjects.

  6. 6.

    http://wiki.dbpedia.org/services-resources/documentation/ datasets#LongAbstracts.

  7. 7.

    http://babelfy.org/.

  8. 8.

    https://www.nltk.org/.

  9. 9.

    https://github.com/facebookresearch/fastText.

  10. 10.

    https://sdumont.lncc.br/.

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. (3)(Feb), 1137–1155 (2003)

    Google Scholar 

  3. Boehmke, B., Jodrey, J.: UC business analytics R programming guide (2018). https://github.com/uc-r/uc-r.github.io

  4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Google Scholar 

  5. Deng, X., Li, Y., Weng, J., Zhang, J.: Feature selection for text classification: a review. Multim. Tools Appl. 78(3), 3797–3816 (2019)

    Article  Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Conference of the North American Chapter of the ACL, pp. 4171–4186. Association for Computational Linguistics (ACL), June 2019

    Google Scholar 

  7. Fabian, M., Gjergji, K., Gerhard, W.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia. In: 16th International World Wide Web Conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  8. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fasttext.zip: compressing text classification models. arXiv preprint arXiv:1612.03651 (2016)

  9. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. pp. 427–431. Association for Computational Linguistics, April 2017

    Google Scholar 

  10. Joulin, A., Grave, E., Bojanowski, P., Nickel, M., Mikolov, T.: Fast linear model for knowledge graph embeddings. arXiv preprint arXiv:1710.10881 (2017)

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Lee, S., Lee, D., Yu, H.: OoMMix:out-of-manifold regularization in contextual embedding space for text classification. In: 59th Annual Meeting of the ACL and the 11th International Conference on Joint Conference on Natural Language Processing, pp. 590–599. Association for Computational Linguistics (ACL) (2021)

    Google Scholar 

  13. Lehmann, J., et al.: DBpedia - a crystallization point for the web of data. J. Web Seman. 7(3), 154–165 (2009)

    Article  Google Scholar 

  14. Lenc, L., Král, P.: Word embeddings for multi-label document classification. In: International Conference on Recent Advances in Natural Language Processing, RANLP 2017, pp. 431–437. INCOMA Ltd., Varna, Bulgaria , September 2017

    Google Scholar 

  15. Lewis, D., et al.: Reuters-21578. Test Collect. 1, 19 (1987)

    Google Scholar 

  16. Li, Y., Yang, T.: Word embedding for understanding natural language: a survey. In: Srinivasan, S. (ed.) Guide to Big Data Applications. SBD, vol. 26, pp. 83–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-53817-4_4

    Chapter  Google Scholar 

  17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  18. Moro, A., Raganato, A., Navigli, R.: Entity linking meets Word Sense disambiguation: a unified approach. Trans. Assoc. Comput. Linguist. 2, 231–244 (2014)

    Article  Google Scholar 

  19. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  20. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  21. Pittaras, N., Giannakopoulos, G., Papadakis, G., Karkaletsis, V.: Text classification with semantically enriched word embeddings. Nat. Lang. Eng. 27(4), 391–425 (2021)

    Article  Google Scholar 

  22. Rydning, D.R.J.G.J., Reinsel, J., Gantz, J.: The Digitization of the World from Edge to Core. Framingham: International Data Corporation 16 (2018)

    Google Scholar 

  23. Sinoara, R.A., Camacho-Collados, J., Rossi, R.G., Navigli, R., Rezende, S.O.: Knowledge-enhanced document embeddings for text classification. Knowl.-Based Syst. 163, 955–971 (2019)

    Article  Google Scholar 

  24. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  25. Zha, D., Li, C.: Multi-label dataless text classification with topic modeling. Knowl. Inf. Syst. 61(1), 137–160 (2019)

    Article  Google Scholar 

  26. Zhang, C., Yamana, H.: Improving text classification using knowledge in labels. In: 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA), pp. 193–197 (2021)

    Google Scholar 

  27. Zhang, J., Lertvittayakumjorn, P., Guo, Y.: Integrating semantic knowledge to tackle zero-shot text classification. In: 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1031–1040. Association for Computational Linguistics, Minneapolis, Minnesota (2019)

    Google Scholar 

  28. Zhong, Y., Zhang, Z., Zhang, W., Zhu, J.: BERT-KG: a short text classification model based onKnowledge graph and deep semantics. In: Wang, L., Feng, Y., Hong, Yu., He, R. (eds.) NLPCC 2021. LNCS (LNAI), vol. 13028, pp. 721–733. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88480-2_58

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was Supported by Foundation for Research Support of Santa Catarina, Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), the Print CAPES-UFSC Automation 4.0 Project, and the Brazilian National Laboratory for Scientific Computing (LNCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliane Soares da Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Costa, L.S., Oliveira, I.L., Fileto, R. (2022). A Neural Network Approach for Text Classification Using Low Dimensional Joint Embeddings of Words and Knowledge. In: Pardede, E., Delir Haghighi, P., Khalil, I., Kotsis, G. (eds) Information Integration and Web Intelligence. iiWAS 2022. Lecture Notes in Computer Science, vol 13635. Springer, Cham. https://doi.org/10.1007/978-3-031-21047-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21047-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21046-4

  • Online ISBN: 978-3-031-21047-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics