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Abstract. Bitcoin is the first and highest valued cryptocurrency that
stores transactions in a publicly distributed ledger called the blockchain.
Understanding the activity and behavior of Bitcoin actors is a crucial
research topic as they are pseudonymous in the transaction network. In
this article, we propose a method based on taint analysis to extract taint
flows—dynamic networks representing the sequence of Bitcoins trans-
ferred from an initial source to other actors until dissolution. Then, we
apply graph embedding methods to characterize taint flows. We evaluate
our embedding method with taint flows from top mining pools and show
that it can classify mining pools with high accuracy. We also found that
taint flows from the same period show high similarity. Our work proves
that tracing the money flows can be a promising approach to classifying
source actors and characterizing different money flow patterns.
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1 Introduction

Bitcoin is the oldest and most used cryptocurrency, attracting broad interest
from the general public and researchers. In contrast to traditional financial net-
works, transactions can be observed by anyone on the public blockchain, on
which users exchange Bitcoins pseudonymously. This data allows researchers to
study economic activities in fine detail. One of the objectives of those research
is to understand how the Bitcoin socio-technical system works, particularly, 1)
Who are the important actors of the Bitcoin economy? [19,20,22]; 2) How is the
network of transactions organized? [19,27,34]; and 3) How to identify and track
illegal activity? [7,4,35].

Tracing the flow of money—where the money goes, to whom, and when—is
also an essential task in cryptocurrencies and critical for financial forensics to
trace money from suspicious sources and characterize different users’ behaviors.
We investigate two main questions regarding the relationship between the money
source and subsequent transactions: 1) Does money flow differently in the Bitcoin
network depending on its source?; and consequently, 2) Can we characterize a
source actor given the observation of the flow of its coins in the network?
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We propose an original way to synthesize the money flow from a given source
into a concise dynamic network called a taint network. We subsequently apply
whole graph embedding methods to automatically assign taint networks to their
origin actor. Beyond the demonstration that each actor has a characteristic flow
allowing us to recognize its position in the network [1,22,32], our method can
also be helpful for actor tracking as well as actor deanonymization tasks. The
embedding of money flows from different actors is a promising feature for down-
stream tasks in machine learning models to classify the role of actors [15,38] or
predict illegal transaction activities in the Bitcoin blockchain [35].

2 Related Work

Due to the pseudonymity of Bitcoin actors, the main research challenges concen-
trate on 1) deanonymizing those actors and 2) characterizing their roles in the
transaction network. Early works proposed clustering heuristics to deanonymize
addresses likely to belong to the same actors [6,9,29,37].

Our work focuses on identifying and characterizing actors in the transaction
network. Previous works applied graph analysis and machine learning to classify
the role of actors or whether the transactions are illicit or not. Most works derived
a set of descriptive features (e.g., the number and frequency of transactions, in-
and out- degrees, and the number of different addresses used) [2,5,11,20,23] or
the high order moments of transaction time [18]. These approaches rely on the
actor’s behavior, which easily manipulates it to hide its activities.

Other approaches thus rely on graph motifs, i.e., the set of subgraph patterns
describing the neighbors of an actor [15,28,36,38]. Due to computational reasons,
those works construct the static graph features only from direct neighbors (2-
motif) or neighbors of their neighbors (3-motif). They do not use the identity of
these neighbors but simply numeric descriptions (e.g., the total amount sent or
received and transaction fees). Node2vec has been used to embed the actor posi-
tion in the address network [23]. Nonetheless, a few works include the temporal
aspect to impose a temporal locality constraint on the motifs [35,36].

Contrary to these approaches, our proposed method does not rely on the
actor’s activity or its direct neighbors but on the temporal network describing
the whole flow of coins sent by an actor. We rely on the principle of tainted flows
to trace the coins from source actors. Taint analysis has been used most notably
in the context of tracking money from illegal sources [1,3,8,24,32]. However,
those works mainly focus on the destination of tainted coins. Our work expands
this approach to analyze the full money flow from multiple sources. We are not
merely interested in the destination of tainted coins but in characterizing the
temporal networks created by those flows.

3 Taint Flow extraction

Our objective in this work is to design a new method to characterize a bitcoin
source based on the flow of its coins in the transaction network. The underlying
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hypothesis is that the way a coin travels in the transaction network is charac-
teristic of its source. However, actors reached by tainted coins after an indefinite
time and coins diffused in a more considerable amount of bitcoins in a trans-
action cannot be characteristics of their origin. After presenting the tainting
process on Bitcoin’s blockchain, we thus introduce two principles to keep only
relevant information in the flow: dissolved coins and tag actors.

3.1 Bitcoin taint flow

Bitcoin uses the unspent transaction output (UTXO) transaction model [25].
According to this model, transactions do not transfer money from one account
to another. Instead, each output—each UTXO—of the transaction represents an
amount of coin belonging to a known bitcoin address—a cryptographic public
key. The rightful owner of the UTXO uses the corresponding private key to
claim the money. It spends the UTXO(s) by signing them as input(s) in a new
transaction and sends new UTXO output(s) to recipients’ addresses.

A Bitcoin transaction network can be modeled as a chain of UTXOs. A
transaction (tx) is represented as a node. A directed edge represents a transfer
of UTXO(s) from one transaction to another. We will refer to the in-edge and
out-edge of tx as input (tx.in) and output (tx.out), respectively. Each UTXO
edge (e) is characterized by the amount of Bitcoin (e.amount) and the owner’s
address of that UTXO (e.address). It also contains references to the receiving
(e.receive) and spending transaction nodes (e.spend).

We define the taint flow as a directed acyclic graph (Gflow) tracing the
sequence of transactions from a source of interest until dissolution. The
source of interest can be one or several actors and limited to a given time interval
based on the focus of the study. To construct a money flow, we recursively taint
all UTXO outputs (tx.out) until the coins are dissolved.

Definition 1 (Dissolution). We consider that a tainted coin is dissolved
when its future positions in the transaction network will no longer be charac-
teristic of its original position. More formally, a coin is dissolved when it is
spent in a transaction with a purity value below a minimum threshold.

Purity measure (ρ) has been used to determine when the money is dissolved
and stop following the transaction outputs [8]. Purity is the percentage of tainted
money from the origin transaction set, defined as:

ρ(tx) =

∑
e∈tx.in ρ(e.receive) · e.value∑

e∈tx.in e.value
(1)

The purity of a transaction without inputs is 1 by definition because it is the
root transaction in the transaction flow. In this study, we set a purity threshold
ρmin = 0.001, which means that a coin is considered dissolved when it is spent in
a transaction together with 1,000 times the amount of un-tainted coins. Besides,
we stop following the flow when the transaction is > 1 year apart from the
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Input : τo is a payout transaction as a seeding node of the payout flow.
Input : ρmin is a minimum purity threshold.
Input : timemax is a maximum time threshold.
Output: edges is the edge list of the payout flow.
queue← PriorityQueue([τo]);
edges← List();
while queue is not empty do

tx← queue.pop();
if ρ(tx) ≥ ρmin and tx.time ≤ timemax then

for e in tx.out do
e.amountflow ← e.amount× ρ(tx);
edges.append(e);
queue.append(e.spend);

end

end

end
Algorithm 1: Reward payout flow extraction

source transactions (timemax). Algorithm 1 describes the process of retrieving
transaction outputs and adding them to the money flow graph.

Our algorithm applies haircut tainting, which assumes that the tainted money
is divided equally to all output transactions in proportion to their amount [1,32].

3.2 Actors and Tag Actors

We defined actors as a set of addresses corresponding to a person, a group of
persons, an organization, or any other entity owning a set of private keys to
claim the ownership of UTXOs from public key addresses. A simple but effective
heuristic assumes that the input addresses in a transaction should belong to the
same owner [29,12]. We use the input address clustering heuristic implemented
in the BlockSci library [16] that also filter CoinJoin transactions [10] to discover
a set of addresses (e.address) belonging to the same actor (also called address
cluster, e.cluster). When analyzing a tainted flow, the relevant information is
the actors involved in this flow. Therefore, a flow is summarized as a set of
transactions between actors.

A taint flow can be large and sparse, making it difficult to compare with
other flows [1]. To improve on this limit, we propose to work on variants of flows
in which we keep only important actors named tag actors.

Definition 2 (Tag Actor). To characterize a flow, we can describe it using a
subset of all encountered actors, called tag actors. Tag actors are prominent
ones that are likely to stay constant in time and to be reached by many flows
from different sources.

We propose two ways of defining tag actors: 1) frequent actors consist in
keeping a fraction of the most frequent actors; and 2) known actors are chosen
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based on external data. In this work, we use WalletExplorer dataset [14] that
provides a collection of 375 known actors, in particular services or companies,
linking their addresses with the name and type of the service (e.g., exchange
platform, gambling service, and marketplace).

4 Taint Flow Embedding

Since taint flows are represented as graphs, we use whole graph embedding ap-
proaches to assess the similarity of the taint flows and characterize their patterns.
The principle of those methods, such as Graph2vec [26] or Anonymous walk em-
bedding [13] is to assign a low-dimensional vector representation to each graph
such as two graphs considered similar according to a chosen network structure
representation are close in the resulting embedding space.

Recently, the Geo2DR methodology [31] was introduced to allow one to de-
sign custom embedding methods and construct whole graph embedding. The
methodology consists of two phases: 1) induction of descriptive substructure
patterns and 2) learning of vector representations. In this case, we deal with
taint flows that have directed acyclic graphs, temporal nature, and different
types of node labels. Therefore, we define our custom process to produce graph
walks in the first phase.

4.1 Induction of Descriptive Substructure Patterns

We use a random walk-based approach to extract substructure patterns from
taint flows. We compare different variants of random walks and nodes labels
vocabularies:

– RW - Unbiased Random Walks. We generate random walks starting only
from the source node, without considering weights, following edge temporal
directions. A walk ends when encountering a dissolved node.

– SPW - Shortest Path Walk. To generate an instance of the shortest path
walk, we randomly choose a leaf node (dissolved) and walk through the
shortest path between the source and a dissolved node.

We prune the walks based on the following sets of tag actors:

– All clusters: We use no pruning and keep all actors.
– Frequent clusters: We keep only clusters that appear in more than 50%

of all taint flows as tag actors. The objective is to increase the fraction of
shared vocabulary between flows to make learning more efficient.

– Known actors: We use as tag actors only those known from an external
source, WalletExplorer [14]. In the name variant, the node label corresponds
to its name. In the type variant, the label corresponds to its type, one of
exchange, wallet, service, marketplace, mixer, lending, and gambling.

We replace all mining pool clusters and names with a “mining” label to
prevent the model from training the embeddings from the source actors.
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Temporal pattern In this variant, we use the same methods, but we integrate
the time aspect into the walks, assuming that the time to reach different parts of
the network might be characteristic of the source. We use a tuple (original label,
time) where time is defined as ⌊log2(∆t)⌋, with ∆t the time elapsed between the
encoded transaction and the source transaction, in days. Examples of temporal
pattern labels are thus: (ID: 63566, day: 7), (Name: Bitstamp.net, day: 7), or
(Type: Exchange, day: 7). We use rounded log values to avoid sparse vocabulary.

4.2 Learning Vector Representations

We use Distributed Memory Model of Paragraph Vectors (PV-DM) to train the
embedding of the flow. PV-DM is one of the two variations of neural network
models presented in the Doc2Vec paper [17]. The model is trained to maximize
the prediction accuracy of the center vocable, given the surrounding vocables.
We chose the PV-DM model because it preserves the order sequence of the walk
rather than predicting a bag of words in a sentence in the PV-DBOW model.
In our experiment, we set a typical embedding size (n = 128) to compare the
different labeling strategies.

5 Flow-based Actor Identification

In this section, we demonstrate how the taint flow embeddings can be leveraged
to identify Bitcoin actors from transaction sources. We extract taint flows from
Bitcoin mining pools and experiment with two actor-disambiguation tasks: 1)
identification of source actors using supervised learning and 2) automatic dis-
covery of actors based on clustering. Finally, we evaluate the capacity of the
embedding to differentiate between temporal origins.

5.1 Taint Flows of Bitcoin Mining Pools

We focus our experiment on the identification of mining pools. Mining pools are
among the most important actors in the Bitcoin ecosystem. They correspond
to companies that regroup the activity of various miners—from individuals to
mining farms—under a single entity, with the prospect of sharing the mining
rewards obtained to mitigate the effect of chance on their source of revenue
[30,33]. We chose mining pools because they are well-studied actors, persisting
long enough in time, for which we can be confident in the data for validation.

We extract taint flows from the top-3 mining pools for each month between
2013 and 2016 to represent different sources of flows from large representative
mining pools. We chose this specific period because the WalletExplorer dataset
stopped updating the actors used as known actors in 2016 [14].

For each top-3 pool in a month, we taint all coins received from coinbase
transactions—i.e., newly generated coins—on a random day of that month as a
set of source transactions. We then construct taint flows and embed them with
different methods according to the process defined in the previous sections.
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As a result, our dataset consists of 144 taint flows from 11 mining pools. They
are of various sizes and can be too large to use traditional embedding methods on
standard computers. The average number of transactions is 611,327 (sd: 362,073,
median: 569,576, max: 2,181,876) while the average number of clusters is 303,955
(sd: 178,145, median: 285,991, max: 1,131,919). There are 3,697 frequent clusters
existing in more than 50% of all flows.
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Fig. 1. T-SNE projections of selected taint flow embeddings

The result of the representation learning, embedded in two dimensions using
t-SNE [21], is visualized in Fig. 1. In most cases, the multiple taint flows of
the same mining pool (nodes of the same color) seem close in the embedding
space. The method thus captures at least some elements of the identity of the
source based on its taint flow. We also observe that the temporal aspect plays an
important role and is well captured in the figures. For instance, in RW - Temporal
- Known Actor Name and RW - Sequential - Frequent Clusters embedding, we see
a shift—right to left—from circles to squares and triangles, and finally crosses,
corresponding to the increasing years of the source.



8 Tovanich and Cazabet

5.2 Actor Identification Task

We train a k-Nearest Neighbor (k-NN) classification model with k = 3 to identify
mining pools from the embedding space. k-NN is a simple model that can capture
non-linear decision boundaries. We have to keep k small due to the relatively
low number of observations. To evaluate the model performance, we use leave-
one-out cross-validation (LOOCV), i.e., we consider that all sources are known
but one and try to predict the identity of that unknown source from the others.

Baseline We define two baselines to compare the model performance with our
embedding methods:

1. Actor network features: We extract a set of descriptive features from
all cluster networks, including the number of nodes and edges, density, and
degree assortativity. We also calculate nodes in- and out- degrees, cluster-
ing coefficient, and eigenvector centrality and report the minimum, 1st–3rd

quantiles, maximum, mean, standard deviation, and mean absolute deviation
for each feature.

2. Graph2vec: We train Graph2vec models [26] to embed frequent clusters
and known actor name networks. We cannot train the model with the All
clusters setting because the size of the graph can be enormous and make it
impractical to compute the embedding.

Table 1. Evaluation of taint flow embeddings of top-3 mining pools in 2013-2016

Method Accuracy F1-Score NMI ARI AMI Time Corr.

Actor network features 0.250 0.152 0.120 0.096 0.017 0.118

1. Graph2Vec

Frequent clusters 0.146 0.086 0.195 0.173 0.117 0.263
Known actor name 0.299 0.242 0.127 0.103 0.057 -0.085

2. Sequential RW SPW RW SPW RW SPW RW SPW RW SPW RW SPW

All clusters 0.479 0.313 0.386 0.201 0.274 0.281 0.252 0.227 0.114 0.068 0.298 0.185
Frequent clusters 0.771 0.681 0.665 0.526 0.333 0.367 0.315 0.335 0.160 0.172 0.459 0.635
Known actor name 0.736 0.542 0.592 0.366 0.572 0.332 0.509 0.297 0.261 0.126 0.625 0.701
Known actor type 0.764 0.688 0.646 0.552 0.425 0.591 0.408 0.544 0.180 0.277 0.282 0.511

3. Temporal RW SPW RW SPW RW SPW RW SPW RW SPW RW SPW

All clusters 0.389 0.222 0.288 0.131 0.298 0.298 0.278 0.279 0.130 0.133 0.253 0.193
Frequent clusters 0.486 0.535 0.395 0.383 0.331 0.326 0.313 0.307 0.172 0.168 0.379 0.517
Known actor name 0.583 0.521 0.450 0.350 0.453 0.461 0.402 0.411 0.209 0.204 0.453 0.491
Known actor type 0.778 0.708 0.674 0.601 0.644 0.617 0.618 0.580 0.480 0.418 0.282 0.356

Table 1 reports the Accuracy and F1 measure of the classification mod-
els. Our walk-based embeddings provide higher accuracy and F1-score than the
baseline models, and pruning strategies improve performances as the All clusters
approach consistently obtains the worst results. The best results are obtained us-
ing either Temporal Known Actor Type or Sequential Frequent Clusters. Overall,
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Fig. 2. Confusion matrix of the top-3 classification models

we found that Random walks provides better results than Shortest Path Walks
in both sequential and temporal models.

Fig. 2 presents the confusion matrices of the top-3 classification models: Tem-
poral Known Actor Type, Sequential Frequent Clusters, and Sequential Known
Actor Type. We observe that most of the actors for which we have many samples
(e.g., AntPool, F2Pool, Ghash.IO) are well classified. Mining pools with few ex-
amples are more prone to errors, particularly ASICMiner, which has only three
occurrences in our dataset and is mostly wrongly classified. This stresses the
importance of having enough learning data in future works.

5.3 Actor Clustering Task

We assess if source actors can be discovered with the unsupervised approach
by training k-means clustering on flow embeddings and checking the the cluster
founds with the known sources. We train k-means models from 2 to 11 clus-
ters and select the model with the highest Silhouette score. Table 1 reports the
clustering evaluation with three standard scores: normalized mutual information
(NMI), adjusted rand score (ARI), and adjusted mutual information (AMI).

We found that Known Actor Type clusters are the most efficient method
for sequential and temporal embeddings. In contrast to the classification task,
the Shortest Path Walk provides a better clustering for sequential embedding.
Nonetheless, the three clustering metrics are relatively low. As source time and
identity are highly correlated, we suspect the clustering might mix these two
aspects and form the cluster containing pools in the same period.

5.4 Time Correlation

As we have observed in Fig. 1, the vectors of taint flow also embed a notion
of time. This can be explained by Bitcoin’s highly dynamic ecosystem in which
actors appear, disappear, rise, and fall in popularity over time. Our approach
depends on its source’s identity and when this flow starts. Hence, it is possible
that the embedding model group actors that frequently occur at the same period
be closer in the embedding space.
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To quantify how embeddings capture the evolution of taint flow patterns,
we compute a time correlation score by computing the Spearman correlation
coefficient between the distance in time expressed in months and the distance in
the embedding for all pairs of taint flows. The time correlation in Table 1 shows
a high correlation for Sequential Known Actor Name The correlation is lower in
temporal embeddings compared with sequential ones.

Interestingly, the temporal aspect is poorly captured when using actor types
instead of their identity. The correlation of Known Actor Type suggests that
despite the rise and fall in popularity of specific actors, the type of actors reached
by a flow from a particular source tends to stay constant, as shown in Fig. 1.
This result highlights the importance of using time-independent vocabulary, in
this case, the role of the actors, to train the unbias embedding model.

6 Discussion and Conclusion

In this work, we propose original methods to extract taint flows that take into
account the temporal aspect of the Bitcoin transaction network and represent
them using graph embedding techniques. We train classification and clustering
models to evaluate how the tainted flows of coins can be used to identify the
source actors in the Bitcoin transaction network.

Our experiments with mining pool taint flows show that although we could
not reach a perfect precision in the actor identification task, a simple supervised
approach yields a high accuracy. Unsupervised clustering is less convincing at
this stage but could be improved by taking time into account and increasing the
number of observations. The analysis of those results highlights what makes a
taint flow characteristic of its source actor: 1) the starting time is significant as
actors in the Bitcoin network emerge and disappear over time, and 2) the identity
of encountered actors is not the only relevant element since we can also reach a
good result using the characteristics of actors, especially their roles (actor type).
This stresses the importance of using labeled data to improve model performance
and raises another research direction to infer actor roles from on-chain data.

Our work demonstrates the relevance of using taint flows to characterize their
source. However, we can achieve a better model performance with more taint
flow data and more sophisticated classification and clustering models. Additional
information such as the country of origin, network centrality, and more precise
actor types, could also be a direction of improvement. Our method could be
applied to other cryptocurrencies or other forms of diffusion, such as information
in social media, by appropriately adapting the diffusion flow’s construction. In
future work, we intend to apply this approach to characterize money flows in
other domains, particularly illegal and cybercrime activities, as well as propose
a new technique to extract and explain meaningful patterns from those flows.
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