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Abstract. Understanding the global dynamics of a robot controller,
such as identifying attractors and their regions of attraction (RoA),
is important for safe deployment and synthesizing more effective hy-
brid controllers. This paper proposes a topological framework to analyze
the global dynamics of robot controllers, even data-driven ones, in an
effective and explainable way. It builds a combinatorial representation
representing the underlying system’s state space and non-linear dynam-
ics, which is summarized in a directed acyclic graph, the Morse graph.
The approach only probes the dynamics locally by forward propagating
short trajectories over a state-space discretization, which needs to be a
Lipschitz-continuous function. The framework is evaluated given either
numerical or data-driven controllers for classical robotic benchmarks.
It is compared against established analytical and recent machine learn-
ing alternatives for estimating the RoAs of such controllers. It is shown
to outperform them in accuracy and efficiency. It also provides deeper
insights as it describes the global dynamics up to the discretization’s
resolution. This allows to use the Morse graph to identify how to syn-
thesize controllers to form improved hybrid solutions or how to identify
the physical limitations of a robotic system.

Keywords: Topology, Robot Control, Robot Dynamics.

1 Introduction

Estimating Regions of Attraction (RoA) of a dynamical system is needed in
robotics for understanding the conditions under which a controller can be safely
applied to solve a task. It is also needed for composing controllers and forming
hybrid solutions that work from a wider swath of the underlying state space.
Estimating such RoAs, however, is challenging.
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Fig. 1: Results of the proposed combinatorial analysis for a pendulum operating under
an LQR controller so as to reach the (0,0) state in the phase space. (i) The method out-
puts the Morse graph MG(F) (left) to identify recurrent dynamics. (ii) The numbered
Morse cells M represent recurrent sets associated with nodes of MG(F). The RoAs of
the regions in M are indicated by the corresponding light colors and letters. (iii) The
graph on the right is used to identify the RoAs for the corresponding recurrent sets.

Computing a Lyapunov function (LF) can provide an RoA but obtaining an
analytical expression for an LF is difficult for general non-linear systems. This
motivated numerical solutions, which often still require access to the system’s
differential equation for computing an LF. Recent advances in data-driven con-
trol provide effective learned controllers [25,22], which do not have analytical
expressions. Machine learning methods have also been proposed to learn RoAs
[13,6] without access to the control law’s expression as well as for composing
controllers [37,7]. These methods, however, tend to be sensitive to parameters,
are computationally demanding in time and memory while lacking guarantees.
Therefore, there is a need for identifying RoAs, especially of data-driven systems,
in a robust, mathematically rigorous, and computationally efficient way.

Contributions: This work sidesteps the estimation of an LF. It builds on
top of recent progress in combinatorial dynamics and order theory [28,29,30]
to propose a combinatorial analysis of the global dynamics of black-box robot
controllers and describe attractors and their corresponding RoAs. The approach
is based on a finite combinatorial representation of the state space and its non-
linear dynamics. It only requires access to a discrete time representation of the
dynamics and can handle analytical, data-driven and hybrid controllers.

For instance, consider the phase space of a pendulum as in Fig. 1 given an
LQR controller for driving the system to the (0, 0) state. The proposed frame-
work generates the combinatorial representation on the right, where nodes cor-
respond to regions in a state space decomposition. This information is then
summarized in more compact, annotated, acyclic directed graphs called Morse
graphs, shown on the left. The nodes of Morse graphs can contain attractors
of interest. The associated RoAs can also be inferred automatically from the
combinatorial representation. The resulting information is finite and graphical
in nature, thus, it can be easily queried and understood by a person. The accom-
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panying evaluation shows that the proposed tools are relatively computationally
efficient, provide a more global, explainable understanding of the dynamics, of-
ten achieve higher accuracy and provide stronger guarantees than alternatives.
They also allow the composition of hybrid controllers with wider RoAs.

Related Work: Multiple numerical methods exist for estimating RoAs given
direct access to the system’s expression [21]. For instance, maximal Lyapunov
functions (LFs) [48] incrementally compute the RoA. Constructing an ellip-
soidal RoA approximation reduces to a linear matrix inequalities (LMIs) problem
[38,39], which has been applied to wheeled robots [43] and NASA’s generic trans-
port model [35]. There are also convex formulations that rely on LMI relaxations
to solve a convex linear program and approximate the RoA of systems with poly-
nomial dynamics and semi-algebraic inputs [26]. An LF can be restricted to be
a sum-of-squares (SoS) polynomial constructed via semi-definite programming
[36]. SoS methods can build randomized stabilized trees with LQR feedback
[47], pre-compute funnel libraries [32] and acquire certificates of stability of rigid
bodies with impacts and friction [41]. State space samples satisfying a Lyapunov-
type inequality can construct neighborhoods where the candidate LF is certified
[9]. In contrast, the proposed approach avoids computing an LF and does not
require access to the analytical expression of the underlying control law.

Reachability analysis [5] computes the backward reachable tube of a dynam-
ical system returning the maximal RoA without imposing shape restrictions.
Tasks include RoA computation of dynamical walkers [14] and, combined with
machine learning, maintain the system’s safety over a given horizon [23]. Barrier
functions ensure safety of unknown dynamical systems, and can be learned with
Gaussian Processes (GP) to obtain safe policies [3]. Barrier certificates (BCs)
can identify areas needing exploration to expand the safe set [51].

Machine learning can be used to compute both LFs and BCs. One approach
is to alternate between a learner and a verifier to search within a LFs set [12]. An
alternative approximates the dynamics map as a piecewise linear neural network
using a counterexample-guided method as a verifier to synthesize a LF [13]. LFs
can also be constructed via stable data-driven Koopman operators [33]. LFs and
BCs can be obtained by training a neural network and using an SMT solver as a
verifier [1]. LFs for piecewise linear dynamical systems can be synthesized as the
outputs of neural networks with leaky ReLU activations [17]. Given a system’s
initial safe set, a neural network LF is trained to adapt to the RoA’s shape
[44]. GPs can be used to obtain a Lyapunov-like function [31]. Finally, LFs can
be synthesized while learning a controller to prove the controller’s stability and
generate counter-examples to improve the controller [18]. This paper compares
performance against a state-of-the-art ML approach that computes an LF [44].

This work builds on top of topological tools. Topology has been used for
various problems in robotics, such as deformable manipulation [8,4], robot per-
ception [20], multi-robot problems [49], determining homotopy-inequivalent tra-
jectories [40] and to extract higher-order dynamics for motion prediction [11].
Morse theory has been used to incrementally build local minima trees for multi-
robot planning problems [34], and to find paths to cover 2D and 3D spaces [2].
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To the best of the authors’ knowledge, this is the first application of recent ad-
vancements in topology to summarize the global dynamics of robot controllers.

2 Problem Setup

This work aims to systematically analyze the global dynamics of robot controllers
based on combinatorial dynamics and order theory [28,29,30]. The prior theory
is very general and applies to any continuous dynamical system defined over
a locally compact metric space. The material is adopted and applied to the
restricted setting of robot control problems. In particular, consider a nonlinear
continuous-time system: ẋ = f(x, u), (1)

where x(t) ∈ X is the state at time t in a domain X ⊆ Rn, u : X → U ⊆ Rm
is a Lipschitiz continuous control as defined by a control policy u(x), and f :
X ×U→ Rn is a Lipschitiz continuous function, where U is an open set in Rm.
The dynamical system consists of the model f(·), which can be accessed but it
is not necessarily known analytically, and a control policy u = u(x) that can be
either analytical or learned from data.

For a given time τ > 0, let φτ : X → X denote the function derived from
solving Eq. (1) forward in time for duration τ from everywhere. Given that f and
u are Lipschitz continuous, φτ is also Lipschitz continuous. Denote the global
Lipschitz constant of φτ by Lτ . Observe that a RoA for Eq. (1) is a RoA under
φτ . Therefore and w.l.o.g, the rest of this work focuses on the dynamics of φτ ,
which is not assumed, however, to be computable and available.

The objective is to identify a combinatorial approach, which can capture
meaningful aspects of the dynamics of interest according to φτ : X → X, which
are continuous in nature. In this context, a subset of the state space N ⊂ X
is an attracting block for φτ , if φτ (N) ⊂ int(N), where int denotes topological
interior. This means that the system of Eq. (1) will not escape the subset N
once it has entered it. Denote the set of attracting blocks of φτ by ABlock(φτ ).
Given N ∈ ABlock(φτ ), its omega limit set is an invariant set for φτ defined as:

ω(N) :=
⋂
n∈Z+

cl

( ∞⋃
k=n

φkτ (N)

)
where φkτ is the composition φτ◦· · ·◦φτ (k times) and cl is topological closure. The
attracting block N is a RoA for ω(N). In general ABlock(φτ ) is huge, containing
uncountably many elements, and is too large to work with. Thus, the problem
is to systematically identify a minimal finite subset of ABlock(φτ ) that both
represents as tightly as possible the attractors and captures the maximal RoAs
of these attractors.

Running Example: For exposition purposes, the following discussion will
use the second-order pendulum as an example to explain the corresponding def-
initions and the proposed method (Fig 1). The pendulum is modeled by the
differential equation m`2θ̈ = mG` sin θ − βθ + u, with state x := (θ, θ̇), where θ
is the angle from the upright equilibrium θo = 0, u is the input torque, m is the
pendulum mass, G is the gravitational acceleration, ` is the pole length, and β



5

is the friction coefficient. The control u in the running example is computed by
the LQR approach described in Section 4. In Fig. 1, we use the time-1 map φ1
of the flow of the pendulum under the LQR controller. The proposed method is
not limited to this or similar low-dimensional systems/controllers.

3 Proposed Framework and Method

Overview: The method first approximates φτ by decomposing the state space X
into regions ξ. For multiple initial states within each ξ the system is propagated
forward for time τ to identify regions reachable from ξ. Given the reachability
information and the Lipschitz continuity of φτ , a directed multi-valued graph
representation F stores each region ξ as a vertex and edges point from ξ to all
regions in an outer (conservative) approximation of its true reachable set.

The method then computes the strongly connected components (SCC) of F .
An SCC is a maximal set of vertices of F such that every pair of vertices in the
SCC are reachable from each other. The non-trivial SCCs of F , i.e., those with
at least one edge, are called recurrent sets, and capture the recurrent dynamics
of φτ . Every region ξ not in a recurrent set exhibits non-recurrent behavior.
The same algorithm that computes SCCs also provides a topological sort of the
vertices in F , which allows to define reachability relationships between recurrent
sets and non-recurrent regions. This gives rise to a condensation graph CG(F),
where all SCCs are condensed to a single vertex and edges reflect reachability
according to the topological sort. Typically, CG(F) is roughly the same size as
F and cumbersome to maintain. The implementation avoids explicitly storing
either graph. The method succinctly captures the recurrent and non-recurrent
dynamics in the Morse graph MG(F), whose vertices are the recurrent sets of F
and whose edges reflect reachability according to the topological sort. Overall,
the proposed method can be divided into the four steps described below:

– Step 1. State space decomposition and generation of input to represent φτ ;
– Step 2. Construction of the combinatorial representation F of the dynamics

given an outer approximation of φτ ;
– Step 3. Computation of Condensation Graph CG(F) and Morse Graph

MG(F) via identification of recurrent sets/SCCs of F and topological sort;
– Step 4. Derivation of RoAs for the recurrent sets from CG(F);

Step 1 - State Space Decomposition and Generation of Input Data:
This paper considers the control system of Eq. (1) restricted to a state space given
by an orthotope X =

∏n
i=1[ai, bi], allowing for the possibility of periodic bound-

ary conditions. This allows for torus-like spaces, such as for the running example
of the 2nd-order pendulum. For simplicity, the accompanying implementation is
using a uniform discretization of the state space based on 2ki subdivisions in
the i-th component resulting in a decomposition of the state space into

∏n
i=1 2ki

cubes of dimension n. The term X denotes the collection of these cubes.
The method then generates the set of values of φτ at the corner points of

cubes in X . More precisely, let V (X ) denote the set of all corner points of cubes
in X . The method computes the set of ordered pairs Φτ (X ) := {(v, φτ (v)) | v ∈
V (X )}, by forward propagating the dynamics for time τ from all V (X ). In this
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way, this work does not assume exact, analytical knowledge of φτ , but rather
exploits its existence. It only requires the ability to generate the set Φτ (X ).

Step 2 - Combinatorial Representation F via outer approximation: The
dynamics of the continuous φτ are approximated by a combinatorial multivalued
map F : X ⇒ X , where vertices are n-cubes ξ ∈ X . The map F contains directed
edges ξ → ξ′,∀ ξ′ ∈ Φτ (ξ). The set of cubes identified by F(ξ) are meant to
capture the possible states of φτ (ξ). To obtain mathematically rigorous results
about the dynamics of φτ , it is sufficient for F to be an outer approximation of
φτ , i.e., for

φτ (ξ) ⊂ int (F(ξ)) for all ξ ∈ X (2)

where int denotes topological interior. The left side of Eq. (2) indicates the set
of states that can be achieved in time τ according to (1), which is unknown
exactly. On the right side, F(ξ) is a list of vertices that can be identified with a
set of n-cubes in X. The inclusion relation and int indicate the constraint that
a large enough collection of cubes is chosen in F(ξ) to enclose φτ (ξ) and at least
an arbitrarily small overestimation is needed. The minimal outer approximation
of φτ [27] is: Fmin(ξ) := {ξ′ ∈ X | ξ′ ∩ φτ (ξ) 6= ∅},

that is, Fmin(ξ) indicates the minimal set of cubes that contain the set of all
states that can be reached in time τ starting in ξ. See Fig. 2(left) for an illus-
tration. Even with complete knowledge of φτ , computation of Fmin is typically
prohibitively expensive. Nevertheless, from a mathematical perspective it suf-
fices to work with any F : X ⇒ X that satisfies Fmin(ξ) ⊂ F(ξ) for all ξ ∈ X .
In general, the objective is to achieve a tight outer approximation, as the larger
the size of the images of F , the less the information about the dynamics of φτ .

ξ

φτ (ξ)

Fτ(ξ) ξ

φτ (ξ)

Fτ(ξ)

Fig. 2: The set φτ (ξ) denotes the reachable states
from all states in the cell ξ after time τ . Multival-
ued maps: (left) minimal/ideal outer approximation
Fmin(ξ) and (right) outer approximation obtained
by using a Lipschitz constant.

The assumption for an
outer approximation is that
F(ξ) 6= ∅ for all ξ ∈ X .
In practice it does not need
to hold. Determining F rep-
resents the major computa-
tional bottleneck as it in-
volves numerical simulations
of Eq. (1) or obtaining real-
world experiments with the
robotic system. The flexibility
in the definition of an outer
approximation provides flexi-
bility in its construction. This work computes F as follows: Recall that φτ
is Lipschitz with constant L = Lτ (L depends on τ). Given x ∈ X, let
B(x, δ) = {x′ ∈ X | ‖x − x′‖ ≤ δ} denote the δ-closed ball at state x. De-
fine the diameter of ξ ∈ X by d(ξ) := maxx,x′∈ξ ‖x− x′‖ and the diameter of X
by d := maxξ∈X d(ξ). Note that for a uniform grid, d = d(ξ), independently of
the choice of ξ. Let V (ξ) be the set of corner points of the cube ξ and:

F(ξ) :=
{
ξ′ | ξ′ ∩B (φτ (v), Ld/2) 6= ∅ for some v ∈ V (ξ)

}
.
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Fig. 2(right) provides a relevant illustration. The definition of F above is
guaranteed to provide an outer approximation if L is (an upper bound for) the
Lipschitz constant Lτ . In practice, however, only an estimate for the Lipschitz
constant Lτ is available. In this case, an outer approximation can be obtained
by evaluating φτ on a fine enough grid in ξ instead of just the corner points.
Step 3 - Identification of recurrent & non-recurrent behavior of F :
Identifying all the recurrent sets M of F is performed using Tarjan’s Strongly
Connected Components (SCC) algorithm, which is linear in the number of ele-
ments of X plus the number of edges in F . The accompanying implementation
uses a modified version of the algorithm, which does not store the whole digraph
F in memory and yet evaluates F only once for each node [10,19].

An indexing set P is introduced in order to distinguish all the recurrent sets
and helps to enumerate them: {M(p) | p ∈ P}. A partial order relation ≤ on
P is imposed on the corresponding recurrent sets M(p). In particular, q ≤ p if
there exists a path in F from a ξ ∈M(p) to a ξ′ ∈M(q). Identifying the partial
order ≤ for two recurrent sets is a question of reachability on F between the two
recurrent sets and is done taking advantage of the fact that Tarjan’s algorithm
also performs a topological sort on the vertices. For the examples of this paper,
the number of recurrent sets is in the order of tens.

Fig. 3: From left to right: An example decomposition of a state space into regions and
transitions between regions. The corresponding multivalued map F . The condensation
graph CG(F) where SCCs have been condensed to a single vertex. The corresponding
Morse graph were node 0 corresponds to the SCC {1,2} with RoA={0,1,2,3} and
node 1 corresponds to the SCC {5,6} with RoA={5,6,7}. Initial conditions in region 4
(identified with node 2) may end up either in regions {1,2} (node 0) or {5,6} (node 1).

Thus, the output of the SCC algorithm is a new graph representation, a
condensation graph CG(F) of F , which is formed by contracting each strongly
connected component of F into a single vertex. The condensation graph CG(F) is
by definition a directed acyclic graph. The reachability on F defines the direction
of the edges in the condensation graph CG(F) and relates to the partial order
relation, where v ≤ w, if there is a directed edge w → v in CG(F). While the
graph CG(F) has condensed all SCCs into a single vertex, it is still a huge graph
representation as it stores all the vertices of F that are not in a recurrent set.

For this reason, the proposed method outputs the sub-graph derived only
from the recurrent sets (i.e., the non-trivial SCCs) as these components are the
only possible candidates for containing the attractors of RoAs given the level
of discretization. This is referred to as the Morse graph MG(F) of F : X ⇒ X
(shown in Fig. 1) and is the partially ordered set:
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MG(F) = {M(p) ⊂ X | p ∈ (P,≤)}. (3)

Since (P,≤) is a partially ordered set, MG(F) can be represented as a directed
graph. The Morse graph MG(F) of F : X ⇒ X is the Hasse diagram of (P,≤),
i.e., the minimal directed graph from which (P,≤) can be reconstructed.

The Morse graph for the inverted pendulum is presented in Fig. 1 and is
indexed by P = {0, . . . , 6} with order relations: p < q, iff there is a path from
q to p in the digraph. Hence, 4, 2, and 0 are the minimal elements and 1 < 3
and 5 < 6. The MG(F) is computed by Algorithm 1, which takes as input the
decomposition X , the dataset Φτ (X ) (representing the map φτ ), and an estimate
for the Lipschitz constant L of φτ . The dataset Φτ (X ) is used to compute the
outer approximation F , as described in Step 2. When the condensation graph is
computed, the non-trivial SCCs (components with at least one edge) are flagged,
as they become nodes of the Morse graph. Then, the only step remaining is to
determine the reachability of recurrent sets as discussed above.

Algorithm 1: MorseGraph(X , Φτ (X ), L)

1 F ← OuterApproximation(X , Φτ (X ), L) // F as a digraph but not

stored in memory explicitly

2 SCC(F)← StronglyConnectedComponents(F)
3 CG(F)← CondensationGraph(SCC(F)) // flag non-trivial SCCs

4 MG(F)← Reachability(CG(F))
5 return MG(F),CG(F)

Step 4 - Derivation of RoAs: Define O• : X ⇒ P and O• : X ⇒ P as:
O•(ξ) := min{p ∈ P | there exists a path in F from ξ to ξ′ ∈M(p)} and
O•(ξ) := max{p ∈ P | there exists a path in F from ξ to ξ′ ∈M(p)}.

Note that since P is a poset it is possible that O•(ξ) and O•(ξ) have multiple
values. Under the assumption that F is an outer approximation of φτ , then, if
p 6∈ O•(ξ), it is true that for every x ∈ ξ and any n ≥ 0, φnτ (x) 6∈ M(p).

Theorem 1. If p is a minimal element of (P,≤) and O•(ξ) = {p}, then for
every x ∈ ξ, there exists n ≥ 0 such that φnτ (x) ∈ M(p). As a consequence if p
is a minimal element of (P,≤), then {ξ ∈ X | O•(ξ) = {p}} is the maximal RoA
for M(p) that can be rigorously identified using F .

Returning to the example of Fig. 1, O•(ξ) = p for ξ is the region correspond-
ing to the Morse set M(p), for p = 0, . . . , 6. For ξ in the RoA indicated by a, b,
c, d, and e the following map arises: O•(ξ) = 0 for a, O•(ξ) = 2 for b, O•(ξ) = 4
for c, O•(ξ) = 3 for d, and O•(ξ) = 6 for e. This is indicated by the graph in
Fig. 1(right). O•(ξ) is the Morse node reachable from the corresponding region
in the graph. It follows from Theorem 1 that the regions in Fig. 1 labeled 4 and
c form the maximal RoA of 4, the regions labeled 2 and b form the maximal
RoA of 2, and the regions labeled 0 and a form the maximal RoA of 0.

To obtain O•, the graph CG(F) is explored with a depth first search (DFS)
approach and for each visited vertex v ∈ CG(F) the maximal reachable Morse
nodes are identified. That is, the collection of p ∈ P such that there exists a path
from v to a cube ξ ∈ M(p). See Appendix A and [50] for an implementation of
the DFS.
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Relationship to Continuous Dynamics: The condensation graph CG(F) and
the Morse graph MG(F) of F are highlighted in the right column of Fig. 4 as the
combinatorial objects computed given the outer approximation F of φτ . Each
element of CG(F) is identified with a region of X. This collection of regions is
denoted by T and, as shown in Fig 4, it is isomorphic as a poset to CG(F). To
find attracting blocks, the method uses the following fact [29]. Let F be an outer
approximation of φτ : If x ∈ T ∈ T and φτ (x) ∈ T ′ ∈ T, then T ′ ≤ T where
≤ is the order relation on T, i.e., forward orbits under φτ can be tracked by
descending the order relation on T. Stated more concisely: O(T ) ∈ ABlock(φτ ),
where O(T ) := {T ′ ∈ T | T ′ ≤ T} is the downset of T ∈ T.

Dynamics Combinatorics

T CG(F)

M MG(F)

oo '

?�

OO

?�

OO

oo '

Fig. 4: Diagram relating the
discretized dynamics in state
space (left) to the proposed
combinatorial representation of
the global dynamics (right). The
arrows ↪−→ represent inclusion
maps and the arrows

'−→ indicate
poset isomorphisms.

The set ABlock(φτ ) has the structure of
a finite distributive lattice; that is, if N,N ′ ∈
ABlock(φτ ) then N∪N ′, N∩N ′ ∈ ABlock(φτ ).
Furthermore, the collection {O(T ) | T ∈
T} generates a finite but huge sublattice of
ABlock(φτ ). The elements of T that are iden-
tified by elements of MG(F) are denoted by
M and referred to as Morse cells (see Fig. 1).
Given prior work [29], if F is an outer approx-
imation of φτ and x ∈ X belongs to the chain
recurrent set of φτ (recurrence allowing for an
arbitrarily small error [15]), then x belongs to
a Morse cell. Thus, the collection of recurrent
sets of F identifies the location in state space
of recurrent dynamics of φτ . As in Fig. 4, M
inherits a partial order ≤ from MG(F). Its
dynamical implications are derived from the

dynamical implications of the partial order on T. If M,M ′ ∈ M, M < M ′ and x
is an initial condition that lies in M , then φnτ (x) ∩M ′ = ∅ for all n ≥ 0.

4 Results

The framework is compared against alternatives for estimating the RoAs, includ-
ing numerical and machine learning methods that compute Lyapunov functions.

Robotic Systems: (i) A 2nd-order (Pendulum), (ii) a 1st-order car with
(Ackermann) steering that cannot reverse [16], (iii) a 2nd-order (Acrobot) [45].
The dynamics are simulated via numerical integration [24]. The state and control
space limits are given in Table 1.

System X U Bounds on X Bounds on U Controllers Goal

Pendulum (θ,θ̇) τ [{−π,−2π},{π,2π}] [0.6372,0.6372] Learned, LQR [0,0]

Ackermann (x,y,θ) (γ,V ) [{−10,−10,−π},{10,10,π}] [{−π
3
,0},{π

3
,30}]

Learned, LQR,
Corke

[0,0,π
2
]

Acrobot (θ1,θ2,θ̇1,θ̇2) τ2 [{0,−π,−6,−6},{2π,π,6,6}] [−14,14] Hybrid, LQR [0,π,0,0]

Table 1: Systems and controllers considered in the evaluation.

Controllers: For each system, alternative controllers are considered:
(i) An LQR controller linearizes the system around the goal: ẋ = Ax+ Bu (A ∈
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Rn×n, B ∈ Rm×n) and the controller u = −Kx minimizes the cost JLQR =

x(T )TFx(T ) +
∫ T
0

(x(t)TQx(t) + u(t)TRu(t))dt (F,Q ∈ Rn×n, R ∈ Rm×m).
(ii) A Learned controller trained using the Soft Actor-Critic (SAC) [25] algo-

rithm to maximize the expected return J (π) = Eτ∼ρπ [
∑T
t=0R(xt)], where the

reward function is R : X → {0, 1}. R(xt) = 1 iff xt is within an ε distance from
the goal state and 0 otherwise.
(iii) A Hybrid controller for the Acrobot uses the Learned controller to drive
the system to a relaxed goal distance, from where LQR takes over.
(iv) The Corke controller for Ackermann [16] transforms the state into polar
coordinates (ρ, α, β) to define linear control laws for the velocity v = Kρρ and
steering angle ω = Kαα + Kββ. It’s able to drive a reverse-capable system to
the goal assuming Kρ > 0,Kβ < 0,Kα − Kρ > 0. The experiments, however,
consider only positive velocities limiting its reachability.

Comparison Methods: L-LQR and L-SoS use a linearized, unconstrained
form of the dynamics to compute a Lyapunov function (LF) for the controller
being considered. L-LQR uses the solution of the Lyapunov equation vLQR(x) =
xTPx for the linearized, unconstrained version of the system. L-SoS computes
the LF according to vsos(x) = m(x)TQm(x) where m(x) are monomials on x and
Q is a positive semidefinite matrix. It uses SOSTOOLS [42] with SeDuMi [46]
as the SDP solver. These methods cannot be used with data-driven controllers
(like Learned) since they require a closed-form expression for the controller.

The Lyapunov Neural Network (L-NN) [44] is a state-of-the-art, machine
learning approach with available software for identifying RoAs of black-box con-
trollers. It returns a parametrized function that is trained to adapt to the RoA
of a closed-loop dynamical system. Given an initial safe set around the desired
equilibrium, a subset of non-safe states are forward propagated, classified and
used to reshape the Lyapunov candidate in each iteration. The method needs
access to a known safe-set and there is no guarantee the safe-region won’t shrink.

Benchmark L-NN L-LQR L-SOS Ours: MG

Pend (LQR) 97.54% 69.91% 3.07% 97.49%

Pend (Learned) 30.18% 98.5%

Acro (LQR) 89.06% 26.84% 25.66% 96.36%

Acro (Hybrid) 13.79% 98.75%

Ack (LQR) 7.55% 21.78% 2.43% 0%

Ack (Corke) 10.23% 41.36% 86.69%

Ack (Learned) 91.47% 100%

Table 2: RoA ratios identified by the different meth-
ods. Best values per row in bold.

“Ground Truth” RoAs:
For each benchmark (i.e.,
a controller-system pair), an
approximation of the ground
truth RoA for the goal state is
computed by high-resolution
discretization of the state
space, and forward propagat-
ing the controller for a very
long, fixed time horizon, or
until the goal is reached. Appendix C provides the parameters for this ground
truth evaluation.

Metrics: Given the “ground truth” RoA, the following metrics are reported:
(a) Table 2 provides the ratio of X’s volume correctly identified to belong to
the RoA (True Positives - TP) - its complement gives the ratio of X’s volume
incorrectly identified as not being in the RoA (False Negatives - FN);
(b) Table 3 provides the ratio of X’s volume for which the dynamics have not
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been identified (Unidentified);
(c) Table 4 provides the amount of computational resources required for L-NN

and Morse Graph (MG) measured using the number of forward propagations per-
formed (steps) – the dominant computational primitive. Given their analytical
nature, the L-LQR and L-SOS alternatives do not require forward propagations
of the system and tend to be computationally faster but require access to an
expression for the controller.

Benchmark L-NN L-LQR L-SOS Ours: MG

Pend (LQR) 61.33% 61.33% 61.33% 1.66%

Pend (Learned) 81.44% 1.25%

Acro (LQR) 10.94% 73.16% 74.34% 3.64%

Acro (Hybrid) 86.21% 1.25%

Ack (LQR) 83.03% 82.87% 82.87% 100%

Ack (Corke) 27.81% 29.35% 24.5%

Ack (Learned) 8.53% 0.00%

Table 3: X’s ratio returned as unidentified by the
different methods. Best values per row in bold.

Quantitative Results: The
proposed method tends to es-
timate larger volumes of the
RoA compared to alternatives
per Table 2. It also consis-
tently identifies the dynam-
ics for larger volumes of X
compared to the comparison
points, which cover lower vol-
umes of X per Table 3. More-
over, the proposed method is broadly applicable to different controllers, and
finds a larger volume of the RoA when compared to L-NN for the Pendulum
(Learned), Acrobot (Hybrid), Ackermann (Learned).

Benchmark L-NN Ours: MG

Pend (LQR) 667.1M 6.6M

Pend (Learned) 341.9M 6.6M

Acro (LQR) 5.7B 1.1B

Acro (Hybrid) 533M 2.1B

Ack (LQR) 9.9M 520M

Ack (Corke) 37.5M 13M

Ack (Learned) 704.6M 520M

Table 4: Number of propagation re-
quired. Best values per row in bold.

The computational needs of the Morse
Graph is one or two orders of magnitude
less than that of the L-NN. The learned
controllers benefit the most from the topo-
logical approach as it provides in all cases
a higher coverage of the RoA with fewer
propagations. There are two cases where
MG takes a larger number of propagation
steps compared to L-NN. In the case of
Ackermann (LQR), this is because MG is

unable to find a unique attractor for the system (see discussion below). In the
case of Acrobot (Hybrid), L-NN fails to identify the true RoA accurately.

Some of the comparison points may incorrectly identify a volume of X as
belonging to RoA (False Positives - FP). This is not true for the Pendulum, since
the attractor of interest is not at the boundary of the RoA. But for the LQR and
Corke controllers of the Ackermann, the desired goal is not an attractor since
some trajectories close to the goal region escape X (a consequence of not allowing
negative velocities). Therefore, the comparison methods fail to conservatively
estimate the RoA, resulting in FPs. The topological framework, however, does
not result in FPs (explained below). The Ackermann Learned controller and the
Acrobot controllers present no FPs since the goal region is an attractor.

Pendulum Study: The RoAs compute controllers for the pendulum are
shown in Fig 5. For Morse Graph, the attractor discovered is shown at the center
of the state space, and it contains the goal region. Note that L-NN does not
find the attractor, but assumes one exists containing the goal region. Moreover,
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θ̇

θ

Fig. 5: RoA estimated by L-NN (1st and 3th image) and Morse Graph (2nd and 4th im-
age, where the dark shading is the attractor) for the LQR (left) and Learned controllers
(right) of the pendulum.

L-NN is unable to cover the full RoA for the Learned controller, making it an
undesirable solution. Morse Graph is also shown to work well when (a subset of)
the state space is periodic. For instance, the RoA of the Pendulum (LQR) also
includes the regions at the corners of the planar representation of the cylinders
in Fig 5 (Left). This is captured by MorseGraph, but not by L-NN.

θ̇

θ

Fig. 6: RoA for the Pendulum when the upper torque bound is: (left) 0.637; (center)
0.724; (right) 0.736. For all torques the RoA found is 97% of the true one.

Pendulum with different torques: Fig 6 illustrates the robustness of the topo-
logical framework to different bounds for the allowed torque of the LQR con-
troller. The proposed method consistently finds the RoA and the attractor that
contains the goal region. Moreover, it persistently covers 99% of the true RoA
even when the dynamics change, for instance in Fig. 6 one attractor and one
saddle eventually collide and disappear.

Ackermann Study: Learned controller for Ackermann: Although the RoA is
the full state space, only the Morse Graph identifies this. The unique attractor
obtained (right) also provides insight into how the controller works. For a small
resolution of the discretization of X, it presents as a torus-like shape, which
suggests recurrent behavior. This shape can be explained by the behavior of the
car when it gets close to the goal region with the wrong orientation, where it tries
to fix this orientation by performing a loop. For a more refined discretization,
the method can distinguish long trajectories from recurrent behavior, finding a
smaller attractor that contains the goal region.

LQR controller for Ackermann: The Morse Graph results in a large, unique
attractor that contains 74% of X as the discretization is proven insufficient. The
comparison points fail by producing false positives (FP). The proposed method
is conservative and safe. It avoids FPs but needs more subdivisions for a more
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comprehensive understanding of these global dynamics.

θ

Fig. 7: For Ackermann
(Learned), the entire state
space is correctly identified by
the Morse Graph as an RoA
for the shown Unique Morse
set (Torus-like shape).

Corke controller for Ackermann: Some trajecto-
ries leave X in this experiment and modifications
are needed to compute the RoA. A node ? is
included in CG(F), and for every cube ξ ∈ X
s.t. Φτ (ξ) ∩ Xc 6= ∅, edges are added from ξ to
? before computing the Morse Graph. Thus, ?
is a minimal node of MG(F). Then, a modified
RoA computation is applied where O• and max
are changed to O• and min, respectively, and the
resulting output is O•. Finally, for each element
R ∈ mRoA, the method computes R• = R − R?,
where R? = {ξ ∈ X | O•(ξ) = {?}}. Consequently,
for each maximal RoA, the cubes in R? are re-
moved since they have some trajectories that escape X. So, R• is a conservative
estimate of the RoA. In Fig 8, the white region is the set of cubes in R?.

y

y

y

y

x

x

x

x

Fig. 8: Morse Graph, Morse sets and 2D projection on θ = 0 of the RoA for the Corke
controller applied to the Ackermann. (top row) Corke controller with the goal is set to
be (0, 0, 1.57) and (bottom row) Corke controller with the goal set to be (6,−10,−1.57).

Devising a Hybrid controller for Ackermann given the Morse Graph output:
Given the information from the Morse Graph, it is possible to synthesize a
hybrid controller that has a bigger RoA than the original ROACorke of the Corke
Controller uinit. The strategy selects a state in ROACorke, different than the
original goal, as the goal for a new Corke controller uinter. Define as RoAinter

the RoA of the new Corke controller. If RoAinter overlaps with X−RoACorke,
the hybrid controller is defined as: for states in ROACorke, apply uinit, and for
states in X−RoACorke, apply uinter, and then apply uinit when the system enters
ROACorke. Fig 8 (bottom) shows the RoA for uinter with goal (6, -10, -1.57),
which is in the ROACorke. A new controller uinter was devised for this goal and
its RoAinter contained X−RoACorke. The integration of uinter with the original
uinit result in a hybrid solution that covers the entire state space, which was
verified empirically using the Morse Graph.
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Fig. 9

Acrobot study: The Morse graph for both controllers of the Ac-
robot is shown in Fig 9. They have a high success rate: the estimated
RoA for node 0 covers more than 93% of the true RoA. The possible re-
current dynamics described by node 1 are long trajectories interpreted as
recurrent by the proposed method. This can be addressed by increasing
the state space discretization for an additional computational cost.

Hybrid Controller for Acrobot: The Acrobot learned controller is unable to
find a solution within a given time horizon for a goal condition: B(xG, 0.1).
Hence, a hybrid solution is proposed. The learned controller is first applied until
the system reaches a relaxed goal: B(xG, 0.6). The proposed method finds that
the RoA for the relaxed goal condition is 100% of the state space, and is inside the
RoA of the LQR controller. Hence, once the trajectory reaches B(xG, 0.6) using
the learned controller, LQR is applied to get into the smaller region B(xG, 0.1).
This results in a hybrid controller with a 100% success rate and a reduction in
trajectory length relatively to just executing LQR of around 50%.

5 Conclusion

This work present a novel method based on topology to identify attractors and
their RoAs for robotic systems controlled by black-box controllers. Experimental
evaluation on simulated benchmarks shows that the proposed method efficiently
identifies the global dynamics with fewer samples from the dynamics model com-
pared to data-driven alternatives. It does not require knowledge of the system
or controller dynamics, such as differentiability or the guaranteed presence of an
attractor for the system’s goal region. This makes it suitable for data-driven con-
trollers, where it significantly outperforms alternatives in identifying their RoA.
Moreover, the proposed method provides a compact description of the global
dynamics, which allows to compose multiple controllers into hybrid solutions
that reach the goal from the full state space. The evaluation section presents
two such hybrid controllers designed based on the Morse Graph output that
yield notable properties: one increased the RoA to the whole state space; and
the other decreased the length of solution trajectories by half.

Even though the proposed method requires less number of samples from the
dynamics model, it still explores the entirety of the state space. This can poten-
tially be mitigating for large and high-dimensional state spaces. Future work will
explore extensions of the current topological approach, where the focus will be
on finding the RoA for a single attractor, thereby requiring less computational
resources. Integration with Gaussian Processes and machine learning primitives
can help identify a smaller set of states where the system is propagated from so
as to further reduce data requirements.
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A Supportive Information for the Computation of RoAs

This section presents the pseudocode for computing RoAs. It consists in a modi-
fied version of depth first search to explore the condensation graph CG(F), where
it assigns the maximal Morse nodes to each vertex of MG(F). More specifically,
the Algorithm 2 in lines 2-4, assigns the index of w in MG(F), named p, for
each vertex w in MG(F), to O•(w). Note that p is a maximal Morse node for w.
Line 8 calls the function propagate described by Algorithm 3, where it explores
recursively the adjacency of each vertex in G (set of vertices in CG(F) that are
not in MG(F)). After the recursive call in line 5, the map O• is updated, in line
6, with the maximal Morse nodes found so far, see [50] for an implementation.

Algorithm 2: RegionsOfAttraction(MG(F),CG(F))

1 O• ← ∅ // set O•(v)← ∅ for all vertices v of CG(F)
2 for w ∈ MG do
3 p← P-index of w // index p ∈ (P,≤) such that w = M(p)
4 O•(w)← {p}
5 G← vertices of CG(F) \ vertices of MG(F)
6 while G 6= ∅ do
7 v ← G.pop()
8 propagate(v,CG(F).adjacencies(v), O•)

9 return O•

Algorithm 3: propagate(v,A,O•)

1 for u ∈ A do
2 if O•(u) 6= ∅ then
3 O•(v)← max(O•(v) ∪O•(u))
4 else
5 propagate(u,CG(F).adjacencies(u), O•)
6 O•(v)← max(O•(v) ∪O•(u))
7 G← G \ {u}

B Discretization of the State Space and the Time

Two parameters play an integral role in identifying attractors and RoAs: the
resolution of the discretization (R) and the forward propagation time of the
dynamics (H). Without a priori knowledge of the dynamics, it is not possible to
theoretically estimate the optimal values for both the parameters. Nevertheless,
a heuristic approach is suggested below.

Low R results in discovering larger attractors that generally cover a high
percentage of the state space. For e.g. when only two subdivisions are used, an
attractor corresponding to the whole state space may be discovered. The pro-
posed method still safely identifies an attractor, but it only identifies the rough
location of the attractor. A high R will identify more precisely the attractor, but
may result in massive memory allocation. In the experimental evaluation, R is
chosen such that the goal region has at least one cube of a uniform discretization.
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The choice of H also has similar effects on the obtained description of the
global dynamics. For small enough H, multi-valued map is closer to the identity
map, resulting in the full state space being identified as the sole attractor. On
the other hand, a large H may require more expensive computations, and the
obtained outer approximation F (digraph) may have more edges, making the
topological ordering computationally expensive. In the experimental evaluation,
H is selected with a short (wall clock) simulation time (ST) such that ST × R
(the average total simulation time) is less than the time budget of the proposed
experiment.

C Supportive Information for the Experimental Section

Table 5 presents the parameters and results of the ground-truth evaluation for
the different benchmarks. It reports three statistics: (a) The number of states
in X considered and the corresponding discretization of the state space (NS).
Unless indicated otherwise, NS is computed by considering equal-spaced inter-
vals of length k along every dimension of X. (b) Time horizon provided to the
controller to reach the goal condition or declare failure (H) expressed in terms of
simulation steps (=0.01seconds). And (c) Percentage of states in (a) from which
the controller reached the goal condition (RoA ratio of X).

Benchmark NS H RoA ratio of X

Pendulum (LQR) 3.1M = 1257× 2514 500 38.63%

Pendulum (Learned) 3.1M = 1257× 2514 500 18.56%

Acrobot (LQR) 58.1M = 63× 63× 121× 121 10k 100%

Acrobot (Hybrid) 625k = 504 5k 100%

Ackermann (LQR) 20.1M = 401× 401× 126 1k 8.6%

Ackermann (Corke) 20.1M = 401× 401× 126 1k 70.65%

Ackermann (Learned) 1M = 100× 100× 100 1k 100%

Table 5: Parameters and results of the ground truth RoA evaluation.

Table 6 presents the parameters used for executing the propagations of the
dynamical system needed by the Morse Graph approach.

Benchmark NS H

Pendulum (LQR) 216 = 65, 536 100

Pendulum (Learned) 216 = 65, 536 100

Acrobot (LQR) 220 = 1, 048, 576 1100

Acrobot (Hybrid) 220 = 1, 048, 576 5k

Ackermann (LQR) 220 = 1, 048, 576 500

Ackermann (Corke) 220 = 1, 048, 576 500

Ackermann (Learned) 220 = 1, 048, 576 500

Table 6: Parameters and results of the Morse Graph RoA evaluation.
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