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Abstract. This work studies a stabilization problem of flapping-wing flying robots
(FWFRs) before a take-off phase while a robot is on a branch. The claw of the
FWER grasps the branch with enough friction to hold the system steady in a sta-
tionary condition. Before the take-off, the claw opens itself and the friction be-
tween the claw and branch vanishes. At that moment, the mechanical model turns
into an under-actuated multi-link (serial configuration) robotic system where the
first joint can rotate freely without any friction as opposed to rotation. The sta-
bilization and balancing are the crucial tasks before take-off. This work explores
a new methodology to control an under-actuated lightweight manipulator for its
future adaptation to FWFR to improve the stabilization performance before take-
off. The setup tries to mimic the birds with two-link legs, a body link, and 2-DoF
(degrees of freedom) arms, being all active links except the first passive one. In
contrast to common arms, the lightweight-design restriction limits the frame size
and requires micromotors. With all of these constraints, control design is a chal-
lenge, hence, the system is categorized: a) the leg subsystem (under-actuated),
including the two first links, and b) the body and arm subsystem (fully actuated)
with the rest of links. The fully-actuated links are controlled by feedback lin-
earization and the under-actuated part with active disturbance rejection control
(ADRC) for estimation and rejection of the coupling between both subsystems.
The mechanical design, modeling, and control of the proposed system are re-
ported in this work. Experimental results have been also proposed to present a
proof of concept for this modeling and control approach.
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1 Introduction

The operation of ornithopters, or flapping-wing flying robots (FWFRs), with manip-
ulation capabilities, includes several phases such as launching, flapping flight, possi-
ble gliding, perching/landing, stabilization after perching, sampling/manipulation, and
take-off again. The initial launching phase is usually done by hand for small to medium
scale birds [1-3]; and in some cases by a special external launcher system [4], or self-
launching mechanisms (take-off system) [5, 6]. The robot birds for launching must be
posed in a proper position to facilitate the take-off maneuver which defines the initial
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condition of the robot. Hoff and Kim used a launching mechanism to gain similar ini-
tial conditions for finding a data-driven model [4]. Afakh et al. developed a flapping
robot that could fly from the ground without assisting mechanism [5]. The robot was
placed in a high pitch angle pose to enable a successful take-off from the ground. The
problem of the take-off from a branch after manipulation or completing a task requires
the same condition. The FWFR must be in a proper pose with a high pitch angle. Here
in this work, the stabilization of the robot bird before the take-off is investigated to put
the robot in a desired position/orientation. Considering the take-off after perching on a
branch using a mechanical claw with enough friction, it is assumed that the bird does
not rotate or slide on the branch when the claw is closed, and it can hold its body steadily
with a fixed pose. Reopening the claw removes the friction, and the FWFR will act on
the branch like an inverted pendulum (an under-actuated model) for a split of a second
before take-off. Here in this work, an underactuated mechanical system is modeled to
analyze the problem and control the trajectory of the body before flying again. This is
important since the perching might not pose the body in the desired configuration for
take-off. Then the leg moves the body based on the designed trajectory.

Inverted pendulums are challenging models because of under-actuation conditions.
Under-actuation imposes two difficulties to the system: controllability problem and re-
duced range of convergence in comparison with fully actuated mechanisms [7, 8]. Pre-
vious works [9] and [10] study the nonlinear control problem of underactuated systems
considering static friction at its first passive joint to explore the possibility to perform
manipulation with FWFR once the system is perched. This work focuses on a new
methodology to control an under-actuated lightweight manipulator that emulates the
behavior of a bird on the branch just before the take-off phase. The main difference
with the mentioned works is that we consider that the claw is opened and the friction
at this first passive joint has vanished which means that the first passive joint can rotate
freely without any friction as opposed to the rotation. The weight limits the configu-
ration, and geometry and leads us to use micromotors and very lightweight materials.
For example, in [11] a new sensor system is developed that emulates the beak’s bird to
allow FWEFR to interact with the environment. Then, the mentioned work is devoted to
two tasks: a) to maintain the equilibrium of the body while perching and b) to control
the force interaction with the environment. Although, there are various methods and
available results for under-actuated systems, the hard constraints imposed by nature to
mimic the anatomy of birds, make necessary the exploration of the most appropriate
control techniques.

The actual system behaves similarly to that of the acrobot [12]. The setup is a two-
DoF under-actuated robot that replicates the human acrobat who hangs from a rope
and tries to balance. The control of n-link under-actuated manipulators with a passive
first link has been investigated in the last decades as in e.g. [13], and [14]. Unlike [9]
and [10], there is no static friction at the base of the manipulator because just before the
take-off, the claw opens itself and the friction between the claw and branch vanishes.
However, manipulation with under-actuated systems has been rarely investigated due
to its difficulty, and therefore it is still an open challenge. Our prototype is a multi-link
planar under-actuated robot with a passive first link. A first approximation to control is
the decoupling of the actuated and under-actuated systems. The first subsystem is under-
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actuated and composed of a passive first link and an active second one (similar to an
acrobot). The second subsystem is composed of the remaining fully-actuated links. On
the one hand, for the well-known fully-actuated subsystem state-feedback linearization
control technique has been employed [15—17]. On the other hand, for the acrobot-like
subsystem, due to the high uncertainty coming from the coupling term and the limited
implementation, robust control has been used, the method is so-called active disturbance
rejection control (ADRC).

The ADRC inherits the conventional linear controllers, enhanced by nonlinear feed-
back and robustness obtained by the addition of additional fictitious state variable [18,
19]. The active disturbance rejection control is a powerful tool for under-actuated me-
chanical systems especially in experimentation [20,21]. Uncertainty in parameters, un-
known friction values in the model, time-varying control, and unknown torque load mo-
tivated the application of the ADRC [21]. Ma et al. used a data-driven type of ADRC
for a crane pendulum model using flat output [22]. Sparse regression was employed to
find the interaction between the states and the flat output. Moreover, a recent theoretical
breakthrough in [23] allows using the Lyapunov theory to analyze stability in cascade
nonlinear systems and hence, is very suitable for the work presented here. More de-
tails are available in [24] for flatness and the generalized proportional integral (GPI)
observers; [25] for academic and industrial engineering applications; and in particular
works in [23,26] demonstrated that this method suits well for under-actuated systems.

The main contribution of this work is to present a model for the under-actuated state
of a flapping wing robot, right before take-off from a branch, and control the trajectory
of the system using feedback linearization and an active disturbance rejection approach.
The rest of the paper is organized as follows. Section II presents the description and
model of the system. Section III presents the strategy of the proposed control. Section
IV describes the actual prototype (IV-A), simulation results (IV-B), and experimental
data (IV-C). Concluding remarks are presented in Section V.

2 Description and modeling of the system

As a first approach, we consider the study of a system composed of an actuated leg,
a body, and an actuated arm in a two-dimensional space, considering that the real 3D
system will be made with a pair of them. Figure 1 left depicts a scheme of the system
case of study. The system is equipped with n-links (i = 1, ...,n) of length /;, and masses
concentrated at their tips m;. The first link has a passive joint at its base whereas the
other joints are active. The torques provided by the motors in the active joints are I;.
Figure 1.a depicts a schematic of the system where 6; are the angular positions of the
joints. The control objective is to follow a trajectory with the tip in order to achieve a
desired posture with the system while maintaining the equilibrium of the system. This
is important to perform lately the take-off maneuver. As it was aforementioned, we split
the system into two subsystems: the first subsystem 6; — 6, (similar to an acrobot), and
the second subsystem defined through the remaining fully-actuated links. Let us now
derive the dynamic model of the underactuated manipulator with a single passive joint at
its base. To simplify the approach n-link fully-actuated mechanism is treated as the only
one whose dynamics are all concentrated at the center of mass of those three links. Thus,
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letg=[601,6s,...,0,]7 € R" denotes the the joint angles in generalized coordinates, and
U =[0,I3,13,...,I;]7 € R" the control input vector. Then, the Lagrange dynamics of
the n-link underactuated robot manipulator can be expressed as

M(q)Q+C(an)q+G(q) =U, (D

where M(q) € R"™" is a symmetric positive definite inertia matrix; C(g,g) € R"*" is
the Coriolis and centrifugal forces matrix; and G(g) € R" is the gravity force vector.
Following the subsystem approach described above, the equation (1) can be rewritten
in two blocks in an obvious way as follows

My, M. || g2 i CiaCer || qu2| | 812 _ .
MI Ms, || d3n Ce2 C3p || G3n | | &3 ’
_ T _ T .. T o _ T _
where gio = [01,6:]", q3n = [63,...,0,]", T :=[T12,73,)" with 7o = [0,3]", 173, =
,....0)".

3 Control strategy

In this section, a cascade control scheme is derived from each subsystem separately.
The proposed control scheme divides the system into two parts: 1) control of the under-
actuated part of the system (first subsystem 6; — 6,) using an active disturbance rejec-
tion control technique and a GPI Observer to estimate the coupling between the two
subsystems and the unmodelled dynamics and 2) control the trajectory of the remaining
fully actuated part using feedback linearization. Figure 1.b shows a simplified scheme
of the proposed methodology.
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Fig. 1 a) Schematic of the system and b) general control scheme.

3.1 Underactuated subsystem

The underactuated subsystem consists of a multivariable non-linear time-invariant sys-
tem, which has two outputs 61, 6, and one input I5. Recall that the proposed control
technique is the ADRC. The idea is to consider the influence of the other subsystem as
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an external disturbance that can be estimated and approximately canceled in the feed-
back loop. Notice that this can be done because the other subsystem is fully actuated.
The dynamics of this subsystem becomes

Mi2g12 +Ci2g12 +g12 + F(qi, G, Gx) =0, k=1,...,3, (@)

where F () is the coupling term between both subsystems.

Remark 1. Tt is important to highlight that the disturbance F(-) depends on all the an-
gular coordinates, but only on the first and second derivatives of the angular coordinates
of the other subsystem, which is crucial for its implementation.

We follow the standard approach to derive the ADRC controller. To this end, we first
linearize the system around an equilibrium point 8; = 69, 6, = 659, 8; =0 and 6, = 0.
The incremental variables are defined as 6,5 = 6; — 019, 6,5 = 6, — 69, 0,5 = 61 and
frs — 0.

11015+ anbs + 1615+ 2655+ f1 = 0, (3)

a21015 +ax0by5 +¢3015+csbys + o = Ds. 4)

The functions f] and f, are considered as disturbances prompted for the other subsys-
tem that can be eliminated. Thus, for the linearized system it is straightforward to see
that the output defined as y := a116,5 + a126,5 is flat. From equation (3) and the flat
output, it can be obtained

~1
615 _ [ a1 a2 M 5)
6,5 —C] —C V)’
and therefore, the input-to-flat output relation yields

dzi-dip —dazp-ail
s = YW +E(@), (6)
apl-Cc—apn-Ci -

Ko
with Ky a control gain and () depending on the flat output, y, and its first and sec-

ond derivatives. Thus, with the ADRC methodology (e.g [26] and [27]) we obtain the
following simplified input-output model of the system

1
yW = s+, )

where & (¢) represents some neglected internal dynamics and disturbances.

GPI Observer The GPI observer is a breakthrough of state observers that can simul-
taneously estimate the states and their time derivatives and the total disturbance of the
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system. The consecutive time derivatives of the flat output are computed using the fol-
lowing GPI observer

$o =1 +1a(y — o),
91 =Fr+ 5y —Jo),
$2 =93+ b(y—"o),

N I; R
¥3 = Ki‘s+ll(yfyo)+z,
0

= l()(y_yo)a

allowing to estimate the perturbation terms & (r) algebraically via the state of the ob-
server z(t). Additionally, from (7) and defining the observation error as ey :=y — ¥, the
coefficients of the GPI observer, /;, are chosen so that the reconstruction error dynamics
becomes

6(()5) —|—l4€(()4) +l3€(()3) +hLég+1ég+ lpeg = é(l‘), (8)
and such that its associated polynomial p,(s) = s> + lgs* + l35> + Ihs> 4 I;s + Iy is Hur-
witz, rendering an exponentially decreasing estimation error for any bounded é(t) To
ease its tuning the polynomial can be defined in normal form as p,(s) = (s> +2&, s +
@;)* (s + 1)

Active Disturbance Rejection Controller Given the flat output, its derivatives, and
the estimation of the disturbance term z(z), the GPI-ADRC scheme to track the output
reference trajectory y*(¢) is defined as

Ips(t * N * Xk A x A%

ZT(()) =y WO =D =y P 0) =G5 0) —n G-y 1) =0y (1) —=(),
that upon defining the tracking error as e, := § —y*, it forces a tracking error dynamics
given by

e 4 e

+ el + pée+ Née + pee = E(t) —2(t), )

where the linear controller gains, ¥;, are set by using a fourth-order Hurwitz polynomial
pe(s) = s* + 153 + 15> + 715 + W, or in normal form p.(s) = (s> + 2L . 0cs + ©2)?,
such that the closed-loop tracking error e, converges exponentially to zero provided
that &(r) —z(¢) tends to zero. The analysis of the stability and tracking of ADRC with
extended observers for nonlinear time-varying uncertain plants has been studied in [28]
and some recent developments in [23,29].

