Skip to main content

Bayesian Filtered Generation of Post-surgical Brain Connectomes on Tumor Patients

  • Conference paper
  • First Online:
Imaging Systems for GI Endoscopy, and Graphs in Biomedical Image Analysis (ISGIE 2022, GRAIL 2022)

Abstract

Graph representation learning methods have recently been applied to predict how brain functional and structural networks will evolve in time. However, to obtain minimally coherent predictions, these methods require large datasets that are rarely available in sensitive settings such as brain tumors. Because of this, the problem of plasticity reorganization after tumor resection has been largely neglected in the machine learning community despite having an enormous potential for surgical planning. We present a machine learning model able to predict brain graphs following brain surgery, which can provide valuable information to surgeons planning better surgery. We rely on the idea that surgical outcomes share network similarities with healthy subjects and combine them in a Bayesian approach. We show how our method significantly outperforms simpler models even when taking advantage of the same prior. Furthermore, generated brain graphs share topological features with the real brain graphs. Overall, we present the problem of plasticity reorganization after brain surgery in a normative manner while still achieving competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aerts, H., et al.: Modeling brain dynamics after tumor resection using the virtual brain. NeuroImage 213, 116738 (2020)

    Google Scholar 

  2. Aerts, H., et al.: Modeling brain dynamics in brain tumor patients using the virtual brain. Eneuro 5 (2018)

    Google Scholar 

  3. Aktí, Ş., et al.: A comparative study of machine learning methods for predicting the evolution of brain connectivity from a baseline timepoint. J. Neurosci. Methods 368, 109475 (2022)

    Google Scholar 

  4. Andersson, J.L.R., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20, 870–888 (2003)

    Google Scholar 

  5. Andersson, J.L.R., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016)

    Google Scholar 

  6. Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ANTS). Insight J. 2 (2009)

    Google Scholar 

  7. Avena-Koenigsberger, A., Misic, B., Sporns, O.: Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17–33 (2018)

    Google Scholar 

  8. Bessadok, A., Mahjoub, M.A., Rekik, I.: Brain multigraph prediction using topology-aware adversarial graph neural network. Med. Image Anal. 72, 102090 (2021)

    Google Scholar 

  9. Collin, G., Kahn, R.S., de Reus, M.A., Cahn, W., van den Heuvel, M.P.: Impaired rich club connectivity in unaffected siblings of schizophrenia patients. Schizophrenia Bull. 40, 438–448 (2014)

    Google Scholar 

  10. Dhollander, T., Raffelt, D., Connelly, A.: Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. In: ISMRM Workshop on Breaking the Barriers of Diffusion MRI, vol. 5. ISMRM (2016)

    Google Scholar 

  11. Ezzine, B.E., Rekik, I.: Learning-guided infinite network atlas selection for predicting longitudinal brain network evolution from a single observation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 796–805. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_88

    Chapter  Google Scholar 

  12. Faez, F., Ommi, Y., Baghshah, M.S., Rabiee, H.R.: Deep graph generators: a survey. IEEE Access 9, 106675–106702 (2021)

    Google Scholar 

  13. Gürler, Z., Nebli, A., Rekik, I.: Foreseeing brain graph evolution over time using deep adversarial network normalizer. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.C. (eds.) PRIME 2020. LNCS, vol. 12329, pp. 111–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59354-4_11

    Chapter  Google Scholar 

  14. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (2008)

    Google Scholar 

  15. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002)

    Google Scholar 

  16. Jenkinson, M., Pechaud, M., Smith, S., et al.: BET2: MR-based estimation of brain, skull and scalp surfaces. In: Eleventh Annual Meeting of the Organization for Human Brain Mapping, Toronto, vol. 17, p. 167 (2005)

    Google Scholar 

  17. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014)

    Article  Google Scholar 

  18. Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M.: Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Resonance Med. 76, 1574–1581 (2016)

    Google Scholar 

  19. Leemans, A., Jones, D.K.: The B-matrix must be rotated when correcting for subject motion in DTI data. Magn. Resonance Med. 61, 1336–1349 (2009)

    Google Scholar 

  20. Luders, E., Kurth, F.: Structural differences between male and female brains (2020)

    Google Scholar 

  21. Nebli, A., Kaplan, U.A., Rekik, I.: Deep EvoGraphNet architecture for time-dependent brain graph data synthesis from a single timepoint. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.C. (eds.) PRIME 2020. LNCS, vol. 12329, pp. 144–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59354-4_14

    Chapter  Google Scholar 

  22. Rolls, E.T., Huang, C.C., Lin, C.P., Feng, J., Joliot, M.: Automated anatomical labelling atlas 3. NeuroImage 206, 116189 (2020)

    Google Scholar 

  23. Rubinov, M.: Circular and unified analysis in network neuroscience. OSF PrePrints (2022)

    Google Scholar 

  24. Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage 62, 1924–1938 (2012)

    Google Scholar 

  25. Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: SIFT: Spherical-deconvolution informed filtering of tractograms. NeuroImage 67, 298–312 (2013)

    Google Scholar 

  26. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl. 1), S208–S219 (2004)

    Google Scholar 

  27. Suárez, L.E., Markello, R.D., Betzel, R.F., Misic, B.: Linking structure and function in macroscale brain networks. Trends Cognit. Sci. 24, 302–315 (2020)

    Google Scholar 

  28. Tournier, J.D., et al.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137 (2019)

    Google Scholar 

  29. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)

    Google Scholar 

  30. Veraart, J., Fieremans, E., Novikov, D.S.: Diffusion MRI noise mapping using random matrix theory. Magn. Resonance Med. 76, 1582–1593 (2016)

    Google Scholar 

  31. Yu, Z., et al.: Altered brain anatomical networks and disturbed connection density in brain tumor patients revealed by diffusion tensor tractography. Int. J. Comput. Assist. Radiol. Surg. 11, 2007–2019 (2016)

    Google Scholar 

Download references

Acknowledgement

This research was supported by European Union’s Horizon 2020 program [Sano No 857533] and by the Foundation for Polish Science [Sano project].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Falcó-Roget .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falcó-Roget, J., Crimi, A. (2022). Bayesian Filtered Generation of Post-surgical Brain Connectomes on Tumor Patients. In: Manfredi, L., et al. Imaging Systems for GI Endoscopy, and Graphs in Biomedical Image Analysis. ISGIE GRAIL 2022 2022. Lecture Notes in Computer Science, vol 13754. Springer, Cham. https://doi.org/10.1007/978-3-031-21083-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21083-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21082-2

  • Online ISBN: 978-3-031-21083-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics