Skip to main content

Super-Resolution of Manifold-Valued Diffusion MRI Refined by Multi-modal Imaging

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13722))

Included in the following conference series:

Abstract

Diffusion MRI is the foundation for understanding the structures and disorders in the human connectome, but low spatial resolution fundamentally limits this understanding. Methods for increasing DTI resolution post hoc must carefully utilize all available information to reduce bias and uncertainty in this ill-conditioned inverse problem. Previous machine learning approaches have largely cast this problem as a standard super-resolution task without taking advantage of domain knowledge surrounding DTIs. Outside this domain, recent work in super-resolution has given attention to preserving an input’s fine-scale information as it is passed through a network. Our contribution consists of a novel deep learning model for DTI super-resolution with three important advancements: 1) a novel procedure for refining DTI predictions with high-resolution T2-weighted images, 2) interpolation over log-Euclidean tensors that is immune to the “swelling effect,” and 3) the effective use of densely-connected residual networks that preserve detail from the input. Through experiments on HCP data, we show that our model achieves the best performance in the literature for increasing the resolution of DTIs. We further analyze the effect of each proposed component with thorough model ablation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://osf.io/r37v5.

References

  1. Ahn, N., Kang, B., Sohn, K.-A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 256–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_16

    Chapter  Google Scholar 

  2. Aitken, A.P., Ledig, C., Theis, L., Caballero, J., Wang, Z., Shi, W.: Checkerboard artifact free sub-pixel convolution: a note on sub-pixel convolution, resize convolution and convolution resize. ArXiv abs/1707.02937v1 [cs.CV] (2017)

    Google Scholar 

  3. Alexander, D.C., Zikic, D., Zhang, J., Zhang, H., Criminisi, A.: Image quality transfer via random forest regression: applications in diffusion mri. In: MICCAI 2014, pp. 225–232 (2014)

    Google Scholar 

  4. Anctil-Robitaille, B., Desrosiers, C., Lombaert, H.: Manifold-aware CycleGAN for high-resolution structural-to-dti synthesis. In: CDMRI 2021, pp. 213–224 (2021)

    Google Scholar 

  5. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  6. Basser, P.J., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion tensor from the NMR Spin Echo. J. Magn. Res., Series B 103(3), 247–254 (1994)

    Google Scholar 

  7. Blumberg, S.B., Tanno, R., Kokkinos, I., Alexander, D.C.: Deeper image quality transfer: training low-memory neural networks for 3d images. In: MICCAI 2018, pp. 118–125 (2018)

    Google Scholar 

  8. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In: CVAMIA 2004, pp. 87–98 (2004)

    Google Scholar 

  9. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  10. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in Adam. ArXiv abs/1711.05101v3 [cs.LG] (2017)

    Google Scholar 

  11. Nedjati-Gilani, S., Alexander, D.C., Parker, G.J.M.: Regularized super-resolution for diffusion MRI. In: ISBI 2008, pp. 875–878 (2008)

    Google Scholar 

  12. Peled, S., Yeshurun, Y.: Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn. Reson. Med. 45(1), 29–35 (2001)

    Article  Google Scholar 

  13. Qin, Y., Li, Y., Zhuo, Z., Liu, Z., Liu, Y., Ye, C.: Multimodal super-resolved q-space deep learning. Med. Im. Analysis, p. 102085, April 2021

    Google Scholar 

  14. Shi, W., et al.: Real-time single image and video super-resolution using an Efficient Sub-Pixel Convolutional Neural Network. In: CVPR 2016, pp. 1874–1883 (2016)

    Google Scholar 

  15. Sugawara, Y., Shiota, S., Kiya, H.: Super-resolution using convolutional neural networks without any checkerboard artifacts. In: ICIP 2018, pp. 66–70 (2018)

    Google Scholar 

  16. Tanno, R., Worrall, D., Kaden, E., Ghosh, A., Grussu, F., Bizzi, A., Sotiropoulos, S., Criminisi, A., Alexander, D.: Uncertainty modelling in deep learning for safer neuroimage enhancement: demonstration in diffusion MRI. Neuroimage 225, 117366 (2021)

    Article  Google Scholar 

  17. Tao, R., Fletcher, P.T., Gerber, S., Whitaker, R.T.: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI. In: IPMI 2009, vol. 21, pp. 664–675 (2009)

    Google Scholar 

  18. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  19. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  20. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)

    Google Scholar 

  21. Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the UVA Brain Institute Presidential Fellowship in Neuroscience. Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler A. Spears .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spears, T.A., Thomas Fletcher, P. (2022). Super-Resolution of Manifold-Valued Diffusion MRI Refined by Multi-modal Imaging. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2022. Lecture Notes in Computer Science, vol 13722. Springer, Cham. https://doi.org/10.1007/978-3-031-21206-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21206-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21205-5

  • Online ISBN: 978-3-031-21206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics