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Abstract. Cause-effect graphs have been applied in non agent-based
simulations, where they are used to model chained causal relations be-
tween input parameters and system behaviour measured by appropriate
indicators. This can be useful for the analysis and interpretation of sim-
ulations. However, multi-agent simulations shift the paradigm of chained
causal relations to multiple levels of detail and abstraction. Thus, conven-
tional cause-effect graphs need to be extended to capture the hierarchi-
cal structure of causal relations in multi-agent models. In this paper, we
present a graphical modelling method that we call Multi-Agent Modelling
Notation (MAMN), with which global aspects of the simulation as well
as detailed interior mechanisms of agent behaviour can be described. We
give proof of concept by showing how the logic that connects individual
agent behaviour to global outcomes in a previously published simulation
model can be expressed in a concise diagrammatic form. This provides
understanding into what drives the model behaviour without having to
study source code. We go on to discuss benefits and limitations as well
as new opportunities that arise from this type of model analysis.*
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1 Introduction and Motivation

The abstraction of a given real-world issue into a simulation model requires for-
malisation of causal relations and quantification of determining factors. Defining
input variables and configuration parameters is an integral part of the modelling
process. Multi-agent simulations try to recreate global system characteristics by
modelling individual agents. System behaviour, which is often mirrored into out-
put variables (key performance indicators), depends on both the modelled input
as well as the internal mechanisms and dynamics of agent decisions. Crucially,
direct and indirect consequential effects are the outcome of calculations accord-
ing to mathematical functions and formulas expressed in the model. Chaining
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these calculations and corresponding intermediate variables reveals causal rela-
tions between input and output variables. These relations are complicated, but
visualisation in a computational graph can make the internal mechanism of the
model more accessible. Cause-effect graphs have already been applied for visual-
ising aspects of simulation models [10, 12]. These approaches differ in the type of
cause-effect relations modelled in the graphical representation, e.g. [12] focuses
on modelling cause-effect relations between abstract events, rather than the com-
putational aspects of key performance indicators. However, cause-effect relations
between input parameters and performance indicators are of particular interest
for policy-making. Current variations of cause-effect graphs typically model rela-
tions between variables on a common level of abstraction but the application of
agent methods changes the paradigm from modelling chained causal relationships
to multiple levels of detail and abstraction. This implies that the use of graphs
working on a single level of abstraction is not appropriate and that a hierarchical
approach separating individual and global perspectives would be more suitable.
The semantics of a graphical notation needs to capture the internal aspects of
individual agents, i.e. preferences and their decision-making behaviour, as well
as their context in the computation of performance indicators at the global sys-
tem level. In this paper, we propose a novel graphical modelling method that
captures the hierarchical structure of causal relations between input and output
variables in agent-based traffic simulations. This improves the transparency of
agent-based models, by allowing the causal connections from input parameters
and agent action selection functions to the result variables of the model to be
clearly expressed in a manuscript. We establish a set of notation elements and
define rules to represent the main logical constructs commonly used to simulate
agents in route choice scenarios. Although code generation is typically a natural
application for this type of graphical specification, our interest lies in finding
an appropriate graph structure to improve the analysis and validation of agent-
based simulations. In scope of this paper, we focus on collecting the necessary
requirements for capturing the hierarchical structure of cause-effect relations in
agent-based traffic simulations before further elaborating in subsequent work on
how this graphical method can be leveraged for the analysis and validation of
real applications. As we progress with tool implementation, we intend to assess
which meta-model is best suited as a reference for this type of modelling.

The following section provides an overview of related work and discusses ca-
pabilities and scope of related modelling methods. Following this, in Section 3
we introduce a new set of notation elements and define rules for our proposed
graph structure. In Section 4, we demonstrate usage of our graphical notation
for representing a published simulation model from the traffic domain (see [8]).
This allows us to represent the core logic that connects individual agent be-
haviours to global performance indicators in a diagrammatic form that fits in
a manuscript. This avoids readers having to look at source code or pseudocode
to try and uncover the connections. We then discuss how this can be used to
improve analysis of multi-agent simulations. Finally, in Section 5 conclusions are
drawn and possible options for future work are indicated.
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2 Related Work

Cause-effect graphs have previously been used for a number of purposes, in-
cluding software testing [15], system dynamics models [14], and for management
tools [11]. They are an explicit and precise formalisation of logical systems and
serve as a compact visualisation. Cause-effect graphs have been used in software
testing to specify test cases for combinations of input and output variables [15].
Input variables define causes, while effects are represented as output variables.
A specific variation of cause-effect graphs are causal loop diagrams which is used
in system theory to model mutual effects between variable entities, e.g. mutual
influence between predators and prey in an ecological system (see [10]). The
system theoretical view of reducing complexity of information from reality to
formal systems is an essential prerequisite for building computable simulation
models. Building richer simulation models typically involves modelling of more
system variables. Thus, observed effects are not a direct consequence of a single
variable but of multiple causative variables (or chains of variables). Bayesian
networks are an example of cause-effect graphs that allow output variables to be
linked back to possible (chains of) input causes based on probabilities. However,
applying cause-effect graphs to agent models has been difficult due to causal
relations being emergent result of behavioural patterns of a large set of individ-
uals which changes the paradigm from chained causal relations to several levels
of detail and abstraction.

Visualisation of multi-agent systems has focused primarily on system design
by extending traditional methods from software engineering (e.g. [6, 16]). Some of
these methods have been implemented as tools to guide the software developing
process of multi-agent systems [5, 9] and even dealt with system design from a
more behavioural perspective [4, 17]. However, these modelling methods have a
primary focus on the technical design of software components, rather than the
cause-effect relations of performance indicators in a simulation model. In this
paper, we want to focus on exactly this type of causal relations between input
parameters and performance indicators on the social-behavioural level as these
are particularly relevant for policy-making. Another type of visualisation that
has been applied to computer-based simulations are event graphs [12]. This type
of graph focuses on modelling the relations between abstract events, which is
a concept from complex event processing. [7] defines an event as a record of an
activity in a system which is linked to other events by aggregation, time, or
causal conditions. The aggregation of events into different levels of detail has
led to the extension of event graphs with a hierarchical structure [13]. However,
aggregation into different levels of abstraction in event processing is different
from what is required for modelling causal relations of performance indicators
in multi-agent systems. Global performance indicators are emergent results of
the decisions of a large set of autonomous individuals, which in the graph leads
to changing aggregation mechanisms depending on the context of decisions and
the simulation scenario. Hence, there is a need for a new modelling method that
is specifically designed for modelling the different levels of abstraction for causal
relations of performance indicators in multi-agent systems.
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3 Method

We have developed a new graphical notation to model the hierarchical struc-
ture of cause-effect relations between input and output variables in multi-agent
simulations. We focus on modelling the main logical constructs commonly used
to simulate agents in route choice scenarios. Balke and Gilbert [1] have given
an overview of established agent architectures used in literature for modelling
decision behaviour. For this work, we focus our method on modelling agent be-
haviour according to the commonly used Belief-Desire-Intention (BDI) model
based on [3]. The BDI model allows internal agent aspects to be abstracted
into separate mental-levels [3] providing a uniform basis for the comparison of
agent behaviour [2] and thus facilitates the analysis of simulations. A distinctive
property of multi-agent simulations is their focus on the modelling of individ-
uals and their actions. Output variables in such simulations typically describe
the system behaviour using performance indicators on the global level, whereas
input variables model internal details of agents on the individual level. Based
on this, we model the different levels of a simulation as separate graphs and
establish a modelling method that allows for their conjunction through appro-
priate notation elements. Formally, let G = (V,E) be a directed labeled graph
with vertices V and edges E. V = N ∪ F is a heterogeneous set of vertices
with N the set of variable nodes and F the set of functional nodes. Vertices
v ∈ V are modelled using geometric shapes (see Figure 1). In particular, vertices
n ∈ N serve as variables that contain either primitive (rectangles) or complex
information (circles). This type of vertex is used to define input parameters and
performance indicators of the simulation, as well as relevant intermediary vari-
ables that are produced during the computation of performance indicators. The
outline of these variable nodes n ∈ N indicates whether n is a single variable
(solid) or a collection of variables (dotted). Vertices f ∈ F are used to model
aggregations of functional sequences as well as termination of the simulation.
For example, route selection of traveller agents can be complex and is usually
implemented using established, externally implemented algorithms, e.g. Dijk-
stra’s algorithm or A*. As we are interested in modelling cause-effect relations
of input and output variables, functional nodes f ∈ F serve as an abstraction
of the implemented logic used to compute output variables. This abstraction
allows cause-effect relations between variables on the same level to be modelled
as input/output chains while at the same time details of functions are shifted to
a sub-level as a separate graph. Functional sequences that are moved to a sub-
level are indicated using a step-into conjunction node (downward pointing
triangle) on the upper level. Algorithms or mathematical formulas for computing
intermediary or output variables are modelled as an ellipse using the function

node. In addition to this, we have added one more notation element (hexagon)
to model an iterative loop with a termination clause. A special type of nodes
in N and F are mental-level nodes NM and FM which are based on the basic
BDI model [3] and are used to represent internal aspects of agents. Beliefs are
variables NM that contain information about the current internal state of an
agent as well as perceived information about its surrounding environment. This
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Fig. 1. Notation elements.

is modelled using a circle element with a bold dashed border. In addition to this,
desires and intentions are functional nodes FM that model agent behaviour.
Desires define goals of an agent to maintain or achieve a certain state. In the
context of mobility, this can also be referred to as travel purpose. Mobility of
individuals typically is a necessary means for pursuing personal objectives, such
as travelling to work or going to shop for groceries. In our notation, we model
these desires using a trapezium. To achieve a desired goal agents have to perform
actions or a series of subsequent actions. In the BDI model, this is referred to as
intentions. We model this in our notation using a rectangle with rounded cor-
ners. Vertices of a graph are linked through edges e ∈ E which are pairs (v1, v2)
with v1, v2 ∈ V . Furthermore, E = ECausal ∪EConstructor ∪ESelector ∪EContain

(see Figure 1). Edges e ∈ ECausal define causal relations for which v2 is
causally dependent on v1. This type of edge can only link variable nodes and
functional nodes in alternation i.e. if v1 is a variable node v1 ∈ N , then v2 must
be a functional node v2 ∈ F . In this case, v1 can be interpreted as input to
v2. Otherwise, if v1 ∈ F , then v2 must be a variable node v2 ∈ N which is
computed by v1. Causal relations with v1 being a collection node v1 ∈ N ,
are defined as for each relations, meaning that for each item i ∈ v1 a func-
tional sequence v2 ∈ F will be executed. Apart from this, edges e ∈ EConstructor

can be used to model a constructor relation in which v2 is created from v1.
In this case, v1 must be a functional node v1 ∈ F that results in a variable
node v2 ∈ N . Edges e ∈ ESelector model a relation in which one item is being
selected from a collection which serves as input to a function. Thus, v1 must
be a collection node v1 ∈ N and v2 a functional node v2 ∈ F . Finally, the last
type of edges e ∈ EContain defines a relation in which a complex variable node
v1 ∈ N contains the information of v2 ∈ N . In the case that v1 is a collection
of complex variables, e represents a for each relation, meaning that each item
in v1 holds its own information v2. This concludes definitions for our proposed
graph structure. In the next section, we give an example of how this can be
applied to a simulation model from the traffic domain.
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4 Use Case

As an example, we discuss the MAMN graph for the simulation model presented
by the authors in [8]. This model is agent-based and was designed for measuring
environmental impact of traffic caused by individuals and their travel behaviour.
From a global perspective, input parameters of the simulation determine pop-
ulation size, potential home and supermarket locations as well as persona for
agent characteristics on the individual level. The causal relations between these
input parameters, agent behaviours, and key performance indicators such as av-
erage distance travelled are expressed in ca. 119.100 lines of source code. We
now show how these can be expressed graphically in a succinct manner using
MAMN. Based on notation elements presented in Figure 1, population size is
modelled as a primitive variable whereas relevant locations and agent per-
sona are collections of complex variables (see Figure 2). Relevant details
of complex variables such as the attributes of agent persona (age, gender, etc.)
are modelled as variable nodes and linked to the persona node using a contain

relation. Information from input parameters is used to generate a population
of shopping agents. This process is modelled using an iterative loop as a func-
tional node with an outgoing creator relation. The resulting population of
shopping agents can be represented as a collection of complex variables.
Shopping agents in the simulation follow the BDI model and therefore details
about their knowledge and behaviour are mapped to the corresponding mental-
level nodes. Agents are assigned a persona and a start location as beliefs which
is specified using the contain relations. Furthermore, agent behaviour is mo-
tivated by their purpose of travel to purchase groceries which is expressed using a
desire node together with the associated contain relation. In order to satisfy
their desire, agents perform a series of actions (intentions) initiated by causal

relations. Agents determine modes of travel and supermarkets to be visited
in pre-journey planning. This information is used to create a journey which is
modelled using a constructor relation that results in a complex variable.
Details about decision processes in pre-journey planning are moved to a sepa-
rate graph (see Figure 3). This is indicated on the top-level using a conjunction
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element positioned at the bottom of the graph (see Figure 2). Agents can then
use information from pre-journey planning to go grocery shopping. Again, de-
tails of this activity are moved to a separate graph (see Figure 5). Performance
indicators of the system are obtained based on movements of agents during
their grocery shopping. For example, environmental impact is measured using
performance indicators on aggregated travelled distances. Global travel distance
measures the sum of total distances travelled by all agents whereas combustion
distance only considers distances caused by modes of travel that produce exhaust
fumes. Another indicator included in the simulation model refers to the average
traveller utility. This indicator is used during the experimentation to measure
effects of different traffic policies on individuals. The simulation model there-
fore comprises these three output variables that can be modelled as primitive
variable nodes. Functional nodes pre-journey planning and grocery shopping
have been modelled as separate sub-level graphs. Pre-journey planning produces
a collection of legs which determines a planned journey (see Figure 3). A leg is
the combination of a mode of travel and the next supermarket [8]. In particular,
agents determine legs based on their persona, start location, surrounding super-
markets, mode options and items on their grocery list. The process of generating
the collection of legs requires a functional node with an outgoing constructor

relation. Agents may need to process several legs until all items on their gro-
cery list are purchased. Thus, we use an iterative loop with a termination
clause depending on remaining items on their grocery list. Details of this loop
are once more moved to a sub-level (see Figure 4). In the sub-level, the agent
first computes the set of all possible legs L for which applies L = T ×M with
M the set of available mode options and T the set of potential trips. L,M and
T can therefore be modelled as collections of variable nodes. A trip t ∈ T
is a combination of a start location and a destination. Thus, T is the Cartesian
product of the current location of the agent and the set of unvisited supermar-
kets. Furthermore, for each leg l ∈ L a leg utility ua(l) is computed based on
attributes of agent a and the leg. The agent then chooses a leg with maximum
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utility and updates its grocery list. Computation of the leg utility as well as
the selection process are both modelled using function nodes. In this context,
function nodes are the abstract representation of mathematical formula. This
concludes the graph structure for pre-journey planning. Grocery shopping can be
modelled as an iterative loop that processes all legs from the planned jour-
ney (see Figure 5). The simulation is terminated upon completion of this loop.
Analogous to the previous examples, details of this loop are modelled in a sep-
arate sub-level graph (see Figure 6). The agent uses information on timetables
for public transport as well as geographic map data to determine a route for the
leg to be processed and then repeats the process for the next leg. Formalisation
of cause-effect relations between input and output variables as an MAMN graph
serves as a compact representation of the simulation model. This allows complex
scenarios to be presented in a transparent and comprehensible manner that can
be presented inside a manuscript. In particular, the representation as MAMN
graphs offers insight into simulation models from a social-behavioural perspec-
tive, which is currently not supported by existing modelling notations and vi-
sualisations such as UML-based approaches as they focus on a more technical
view of the simulation (e.g. system design). Event graphs may be positioned
somewhere in between the social-behavioural and technical view, but are not
specialised to model the hierarchical structure of cause-effect relations between
input parameters and output indicators in multi-agent simulations. However,
the social-behavioural perspective together with a focus on cause-effect relations
is highly relevant for transportation planners using simulations based on indi-
vidual traffic participants. Thus, with our MAMN method we address the lack
of a modelling technique for the social-behavioural perspective of agent-based
simulation models. Leveraging this, there are new opportunities to improve the
development and evaluation process of agent-based simulations. Graph struc-
tures can be utilised in a bi-directional process to either transfer a theoretical
simulation model into a concrete implementation as an executable piece of code
(forward engineering) or to visualise information from a given implementation
(backward engineering) which can be used to increase transparency and explain-
ability of a system. As stated previously our interest lies in the second manner
for which we establish MAMN as a basis for subsequent work on building tools
for validation and analysis of agent-based simulations.
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5 Conclusion and Future Work

Cause-effect graphs can provide insight into how simulation output is computed,
but have previously lacked the concepts to capture the hierarchical structure of
cause-effect relations in multi-agent simulations. In this paper, we have presented
a new graphical method to model cause-effect relations from input parameters
on the individual level to performance indicators at the global system level. This
is achieved by shifting details of functional relations to a sub-level as a separate
graph and through the use of appropriate conjunction elements. For future work,
we will improve our graph by adjusting it to an appropriate meta-model and work
on tools to improve analysis and validation of agent-based simulations.
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