3.2 Actuated part of the system

The control of the fully-actuated subsystem consists of a multivariable nonlinear time-
invariant system, which has one output 65 and one input I3. Feedback linearization is
a very well-known nonlinear control technique. The core of the technique is to cancel
out all the nonlinearities and impose the desired linear dynamics. In essence, it trans-
forms the original system into an equivalent linear form by change of coordinates and
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feedback. More information about this technique can be found in [15-17]. The appli-
cation of this technique to the fully-actuated subsystem is straightforward just defining
the torques for the inner loop of the articulated joints to cancel out all the nonlinearities
as follows

T3y 1= [May — MM, MG + [Ceo — MM, Cra) gz
+[C3n — MIM, Cetlgan — MM 12+ g3 + MM, 1. (10)

The subsystem (10) can be expressed as
T = [Man — MMy Mc] v+ f(X, T12), n

where X = [61,6,,...,6,,0;,6,,....6,] and the fictitious control signals v3 = @5 acting
as an outer loop. Upon considering that the whole state vector is measurable, then X
and 7j» are known from the underactuated subsystem. Thus, the trajectory tracking
controller that renders ¢3,(t) — ¢3,(t), is easily completed with an outer-loop linear
controller, e.g. with double poles located at P as

vii= G —2pi(dr — i) — Pi(qe — i)y k=34,..n. (12)

4 Simulation and experimental verification

Although the control strategy proposed in the paper is evaluated in a prototype of a 3-
DOF robotic manipulator, the control strategy is developed in a general form and it can
be used for an n-link underactuated manipulator.

4.1 The manipulator prototype

In order to validate experimentally the proposed control strategy, a 3-DOF manipulator
implementing the ankle, knee and hip joints of the robotic system has been developed.
Figure 2 shows a picture of the prototype and the testbed, indicating the main compo-
nents along with the link lengths. The prototype, built with customized actuators and an
aluminum frame structure, has been designed to be as lightweight and slim as possible,
inspired by the biomechanical features of birds. The passive joint at the base emulat-
ing the claw is built with a pair of igus ESTM-06-SL polymer bearings crossed by a
6 mm section shaft used as a support point (the branch of the bird), whose friction is
practically negligible. The rotation angle 6; is measured at 500 Hz with an AMS 5047
magnetic encoder connected to the STM32 Nucleo microcontroller board through SPI
(Serial Peripheral Interface). Two different actuators are employed in the knee and hip,
according to the performance requirements for each joint. On the one hand, a zero-
backlash actuator, weighting 70 grams and built with a Maxon EC20 flat brushless
motor and a Harmonic Drive CSF5-100 gearbox, is used in the knee joint, providing
a rated torque of 0.6 Nm and torque/current control at 200 Hz through the external
ESCON 36/3 controller. The joint angle 6, is also measured with an AMS 5047 mag-
netic encoder through the same microcontroller board, that generates the PWM signal
corresponding to the torque reference of the motor.
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AnkKle joint, 6;

Maxon EC20 — (passive)

HD CSF5-100

Fig. 2 The developed prototype.

On the other hand, the hip joint is built with a micro servo actuator (25 grams
weight) based on a Pololu micro metal gear motor, integrating a Murata SVO1 po-
tentiometer to measure the angle 63, along with the low-level control electronics that
communicate with the microcontroller board through a serial interface. This actuator,
although more compact and lightweight than the other one, presents a lower perfor-
mance in terms of rated torque (0.2 Nm), clearance (around 2 degrees), and positioning
accuracy. Taking into account that the proposed control scheme applied in this partic-
ular case relies more on the knee that on the hip actuator to stabilize the passive joint,
it is, therefore, more convenient to place the higher-performance actuator on the knee.
Finally, the robotic system is controlled through the STM32 Nucleo board that inter-
faces with the computer where the control program is implemented through the serial
interface, sending the torque references and feedback position measurements at 230400
bps. The firmware of the microcontroller was developed in C/C++ using the CubeMx
IDE.

4.2 Simulated Results

Simulations have been carried out with the parameters of the prototype described in
Section 4.1 to demonstrate the efficiency and robustness of the proposed technique. It
has been considered that the mass of the links are concentrated at the joints and with
values of m; = 0.158, my = 0.025, and m3 = 0.0285kg, and the length of the links are
11 =0.075,1, =0.125, and /3 = 0.158m. For the control of the fully-actuated subsystem,
Bezier curves, which are smooth curves that can be differentiated indefinitely, have
been chosen as reference trajectories. The dynamic model of the system is described by
expression (1), making n = 3. The details about the mathematical model used in this
work can be found in [30]. The results of the simulations are shown in Figure 3. The
poles of the closed-loop system using the feedback control linearization in the actuated
part are located at p3 = —15. The GPI observer gain parameters used in the ADRC were
set to: §, = 1, ®, = 40, T, = 40. The controller design parameters of the ADRC were
set to: {. = 1, @. = 25. The initial point of the simulations and the equilibrium point
used for implementing the ADRC control technique are 619 = 110°, 8,90 = —32.5° and
639 = —37.8°.
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Fig. 3 Simulation results: angular coordinates and torques and estimation.

Figure 3 shows the trajectory tracking of the third joint, 83, that corresponds to the
actuated part of the system. The results show that we achieve almost perfect trajectory
tracking with the actuated part. Moreover, the position of the underactuated part of the
system, 0; and 6, are also shown. The figure shows the positions that are needed to
maintain the equilibrium of the system (around the unstable equilibrium point) while
the third joint follows a preset trajectory. Figure 3 also shows the torques needed in
joint 2 and joint 3 to control the system. Also, this figure shows the estimation of the
perturbation that the GPI observer is estimating during the maneuver.

4.3 Experimental Results

Experiments have been performed with the robot manipulator described in Section 4.1
to show the effectiveness and robustness of the proposed control scheme in real appli-
cations. The poles of the closed-loop system using the feedback control linearization
have been located at py = —15. The proposed ADRC controller is implemented and
compared with the linear quadratic regulator (LQR). The GPI observer gain parame-
ters used in the ADRC were set to: §, = 1, @, = 40, T, = 40. The controller design
parameters of the ADRC were set to: {. = 1, @. = 5. On the other hand, the LQR has
been designed using the linear approximate model (3) and (4) at the equilibrium point
(610 = —90°, 0,9 = 0°), with weighting matrices Q =0.5-7 and R =51 (I is the iden-
tity matrix), yielding the controller gains K = [—0.5463 — 0.0298 —0.007 0.0755].
For the experiments with the real prototype, the control technique is implemented for
the case that the system is hanging and we want to control the system around this sta-
ble equilibrium point. Figure 4 shows the angular coordinates of the robot manipulator
for the cases: (a) controlling only the fully-actuated subsystem, i.e. no control on the
underactuated one, (b) controlling the underactuated subsystem with the LQR and the
fully-actuated one with the feedback linearization and (c) controlling the underactu-
ated subsystem with the ADRC and fully-actuated one with the feedback linearization.
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Figure 4 also shows the angular coordinate of the third joint, the preset trajectory is a
sinusoidal signal during the first two seconds to exert a continuous disturbance in the
underactuated part and validate the robustness of the ADRC. This angular coordinate
is practically the same for the three cases showing the excellent performance of the
feedback linearization for the three cases. Figure 4.d shows the trajectory tracking error
in the three aforementioned cases. These experiments show good results in cases (b)
and (c) because the controller of the fully-actuated subsystem was able to track the pre-
scribed trajectories, while the underactuated system can stabilize the system around an
equilibrium point. For that reason, the trajectory tracking error is reduced in these cases
in comparison with the case of not using a control technique for the underactuated sub-
system. Finally, the results also show that the proposed ADRC is much more efficient
in reducing the trajectory tracking error than the LQR because the former estimates the
coupling between the two subsystems and it can approximately cancel it.

15
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Fig.4 Angular coordinate 6, 6,, 65 and trajectory tracking errors.

5 Conclusions

This work presents an under-actuation model of a mechanical arm that imitates the birds
having two-link legs, a body link, and two-link arms, being all active links except the
first passive one. This model presents the behavior of a robotic bird, right before the
take-off from a branch. The strategy of control approach includes two subsystems: a)
the leg counterpart (under-actuated), which includes the two first links, and b) the body
and arm subsystem (fully actuated) with the rest of the links. The control part of the
fully-actuated links uses feedback linearization, and the under-actuated part, which is
the difficult one, employs a linear high gain extended observer-based active disturbance
rejection control approach which performs state/disturbances estimation. Although the
setup is a three-DoF platform, the proposed methodology could be generalized for arms
with more DoFs. The simulation results offer a more complicated under-actuated mech-
anism because it is controlled around an unstable equilibrium point. Experimental re-
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sults demonstrate that the proposed control technique exhibits excellent behavior and it
can estimate and reject the coupling between both subsystems. This technique is com-
pared in experimentation with the well-known LQR method showing that the introduced
control works efficiently for this kind of system and has a strong disturbance rejection
ability in comparison with other methods.
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