Skip to main content

The FastMap Pipeline for Facility Location Problems

  • Conference paper
  • First Online:
Book cover PRIMA 2022: Principles and Practice of Multi-Agent Systems (PRIMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13753))

  • 694 Accesses

Abstract

Facility Location Problems (FLPs) involve the placement of facilities in a shared environment for serving multiple customers while minimizing transportation and other costs. FLPs defined on graphs are very general and broadly applicable. Two such fundamental FLPs are the Vertex K-Center (VKC) and the Vertex K-Median (VKM) problems. Although both these problems are NP-hard, many heuristic and approximation algorithms have been developed for solving them in practice. However, state-of-the-art heuristic algorithms require the input graph G to be complete, in which the edge joining two vertices is also the shortest path between them. When G doesn’t satisfy this property, these heuristic algorithms have to be invoked only after computing the metric closure of G, which in turn requires the computation of all-pairs shortest-path (APSP) distances. Existing APSP algorithms, such as the Floyd-Warshall algorithm, have a poor time complexity, making APSP computations a bottleneck for deploying the heuristic algorithms on large VKC and VKM instances. To remedy this, we propose the use of a novel algorithmic pipeline based on a graph embedding algorithm called FastMap. FastMap is a near-linear-time algorithm that embeds the vertices of G in a Euclidean space while approximately preserving the shortest-path distances as Euclidean distances for all pairs of vertices. The FastMap embedding can be used to circumvent the barrier of APSP computations, creating a very efficient pipeline for solving FLPs. On the empirical front, we provide test results that demonstrate the efficiency and effectiveness of our novel approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Linear time after ignoring logarithmic factors.

  2. 2.

    The edit distance between two strings is the minimum number of insertions, deletions, or substitutions that are needed to transform one to the other.

  3. 3.

    Unless \(|E| = O(|V|)\), in which case the complexity is near-linear in the size of the input because of the \(\log |V|\) factor.

  4. 4.

    The DIMACS instances were generated using the DIMACS graphs from http://networkrepository.com/dimacs.php and https://mat.tepper.cmu.edu/COLOR/instances.html.

  5. 5.

    The ORLib instances were generated using the ORLib graphs from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html.

  6. 6.

    The MovingAI instances were generated using the MovingAI graphs from https://movingai.com/benchmarks.

References

  1. Al-Khedhairi, A., Salhi, S.: Enhancements to two exact algorithms for solving the vertex \(p\)-center problem. J. Math. Model. Algorithms 4(2), 129–147 (2005). https://doi.org/10.1007/s10852-004-4072-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 522–539. SIAM (2021)

    Google Scholar 

  3. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path problem. J. Comput. Syst. Sci. 54(2), 255–262 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Naor, M.: Derandomization, witnesses for boolean matrix multiplication and construction of perfect hash functions. Algorithmica 16(4), 434–449 (1996). https://doi.org/10.1007/BF01940874

    Article  MathSciNet  MATH  Google Scholar 

  5. Arya, V., et al.: Local search heuristics for \(k\)-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brass, P., Knauer, C., Na, H.S., Shin, C.S., Vigneron, A.: The aligned \(k\)-center problem. Int. J. Comput. Geom. Appl. 21(02), 157–178 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calik, H., Tansel, B.C.: Double bound method for solving the \(p\)-center location problem. Comput. Oper. Res. 40(12), 2991–2999 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chakrabarty, D., Krishnaswamy, R., Kumar, A.: The heterogeneous capacitated k-center problem. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 123–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_11

    Chapter  Google Scholar 

  9. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 590–598. Association for Computing Machinery (2007)

    Google Scholar 

  10. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the \(k\)-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Charikar, M., Li, S.: A dependent lp-rounding approach for the k-median problem. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 194–205. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_17

    Chapter  Google Scholar 

  12. Chaudhuri, S., Garg, N., Ravi, R.: The \(p\)-neighbor \(k\)-center problem. Inf. Process. Lett. 65(3), 131–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, D., Chen, R.: New relaxation-based algorithms for the optimal solution of the continuous and discrete \(p\)-center problems. Comput. Oper. Res. 36(5), 1646–1655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chrobak, M., Kenyon, C., Young, N.: The reverse greedy algorithm for the metric \(k\)-median problem. Inf. Process. Lett. 97(2), 68–72 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, L., Uras, T., Jahangiri, S., Arunasalam, A., Koenig, S., Kumar, T.K.S.: The FastMap algorithm for shortest path computations. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (2018)

    Google Scholar 

  16. Contardo, C., Iori, M., Kramer, R.: A scalable exact algorithm for the vertex \(p\)-center problem. Comput. Oper. Res. 103, 211–220 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cornuéjols, G., Nemhauser, G., Wolsey, L.: The Uncapacitated Facility Location Problem. Cornell University Operations Research and Industrial Engineering, Technical report (1983)

    Google Scholar 

  18. Daskin, M.S.: A new approach to solving the vertex \(p\)-center problem to optimality: algorithm and computational results. Commun. Oper. Res. Soc. Japan 45(9), 428–436 (2000)

    Google Scholar 

  19. Davidović, T., Ramljak, D., Šelmić, M., Teodorović, D.: Bee colony optimization for the \(p\)-center problem. Comput. Oper. Res. 38(10), 1367–1376 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dohan, D., Karp, S., Matejek, B.: K-median Algorithms: Theory in practice. Princeton University Computer Science, Technical report (2015)

    Google Scholar 

  21. Dyer, M.E., Frieze, A.M.: A simple heuristic for the \(p\)-centre problem. Oper. Res. Lett. 3(6), 285–288 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Elloumi, S., Labbé, M., Pochet, Y.: A new formulation and resolution method for the \(p\)-center problem. INFORMS J. Comput. 16(1), 84–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Faloutsos, C., Lin, K.I.: FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data (1995)

    Google Scholar 

  24. Farahani, R.Z., Hekmatfar, M.: Facility Location: Concepts. Algorithms and Case Studies. Springer Science & Business Media, Models (2009). https://doi.org/10.1007/978-3-7908-2151-2

  25. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  26. Fredman, M.: New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5, 83–89 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length edges. J. Comput. Syst. Sci. 54(2), 243–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Galil, Z., Margalit, O.: Witnesses for boolean matrix multiplication and for transitive closure. J. Complex. 9(2), 201–221 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Garcia-Diaz, J., Sanchez-Hernandez, J., Menchaca-Mendez, R., Menchaca-Mendez, R.: When a worse approximation factor gives better performance: a 3-approximation algorithm for the vertex \(k\)-center problem. J. Heuristics 23(5), 349–366 (2017). https://doi.org/10.1007/s10732-017-9345-x

    Article  Google Scholar 

  31. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gopalakrishnan, S., Cohen, L., Koenig, S., Kumar, T.K.S.: Embedding directed graphs in potential fields using FastMap-D. In: Proceedings of the 13th International Symposium on Combinatorial Search (2020)

    Google Scholar 

  33. Guo-Hui, L., Xue, G.: \(k\)-center and \(k\)-median problems in graded distances. Theoret. Comput. Sci. 207(1), 181–192 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hagerup, T.: Improved shortest paths on the word RAM. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 61–72. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X_7

    Chapter  Google Scholar 

  35. Han, Y., Takaoka, T.: An \(o(n^3\log \log n/\log ^2 n)\) time algorithm for all pairs shortest paths. J. Discrete Algorithms 38–41, 9–19 (2016). https://doi.org/10.1007/978-3-642-31155-0_12

    Article  MATH  Google Scholar 

  36. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the \(k\)-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Irawan, C.A., Salhi, S., Drezner, Z.: Hybrid meta-heuristics with vns and exact methods: application to large unconditional and conditional vertex \(p\)-centre problems. J. Heuristics 22(4), 507–537 (2016). https://doi.org/10.1007/s10732-014-9277-7

    Article  Google Scholar 

  38. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. J. ACM (JACM) 50(6), 795–824 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and \(k\)-median problems using the primal-dual schema and lagrangian relaxation. J. ACM (JACM) 48(2), 274–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM (JACM) 24(1), 1–13 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kaveh, A., Nasr, H.: Solving the conditional and unconditional \(p\)-center problem with modified harmony search: a real case study. Sci. Iranica 18(4), 867–877 (2011)

    Article  Google Scholar 

  42. Khuller, S., Pless, R., Sussmann, Y.J.: Fault tolerant \(k\)-center problems. Theoret. Comput. Sci. 242(1–2), 237–245 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Khuller, S., Sussmann, Y.J.: The capacitated \(k\)-center problem. SIAM J. Discret. Math. 13(3), 403–418 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Könemann, J., Li, Y., Parekh, O., Sinha, A.: An approximation algorithm for the edge-dilation \(k\)-center problem. Oper. Res. Lett. 32(5), 491–495 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, A., Stuckey, P., Koenig, S., Kumar, T.K.S.: A FastMap-based algorithm for block modeling. In: Proceedings of the International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (2022). https://doi.org/10.1007/978-3-031-08011-1_16

  46. Li, J., Felner, A., Koenig, S., Kumar, T.K.S.: Using FastMap to solve graph problems in a Euclidean space. In: Proceedings of the International Conference on Automated Planning and Scheduling (2019)

    Google Scholar 

  47. Li, S., Svensson, O.: Approximating \(k\)-median via pseudo-approximation. SIAM J. Comput. 45(2), 530–547 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mladenović, N., Labbé, M., Hansen, P.: Solving the \(p\)-center problem with tabu search and variable neighborhood search. Netw. Int. J. 42(1), 48–64 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Özsoy, F.A., Pınar, M.Ç.: An exact algorithm for the capacitated vertex \(p\)-center problem. Comput. Oper. Res. 33(5), 1420–1436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pacheco, J.A., Casado, S.: Solving two location models with few facilities by using a hybrid heuristic: a real health resources case. Comput. Oper. Res. 32(12), 3075–3091 (2005)

    Article  MATH  Google Scholar 

  51. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014)

    Google Scholar 

  52. Plesník, J.: A heuristic for the \(p\)-center problems in graphs. Discret. Appl. Math. 17(3), 263–268 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pullan, W.: A memetic genetic algorithm for the vertex \(p\)-center problem. Evol. Comput. 16(3), 417–436 (2008)

    Article  Google Scholar 

  54. Rana, R., Garg, D.: The analytical study of \(k\)-center problem solving techniques. Int. J. Inf. Technol. Knowl. Manag. 1(2), 527–535 (2008)

    Google Scholar 

  55. Rdusseeun, L., Kaufman, P.: Clustering by means of medoids. In: Proceedings of the Statistical Data Analysis Based on the L1 Norm Conference, Neuchatel, Switzerland, pp. 405–416 (1987)

    Google Scholar 

  56. Robič, B., Mihelič, J.: Solving the \(k\)-center problem efficiently with a dominating set algorithm. J. Comput. Inf. Technol. 13(3), 225–234 (2005)

    Article  Google Scholar 

  57. Schubert, E., Rousseeuw, P.J.: Fast and eager k-medoids clustering: O(k) runtime improvement of the pam, clara, and clarans algorithms. Inf. Syst. 101, 101804 (2021)

    Google Scholar 

  58. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci. 51(3), 400–403 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shmoys, D.B.: Computing near-optimal solutions to combinatorial optimization problems. Comb. Optim. 20, 355–397 (1995)

    MathSciNet  MATH  Google Scholar 

  60. Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path problem. Inf. Process. Lett. 43(4), 195–199 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  61. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. J. ACM (JACM) 46(3), 362–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  62. Thorup, M.: Floats, integers, and single source shortest paths. J. Algorithms 35(2), 189–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  63. Whitaker, R.: A fast algorithm for the greedy interchange for large-scale clustering and median location problems. INFOR Inf. Syst. Oper. Res. 21(2), 95–108 (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omkar Thakoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thakoor, O., Li, A., Koenig, S., Ravi, S., Kline, E., Satish Kumar, T.K. (2023). The FastMap Pipeline for Facility Location Problems. In: Aydoğan, R., Criado, N., Lang, J., Sanchez-Anguix, V., Serramia, M. (eds) PRIMA 2022: Principles and Practice of Multi-Agent Systems. PRIMA 2022. Lecture Notes in Computer Science(), vol 13753. Springer, Cham. https://doi.org/10.1007/978-3-031-21203-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21203-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21202-4

  • Online ISBN: 978-3-031-21203-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics