Skip to main content

False-Name-Proof Facility Location on Wheel Graphs

  • Conference paper
  • First Online:
PRIMA 2022: Principles and Practice of Multi-Agent Systems (PRIMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13753))

  • 658 Accesses

Abstract

In this paper, we consider the study of two classes of mechanism design problems for locating a facility on a wheel graph with \(k \ge 4\) vertices, where a vertex is located at the center, which is surrounded by a cycle graph with \({k-1}\) vertices and connected to each vertex in the cycle. Two domains of agents’ preferences are considered; the single-peaked domain and the single-dipped domain. We are interested in the existence of anonymous social choice functions that are false-name-proof and Pareto efficient. For both domains of preferences, we provide the necessary and sufficient condition on the graph parameter k to guarantee the existence of such social choice functions. Namely, for the single-peaked preference domain, such social choice functions exist if and only if \(k \le 5\). On the other hand, for the single-dipped preference domain, such social choice functions exist if and only if \(k \le 7\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the field of urban planning, such a city structure is usually called a “radial city” or “radial concentric city.”.

  2. 2.

    In their paper the subscript indicates the number of vertices in the cycle surrounding the hub, i.e., \(W_{4}\) in this paper is referred to as \(W_{3}\) in their paper, and \(W_{5}\) is referred to as \(W_{4}\).

  3. 3.

    This is true for any wheel graph, i.e., for any \(k \ge 4\).

References

  1. Alcalde-Unzu, J., Vorsatz, M.: Strategy-proof location of public facilities. Games Econom. Behav. 112, 21–48 (2018). https://doi.org/10.1016/j.geb.2018.06.010

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approximation of the minimax on networks. Math. Oper. Res. 35(3), 513–526 (2010). https://doi.org/10.1287/moor.1100.0457

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Walking in circles. Discret. Math. 310(23), 3432–3435 (2010). https://doi.org/10.1016/j.disc.2010.08.007

    Article  MathSciNet  MATH  Google Scholar 

  4. Anastasiadis, E., Deligkas, A.: Heterogeneous facility location games. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018), pp. 623–631 (2018)

    Google Scholar 

  5. Aziz, H., Paterson, M.: False name manipulations in weighted voting games: splitting, merging and annexation. In: Proceedings of the Eighth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), pp. 409–416 (2009)

    Google Scholar 

  6. Bu, N.: Unfolding the mystery of false-name-proofness. Econ. Lett. 120(3), 559–561 (2013). https://doi.org/10.1016/j.econlet.2013.06.011

    Article  MathSciNet  MATH  Google Scholar 

  7. Conitzer, V.: Anonymity-proof voting rules. In: Proceedings of the Fourth International Workshop on Internet and Network Economics (WINE 2008), pp. 295–306 (2008). https://doi.org/10.1007/978-3-540-92185-1_36

  8. Dokow, E., Feldman, M., Meir, R., Nehama, I.: Mechanism design on discrete lines and cycles. In: Proceedings of the 13th ACM Conference on Electronic Commerce (EC 2012), pp. 423–440 (2012). https://doi.org/10.1145/2229012.2229045

  9. Escoffier, B., Gourvès, L., Kim Thang, N., Pascual, F., Spanjaard, O.: Strategy-proof mechanisms for facility location games with many facilities. In: Proceedings of the 2nd International Conference on Algorithmic Decision Theory (ADT 2011), pp. 67–81 (2011). https://doi.org/10.1007/978-3-642-24873-3_6

  10. Feigenbaum, I., Li, M., Sethuraman, J., Wang, F., Zou, S.: Strategic facility location problems with linear single-dipped and single-peaked preferences. Auton. Agent. Multi-Agent Syst. 34(2), 49 (2020). https://doi.org/10.1007/s10458-020-09472-9

    Article  Google Scholar 

  11. Fong, C.K.K., Li, M., Lu, P., Todo, T., Yokoo, M.: Facility location game with fractional preferences. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), pp. 1039–1046 (2018). https://doi.org/10.1609/aaai.v32i1.11458

  12. de Keijzer, B., Wojtczak, D.: Facility reallocation on the line. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 188–194 (2018). https://doi.org/10.24963/ijcai.2018/26

  13. Lahiri, A., Peters, H., Storcken, T.: Strategy-proof location of public bads in a two-country model. Math. Soc. Sci. 90, 150–159 (2017). https://doi.org/10.1016/j.mathsocsci.2016.07.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Le Bras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 587–593 (2013)

    Google Scholar 

  15. Lesca, J., Todo, T., Yokoo, M.: Coexistence of utilitarian efficiency and false-name-proofness in social choice. In: Proceedings of the 13th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), pp. 1201–1208 (2014)

    Google Scholar 

  16. Manjunath, V.: Efficient and strategy-proof social choice when preferences are single-dipped. Internat. J. Game Theory 43(3), 579–597 (2014). https://doi.org/10.1007/s00182-013-0396-4

    Article  MathSciNet  MATH  Google Scholar 

  17. Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4), 437–455 (1980). https://doi.org/10.1007/BF00128122

    Article  Google Scholar 

  18. Nehama, I., Todo, T., Yokoo, M.: Manipulation-resistant false-name-proof facility location mechanisms for complex graphs. Auton. Agent. Multi-Agent Syst. 36(1), 12 (2022). https://doi.org/10.1007/s10458-021-09535-5

    Article  Google Scholar 

  19. Okada, N., Todo, T., Yokoo, M.: Sat-based automated mechanism design for false-name-proof facility location. In: Proceedings of the 22nd International Conference on Principles and Practice of Multi-Agent Systems (PRIMA 2019), pp. 321–337 (2019). https://doi.org/10.1007/978-3-030-33792-6_20

  20. Ono, T., Todo, T., Yokoo, M.: Rename and false-name manipulations in discrete facility location with optional preferences. In: Proceedings of the 20th International Conference on Principles and Practice of Multi-Agent Systems (PRIMA 2017), pp. 163–179 (2017). https://doi.org/10.1007/978-3-319-69131-2_10

  21. Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge University Press (2003). https://doi.org/10.1017/CBO9781139164849

  22. Penna, P., Schoppmann, F., Silvestri, R., Widmayer, P.: Pseudonyms in Cost-Sharing Games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 256–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10841-9_24

    Chapter  Google Scholar 

  23. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money. ACM Trans. Econ. Comput. 1(4), 18 (2013). https://doi.org/10.1145/2542174.2542175

    Article  Google Scholar 

  24. Roy, S., Storcken, T.: A characterization of possibility domains in strategic voting. J. Math. Econ. 84, 46–55 (2019). https://doi.org/10.1016/j.jmateco.2019.06.001

    Article  MathSciNet  MATH  Google Scholar 

  25. Schummer, J., Vohra, R.V.: Strategy-proof location on a network. J. Econ. Theory 104(2), 405–428 (2002). https://doi.org/10.1006/jeth.2001.2807

    Article  MathSciNet  MATH  Google Scholar 

  26. Serafino, P., Ventre, C.: Heterogeneous facility location without money on the line. In: Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), pp. 807–812 (2014). https://doi.org/10.3233/978-1-61499-419-0-807

  27. Sonoda, A., Todo, T., Yokoo, M.: False-name-proof locations of two facilities: Economic and algorithmic approachess. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI 2016), pp. 615–621 (2016)

    Google Scholar 

  28. Sui, X., Boutilier, C., Sandholm, T.: Analysis and optimization of multi-dimensional percentile mechanisms. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 367–374 (2013)

    Google Scholar 

  29. Todo, T., Conitzer, V.: False-name-proof matching. In: Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), pp. 311–318 (2013)

    Google Scholar 

  30. Todo, T., Iwasaki, A., Yokoo, M.: False-name-proof mechanism design without money. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 651–658 (2011)

    Google Scholar 

  31. Todo, T., Okada, N., Yokoo, M.: False-name-proof facility location on discrete structures. In: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), pp. 227–234 (2020). https://doi.org/10.3233/FAIA200097

  32. Wada, Y., Ono, T., Todo, T., Yokoo, M.: Facility location with variable and dynamic populations. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018), pp. 336–344 (2018)

    Google Scholar 

  33. Wang, Q., Ye, B., Tang, B., Guo, S., Lu, S.: ebay in the clouds: False-name-proof auctions for cloud resource allocation. In: Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS 2015), pp. 153–162 (2015). https://doi.org/10.1109/ICDCS.2015.24

  34. Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name bids in combinatorial auctions: new fraud in internet auctions. Games Econom. Behav. 46(1), 174–188 (2004). https://doi.org/10.1016/S0899-8256(03)00045-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, L., Chen, H., Wu, J., Wang, C.J., Xie, J.: False-name-proof mechanisms for path auctions in social networks. In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016), pp. 1485–1492 (2016). https://doi.org/10.3233/978-1-61499-672-9-1485

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Numbers JP20H00587, JP20H00609, and JP21H04979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiki Todo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osoegawa, K., Todo, T., Yokoo, M. (2023). False-Name-Proof Facility Location on Wheel Graphs. In: Aydoğan, R., Criado, N., Lang, J., Sanchez-Anguix, V., Serramia, M. (eds) PRIMA 2022: Principles and Practice of Multi-Agent Systems. PRIMA 2022. Lecture Notes in Computer Science(), vol 13753. Springer, Cham. https://doi.org/10.1007/978-3-031-21203-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21203-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21202-4

  • Online ISBN: 978-3-031-21203-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics