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Abstract. The demand for formal verification tools for neural networks
has increased as neural networks have been deployed in a growing number
of safety-critical applications. Matrices are a data structure essential to
formalising neural networks. Functional programming languages encour-
age diverse approaches to matrix definitions. This feature has already
been successfully exploited in different applications. The question we
ask is whether, and how, these ideas can be applied in neural network
verification. A functional programming language Imandra combines the
syntax of a functional programming language and the power of an au-
tomated theorem prover. Using these two key features of Imandra, we
explore how different implementations of matrices can influence automa-
tion of neural network verification.
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1 DMotivation

Neural network (NN) verification was pioneered by the SMT-solving [11l[12]
and an abstract interpretation [2L[820] communities. However, recently claims
have been made that functional programming, too, can be valuable in this do-
main. There is a library [16] formalising small rational-valued neural networks
in Coq. A more sizeable formalisation called MLCert [3] imports neural net-
works from Python, treats floating point numbers as bit vectors, and proves
properties describing the generalisation bounds for the neural networks. An F*
formalisation [14] uses F** reals and refinement types for proving the robustness
of networks trained in Python.

There are several options for defining neural networks in functional pro-
gramming, ranging from defining neurons as record types [I6] to treating them
as functions with refinement types [I4]. But we claim that two general consid-
erations should be key to any NN formalisation choice. Firstly, we must define
neural networks as executable functions, because we want to take advantage of
executing them in the functional language of choice. Secondly, a generic approach
to layer definitions is needed, particularly when we implement complex neural
network architectures, such as convolutional layers.
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These two essential requirements dictate that neural networks are represented
as matrices, and that a programmer makes choices about matrix formalisation.
This article will explain these choices, and the consequences they imply, from
the verification point of view. We use Imandra [I7] to make these points, be-
cause Imandra is a functional programming language with tight integration of
automated proving.

Imandra has been successful as a user-friendly and scalable tool in the Fin-
Tech domain [I8]. The secret of its success lies in a combination of many of the
best features of functional languages and interactive and automated theorem
provers. Imandra’s logic is based on a pure, higher-order subset of OCaml, and
functions written in Imandra are at the same time valid OCaml code that can
be executed, or “simulated”. Imandra’s mode of interactive proof development
is based on a typed, higher-order lifting of the Boyer-Moore waterfall [4] for
automated induction, tightly integrated with novel techniques for SMT modulo
recursive functions.

This paper builds upon the recent development of a CheckINN, a NN verifi-
cation library in Imandra [6], but discusses specifically the matrix representation
choices and their consequences.

2 Matrices in Neural Network Formalisation

We will illustrate the functional approach to neural network formalisation and
will introduce the syntax of the Imandra programming language [I7] by means
of an example. When we say we want to formalise neural networks as functions,
essentially, we aim to be able to define a NN using just a line of code:

let cnn input =
layer_O input >>= layer_1 >>= layer_2 >>= layer_3

where each layer_i is defined in a modular fashion.

To see that a functional approach to neural networks does not necessarily
imply generic nature of the code, let us consider an example. A perceptron, also
known as a linear classifier, classifies a given input vector X = (z1, ..., Z,,) into
one of two classes ¢; or ¢o by computing a linear combination of the input vector
with a vector of synaptic weights (wo, w1, ..., Wy, ), in which wq is often called an
intercept or bias: f(X) = Y i wiz; + wo. If the result is positive, it classifies
the input as ¢; and if negative as co. It effectively divides the input space along
a hyperplane defined by Y_." | w;z; + wo = 0.

In most classification problems, classes are not linearly separated. To handle
such problems, we can apply a non-linear function a called an activation function
to the linear combination of weights and inputs. The resulting definition of a
perceptron f is:

f(X)=a <Z WiT; + wo) (1)
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Let us start with a naive prototype of perceptron in Imandra. The Iris data
set is a “Hello World” example in data mining; it represents 3 kinds of Iris flowers
using 4 selected features. In Imandra, inputs can be represented as a data type:

type iris_input = {
sepal_len: real;
sepal_width: real;
petal_len: real;
petal_width: real;}

And we define a perceptron as a function:

let layer_0 (w0, wil, w2, w3, w4) (x1, x2, x3, x4) =
relu (wO +. wil *. x1 +. w2 *. x2 +. w3 *. x3 +. wd *. x4)

where *. and +. are times and plus defined on reals. Note the use of the relu
activation function, which returns 0 for all negative inputs and acts as the
identity function otherwise.

Already in this simple example, one perceptron is not sufficient, as we must
map its output to three classes. We use the usual machine learning literature
trick and define a further layer of 3 neurons, each representing one class. Each
of these neurons is itself a perceptron, with one incoming weight and one bias.
This gives us:

1]

let layer_1 (w1, bl, w2, b2, w3, b3) f1
let ol wl x. f1 +. bl in
let 02 = w2 *. f1 +. b2 in
let 03 w3 *x. f1 +. b3 in
(ol, 02, 03)

1]

let process_iris_output (cO0, cl, c2) =
if (cO >=. c1) && (cO >=. c2) then "setosa"
else if (c1 >=. c0) && (cl >=. c2) then "versicolor"
else "virginica"

The second function maps the output of the three neurons to the three specified
classes. This post-processing stage often takes the form of an argmaz or softmazx
function, which we omit.

And thus the resulting function that defines our neural network model is:

let model input = process_iris_input input
|> layer_O0 weights_0 |> layer_1 weights_1 |[>
process_iris_output

Although our naive formalisation has some features that we desired from the
start, i.e. it defines a neural network as a composition of functions, it is too
inflexible to work with arbitrary compositions of layers. In neural networks with
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hundreds of weights in every layer this manual approach will quickly become
infeasible (as well as error-prone). So, let us generalise this attempt from the
level of individual neurons to the level of matrix operations.

The composition of many perceptrons is often called a multi-layer perceptron
(MLP). An MLP consists of an input vector (also called input layer in the litera-
ture), multiple hidden layers and an output layer, each layer made of perceptrons
with weighted connections to the previous layers’ outputs. The weight and biases
of all the neurons in a layer can be represented by two matrices denoted by W
and B. By adapting equation [Il to this matrix notation, a layer’s output L can
be defined as:

L(X)=a(X -W + B) (2)

where the operator - denotes the dot product between X and each row of W,
X is the layer’s input and a is the activation function shared by all nodes in
a layer. As the dot product multiplies pointwise all inputs by all weights, such
layers are often called fully connected.

By denoting ag, Wy, By, — the activation function, weights and biases of the
kth layer respectively, an MLP F with L layers is traditionally defined as:

F(X) = CLL[BL + WL(aLfl(BL71 + WLfl(...(al(Bl + W1 . X)))))] (3)

At this stage, we are firmly committed to using matrices and matrix opera-
tions. And we have two key choices:

1. to represent matrices as lists of lists (and take advantage of the inductive
data type List),

2. define matrices as functions from indices to matrix elements,

3. or take advantage of record types, and define matrices as records with maps.

The first choice was taken in [I0] (in the context of dependent types in Coq),
in [I4] (in the context of refinement types of F*) and in [9] (for sparse matrix
encodings in Haskell). The difference between the first and second approaches
was discussed in [22] (in Agda, but with no neural network application in mind).
The third method was taken in [16] using Coq (records were used there to
encode individual neurons).

In the next three sections, we will systematise these three approaches using
the same formalism and the same language, and trace the influence of these
choices on neural network verification.

3 Matrices as Lists of Lists

We start with re-using Imandra’s List library. Lists are defined as inductive data
structures:

type ’a list =
I [
| (::) of ’a * ’a 1list
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Imandra holds a comprehensive library of list operations covering a large part
of OCaml’s standard List libary, which we re-use in the definitions below. We
start with defining vectors as lists, and matrices as lists of vectors.

type ’a vector = ’a list
type ’a matrix = ’a vector list

It is possible to extend this formalisation by using dependent [10] or refine-
ment [I4] types to check the matrix size, e.g. when performing matrix multipli-
cation. But in Imandra this facility is not directly available, and we will need
to use error-tracking (implemented via the monadic Result type) to facilitate
checking of the matrix sizes.

As there is no built-in type available for matrices equivalent to List for
vectors, the Matrix module implements a number of functions for basic operations
needed throughout the implementation. For instance, map2 takes as inputs a
function f and two matrices A and B of the same dimensions and outputs a new
matrix C' where each element ¢; ; is the result of f(a; j,b; ;)

let rec map2 (f:’a -> ’b -> ’c) (x:’a matrix) (y:’b matrix)

match x with
| [ -> begin match y with
[ 1 -> 0k []
| y::ys -> Error "map2: invalid length." end
| x::xs -> begin match y with
| [ -> Error "map2: invalid length."
| y::ys -> let hd = map2 f x y in
let t1l = map2 f xs ys in
1ift2 cons hd tl end

This implementation allows us to define other useful functions concisely. For
instance, the dot-product of two matrices is defined as:

let dot_product (a:real matrix) (b:real matrix): (’a, real
matrix) result =
Result.map sum (map2 ( *. ) a b)

Note that since the output of the function map2 is wrapped in the monadic
result type, we must use Result.map to apply sum. Similarly, we use standard
monadic operations for the result monad such as bind or 1ift.

A fully connected layer is then defined as a function fc that takes as param-
eters an activation function, a 2-dimensional matrix of layer’s weights and an
input vector:

let activation f w i = (* activation func., weights, input *)
let linear_combination ml m2 = if (length ml) <> (length m2)
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then Error "invalid dimensions'
else map sum (Vec.map2 ( *. ) ml m2) in

let i’ = 1.::1 in (* prepend 1. for bias *)
let z = linear_combination w i’ in
map f z

let rec fc f (weights:real matrix) (input:real vector) =
match weights with
[ [1 -> 0k [I

| w::ws -> 1ift2 cons (activation f w input) (fc f ws input)

Listing 1.1: Fully connected layer implementation

Note that each row of the weights matrix represents the weights for one of the
layer’s nodes. The bias for each node is the first value of the weights vector, and
1 is prepended to the input vector when computing the dot-product of weights
and input to account for that.

It is now easy to see that our desired modular approach to composing layers
works as stated. We may define the layers using the syntax: let layer_i = fc

a weights, where i stands for 0,1,2,3, and a stands for any chosen activation
function.

Although natural, this formalisation of layers and networks suffers from two
problems. Firstly, it lacks the matrix dimension checks that were readily provided
via refinement types in [14]. This is because Imandra is based on a computational
fragment of HOL, and has no refinement or dependent types. To mitigate this,
our library performs explicit dimension checking via a result monad, which
clutters the code and adds additional computational checks. Secondly, the ma-
trix definition via the list datatypes makes verification of neural networks very
inefficient. This general effect has been already reported in [14], but it may be
instructive to look into the problem from the Imandra perspective.

Robustness of neural networks [5] is best amenable to proofs by arithmetic
manipulation. This explains the interest of the SMT-solving community in the
topic, which started with using Z3 directly [I1], and has resulted in highly effi-
cient SMT solvers specialised on robustness proofs for neural networks [12,[13].
Imandra’s waterfall method [17] defines a default flow for the proof search, which
starts with unrolling inductive definitions, simplification and rewriting. As a re-
sult, proofs of neural network robustness or proofs as in the ACAS Xu chal-
lenge [I2L[13], which do not actually need induction, are not efficiently tackled
using Imandra’s inductive waterfall: the proofs simply do not terminate.

There is another verification approach available in Imandra which is better
suited for this type of problem: blast, a tactic for SAT-based symbolic execution
modulo higher-order recursive functions. Blast is an internal custom SAT/SMT
solver that can be called explicitly to discharge an Imandra verification goal.
However, blast currently does not support real arithmetic. This requires us to
quantize the neural networks we use (i.e. convert them to integer weights) and
results in a quantised NN implementation [6]. However, even with quantisation
and the use of blast, while we succeed on many smaller benchmarks, Imandra
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fails to scale ‘out of the box’ to the ACAS Xu challenge, let alone larger neural
networks used in computer vision.

This also does not come as a surprise: as [I2] points out, general-purpose
SMT solvers do not scale to NN verification challenges. This is why the algorithm
reluplex was introduced in [I2] as an additional heuristic to SMT solver algo-
rithms; reluplex has since given rise to a domain specific solver Marabou [13].
Connecting Imandra to Marabou may be a promising future direction.

However, this method of matrix formalisation can still bring benefits. When
we formulate verification properties that genuinely require induction, formali-
sation of matrices as lists does result in more natural, and easily automatable
proofs. For example, De Maria et al. [16] formalise in Coq “neuronal archetypes”
for biological neurons. Each archetype is a specialised kind of perceptron, in
which additional functions are added to amplify or inhibit the perceptron’s out-
puts. It is out of the scope of this paper to formalise the neuronal archetypes in
Imandra, but we take methodological insight from [16]. In particular, De Maria
et al. show that there are natural higher-order properties that one may want to
verify.

To make a direct comparison, modern neural network verifiers [12,120] deal
with verification tasks of the form “given a trained neural network f, and a prop-
erty P; on its inputs, verify that a property P holds for f’s outputs”. However,
the formalisation in [16] considers properties of the form “any neural network f
that satisfies a property @1, also satisfies a property Q2.” Unsurprisingly, the for-
mer kind of properties can be resolved by simplification and arithmetic, whereas
the latter kind requires induction on the structure of f (as well as possibly nested
induction on parameters of Q).

Another distinguishing consequence of this approach is that it is orthogonal
to the community competition for scaling proofs to large networks: usually the
property Q1 does not restrict the size of neural networks, but rather points to
their structural properties. Thus, implicitly we quantify over neural networks of
any size.

To emulate a property & la de Maria et al., in [6] we defined a general net-
work monotonicity property: any fully connected network with positive weights
is monotone, in the sense that, given increasing positive inputs, its outputs will
also increase. There has been some interest in monotone networks in the liter-
ature [19,2I]. Our experiments show that Imandra can prove such properties
by induction on the networks’ structure almost automatically (with the help
of a handful of auxiliary lemmas). And the proofs easily go through for both
quantised and real-valued neural networks i

3 Note that in these experiments, the implementation of weight matrices as lists of
lists is implicit — we redefine matrix manipulation functions that are less general but
more convenient for proofs by induction.
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4 Matrices as Functions

We now return to the verification challenge of ACAS Xu, which we failed to
conquer with the inductive matrix representation of the last section. This time
we ask whether representing matrices as functions and leveraging Imandra’s
default proof automation can help.

With this in mind, we redefine matrices as functions from indices to values,
which gives constant-time (recursion-free) access to matrix elements:

type arg =
| Rows
| Cols
| Value of int * int

type ’a t = arg -> ’a

Listing 1.2: Implementation of matrices as functions from indices to values

Note the use of the arg type, which treats a matrix as a function evaluating
“queries” (e.g., “how many rows does this matrix have?” or “what is the value
at index (i,7)?”). This formalisation technique is used as Imandra’s logic does
not allow function values inside of algebraic data types. We thus recover some
functionality given by refinement types in [14].

Furthermore, we can map functions over a matrix or a pair of matrices (using
map2), transpose a matrix, construct a diagonal matrix etc. without any recur-
sion, since we work point-wise on the elements. At the same time, we remove the
need for error tracking to ensure matrices are of the correct size: because our
matrices are total functions, they are defined everywhere (even outside of their
stated dimensions), and we can make the convention that all matrices we build
are valid and sparse by construction (with default 0 outside of their dimension
bounds).

The resulting function definitions are much more succinct than with lists of
lists; take for instance map2:

let map2 (f: ’a -> ’b -> ’¢c) (m: ’a t) (m’: ’b t) : ’c t =
function
| Rows -> rows m
| Cols -> cols m
| Value (i,j) -> f (m (Value (i,j))) (m’> (Value (i,j)))

This allows us to define fully connected layers:

let fc (f: ’a -> ’b) (weights: ’a Matrix.t) (input: ’a Matrix
.t =
let open Matrix in
function
| Rows -> 1
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| Cols -> rows weights
| Value (0, j) ->
let input’ = add_weight_coeff input in

let weights_row = nth_row weights j in
f (dot_product weights_row input?’)
| Value _ -> 0

As the biases are included in the weights matrix, add_weight_coeff prepends a
column with coefficients 1 to the input so that they are taken into account.

For full definitions of matrix operations and layers, the reader is referred
to [6], but we will give some definitions here, mainly to convey the general style
(and simplicity!) of the code. Working with the ACAS Xu networks [12], a script
transforms the original networks into sparse functional matrix representation.
For example, layer 5 of one of the networks we used is defined as follows:

let layer5 = fc relu (

function
| Rows -> 50
| Cols -> 51

| Value (i,j) -> Map.get (i,j) layerb5_map)

let layerb5_map =
Map.add (0,0) (1) @@
Map.add (0,10) (-1) @@
Map.add (0,29) (-1) @@

Map.const O

The sparsity effect is achieved by pruning the network, i.e. removing weights
that have the smallest impact on the network’s performance. The weight’s mag-
nitude is used to select those to be pruned. This method, though rudimentary,
is considered a reasonable pruning technique [I5]. We do this mainly in order to
reduce the amount of computation Imandra needs to perform, and to make the
verification problem amenable to Imandra.

With this representation, we are able to verify the properties described in
[12] on some of the pruned networks (see Table [77)). This is a considerable im-
provement compared to the previous section, where the implementation did not
allow to verify even pruned networks. It is especially impressive that it comes
“for free” by simply changing the underlying matrix representations.

Several factors played a role in automating the proof. Firstly, by using maps
for the large matrices, we eliminate all recursion (and large case-splits) except
for matrix folds (which now come in only via the dot product), which allowed
Imandra to expand the recursive matrix computations on demand. Secondly,
Imandra’s native simplifier contributed to the success. It works on a DAG rep-
resentation of terms and speculatively expands instances of recursive functions,
only as they are (heuristically seen to be) needed. Incremental congruence clo-
sure and simplex data structures are shared across DAG nodes, and symbolic
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execution results are memoised. The underlying Map.t components of the func-
tions are reasoned about using a decision procedure for the theory of arrays.
Informally speaking, Imandra works lazily expanding out the linear algebra as
it is needed, and eagerly sharing information over the DAG. Contrast this ap-
proach with that of Reluplex which, informally, starts with the linear algebra
fully expanded, and then works to derive laziness and sharing.

Although Imandra’s simplifier-based automation above could give us results
which blast could not deliver for the same network, it still did not scale to the
original non-quantised (dense) ACAS Xu network. Contrast this with domain-
specific verifiers such as Marabou which are able to scale (modulo potential
floating point imprecision) to the full ACAS Xu. We are encouraged that the
results of this section were achieved without tuning Imandra’s generic proof au-
tomation strategies, and hopeful that the development of neural-network specific
tactics will help Imandra scale to such networks in the future.

5 Real-valued Matrices; Records and Arrays

It is time we turn to the question of incorporating real values into matrices.
Section [Bldefined matrices as lists of lists; and that definition in principle worked
for both integer and real-valued matrices. However, we could not use [@@blast]
to automate proofs when real values were involved; this meant we were restricted
to verifying integer-valued networks. On the other hand, the matrix as function
implementation extends to proofs with real valued matrices, however it is not a
trivial extension. In the functional implementation, the matrix’s value must be
of the same type as its dimensions (Listing [[.2]). Thus, if the matrix elements
are real-valued, then in this representation the matrix dimensions will be real-
valued as well. This, it turns out, is not trivial to deal with for functions which
do recursion along matrix dimensions.

To simplify the code and the proofs, three potential solutions were considered:

— Using an algebraic data type for results of matrix queries: this introduces
pattern matching in the implementation of matrix operations, which Sec-
tion Bl taught us to avoid.

— Define a matrix type with real-valued dimensions and values: this poses the
problem of proving the function termination when using matrix dimensions
in recursion termination conditions.

— Use records to provide polymorphism and allow matrices to use integer di-
mensions and real values.

This section focuses on these three alternatives.

5.1 Algebraic Data Types for Real-Valued Matrices

The first alternative is to introduce an algebraic data type that allows the matrix
functions to return either reals or integers.
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CheckINN: Pruned Reluplex: Full ACAS

Networks Xu Networks
Property Result Quantity Time (s) Quantity Time (s)
Pl SAT 20 13387 0
UNSAT 0 41 394517
TIMEOUT 24 4
P2 SAT 7 2098 35 82419
UNSAT 2 896 1 463
TIMEOUT 26 4
¢3 SAT 39 10453 35 82419
UNSAT 0 1 463
TIMEOUT 2 4
P4 SAT 36 21533 0
UNSAT 0 32 12475
TIMEOUT 5 0
P5 SAT 1 98 0
UNSAT 0 1 19355
6 SAT 1 98 0
UNSAT 0 1 180288
oy TIMEOUT 1 1
@8 SAT 0 1 40102
TIMEOUT 1 0
?9 SAT 1 109 0
UNSAT 0 1 99634
¢10 SAT 0 0
UNSAT 1 637 1 19944
TIMEOUT 0 0

Table 1: Results of experiments ran on the properties and networks from the
ACAS Xu benchmark [I2]. The CheckINN verifications were run with 90% of
the weights pruned, on virtual machines with four 2.6 GHz Intel Ice Lake virtual
processors and 16GB RAM. Timeout was set to 5 hours
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type arg =
| Rows
| Cols
| Value of int * int
| Default

type ’a res =
| Int of int
| Val of ’a

type ’a t = arg -> ’a res

This allows a form of polymorphism, but it also introduces pattern matching
each time we query a value from the matrix. For instance, in order to use dimen-
sions as indices to access a matrix element we have to implement the following
nth_res function:

let nth_res (m: ’a t) (i: ’b res) (j: ’c res): ’a res = match
(i, j) with
| (Int i’, Int j’) -> m (Value (i’, j’))
| -> m Default

The simplicity and efficiency of the functional implementation is lost.

5.2 Real-Valued Matrix Indices

We then turn to using real numbers to encode matrix dimensions. The imple-
mentation is symmetric to the one using integers (Listing [[.2):

type arg =
| Rows
| Cols
| Value of real * real

type ’a t = arg -> ’a

A problem arises in recursive functions where matrix dimensions are used as
decrementors in stopping conditions, for instance in the fold_rec function used
in the implementation of the folding operation.

let rec fold_rec f cols i j (m: ’a t) =
let dec i j =
if j <=. 0. then (i-.1.,cols) else (i,j-.1.)
in
if (1 <=. 0. && j <=. 0.) || (i <. 0. |l j <. 0.) then (
m (Value (i,j))
) else (
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let i’,j’ = dec i j in
f (m (Value (i,j))) (fold_rec f cols i’ j’ m)
)
let fold (f : ’a -> ’b -> ’b) (m: ’a t) : ’b =
let rows = m Rows -. 1. in
let cols = m Cols -. 1. in

fold_rec f cols rows cols m

Imandra only accepts definitions of functions for which it can prove termination.
The dimensions being real numbers prevents Imandra from being able to prove
termination without providing a custom measure. In order to define this measure,
we need to connect the continuous world of reals with the discrete world of
integers (and ultimately ordinals) for which we have induction principles. We
chose to develop a floor function that allows Imandra to prove termination
with reals.

To prove termination of our fold_rec function recursing along reals, we define
an int_of_real : real -> int function in Imandra, using a subsidiary floor :
real -> int -> int which computes an integer floor of a real by “counting up”
using its integer argument. In fact, as matrices have non-negative dimensions, it
suffices to only consider this conversion for non-negative reals, and we formalise
only this. We then have to prove some subsidiary lemmas about the arithmetic
of real-to-integer conversion, such as:

lemma floor_mono x y b =
Real . (x <=y && x >= 0. && y >= 0.)
==> floor x b <= floor y b

lemma inc_by_one_bigger_conv x =
Real.(x >= 0. ==> int_of_real (x + 1.0) > int_of_real x)

Armed with these results, we can then prove termination of fold_rec and admit
it into Imandra’s logic via the ordinal pair measure below:

[@@measure Ordinal.pair
(Ordinal.of_int (int_of_real i))
(Ordinal.of_int (int_of_real j))]

Extending the functional matrix implementation to reals was not trivial, but
it did have a real payoff. Using this representation, we were able to verify real-
valued versions of the pruned ACAS Xu networks! In both cases of integer and
real-valued matrices, we pruned the networks to 10% of their original size. So,
we still do not scale to the full ACAS Xu challenge. However, the positive news
is that the real-valued version of the proofs uses the same waterfall proof tactic
of Imandra, and requires no extra effort from the programmer to complete the
proof. This result is significant bearing in mind that many functional and higher-
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order theorem provers are known to have significant drawbacks when switching
to real numbers.

From the functional programming point of view, one may claim that this
approach is not elegant enough because it does not provide true polymorphism
as it encodes matrix dimensions as reals. This motivates us to try the third
alternative, using records with maps to achieve polymorphism.

5.3 Records

Standard OCaml records are available in Imandra, though they do not support
functions as fields. This is because all records are data values which must support
a computable equality relation, and in general one cannot compute equality on
functions. Internally in the logic, records correspond to algebraic data types with
a single constructor and the record fields to named constructor arguments. Like
product types, records allow us to group together values of different types, but
with convenient accessors and update syntax based on field names, rather than
position. This offers the possibility of polymorphism for our matrix type.

The approach here is similar to the one in Section [#f matrices are stored
as mappings between indices and values, which allows for constant-time access
to the elements. However, instead of having the mapping be implemented as a
function, here we implement it as a Map, i.e. an unordered collection of (key;value)
pairs where each key is unique, so that this “payload” can be included as the
field of a record.

type ’a t = {
rows: int;
cols: int;
vals: ((int*int), ’a) Map.t;

We can then use a convenient syntax to create a record of this type. For in-
stance, a weights matrix from one of the ACAS Xu networks can be implemented
as:

let layer6_map =
Map.add (0,10) (0.05374) @@
Map.add (0,20) (0.05675) @@
Map.const O.

let layer6_matrix = {

rows = 5;
cols = 51;
vals = layer6_map;
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Note that the matrix dimensions (and the underlying map’s keys) are indeed
encoded as integers, whereas the weights’ values are reals.

Similarly to the previous implementations, we define a number of useful ma-
trix operations which will be used to define general neural network layer func-
tions. For instance, the map2 function is defined thus:

let rec map2_rec (m: ’a t) (m’: ’b t) (£f: ’a -> ’b -> ’c) (
cols: int) (i: int) (j: int) (res: ((int*int), ’c) Map.t)
((int*int), ’c) Map.t =
let dec i j =
if j <= 0 then (i-1, cols) else (i,j-1)
in
if 1 <= 0 && j <= 0 then (
res
) else (
let (i’,j’) = dec i j in
let new_value = f (nth m (i’,j?)) (nth m’> (i’, j?)) in
let res’ = Map.add’ res (i’,j’) new_value in
map2_rec m m’ f cols i’ j’ res’

)
[eCadm i, j]
let map2 (f: ’a -> ’b -> ’¢c) (m: ’a t) (m’: ’b t) : ’c t =
let rows = max (m.rows) (m’.rows) in
let cols = max (m.cols) (m’.cols) in
let vals = map2_rec m m’ f cols rows cols (Map.const 0.) in
{
rows = Trows;
cols = cols;
vals = vals;
}

Compared to the list implementation, this implementation has the benefit of
providing constant-time access to matrix elements. However, compared to the
implementation of matrices as functions, it uses recursion to iterate over ma-
trix values which results in a high number of case-splits. This in turn results in
lower scalability. Compared to the previous section’s results, none of the verifica-
tion tests on pruned ACAS Xu benchmarks that terminated with the functional
matrix implementation terminated with the records implementation.

Moreover, we can see in the above function definition that we lose consider-
able conciseness and readability.

In the end, the main interest of this implementation is its offering polymor-
phism. In all other regards, the functional implementation seems preferable.

6 Conclusions

Functional programming languages that are tightly coupled with automated rea-
soning capabilities, like Imandra, offer us the possibility to verify and perform
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inference with neural networks, which the library CheckINN aims to do. To that
aim, implementing matrices and matrix operations is important. We have shown
different implementations of matrices and how each implementation influences
verification in Imandra.

This study has three positive conclusions:

— Imandra’s language is sufficiently flexible to give rise to implementations of
several choices of matrix in the CheckINN library. Its proof heuristics adapt
smoothly to these different implementations, with very little hints needed to
figure out the appropriate proof strategy (induction, waterfall or SAT/SMT
proving).

— this flexibility bears benefits when it comes to diversifying the range of
NN properties we verify: thus, matrices as lists made possible proofs of
higher-order properties by induction, whereas matrices as functions were
more amenable to automated proofs in SAT/SMT solving style.

— the transition from integer-valued to real-valued NNs is possible in Imandra.
This transition itself opens several choices for matrix representations. How-
ever, if the matrix representation is optimal for the task at hand, Imandra
takes care of completing the proofs with reals and adapts its inductive wa-
terfall method to the new data type automatically. This is a positive lesson
to learn, as this is not always given in functional theorem provers.

The main drawback is our failure to scale to the full ACAS Xu problem
regardless of the matrix implementation choice in CheckINN [6]. However, it
may not come as a great surprise, as general-purpose SMT solvers do not scale
to the problem, either. It took domain-specific algorithms such as ReluPlex and
special-purpose solvers such as Marabou to overcome the scaling problem [12/[13].
This suggests future solutions that are somewhat orthogonal to the choice of the
matrix representation:

— interface with Marabou or other specialised NN solvers in order to scale;
— work on a set of Imandra’s native proof heuristics and tactics, tailored specif-
ically to Imandra’s NN formalisations.

In addition, evaluating CheckINN against other benchmarks would allow
to assess more accurately its scalability on different problems, e.g. robustness
verification of image classification networks on the MNIST dataset [I] or range
analysis of randomly generated networks [7]. We leave these as future work.

These conclusions provide a strong foundation to further develop the Check-
INN library, as its aim is to offer verification of a wide array of neural network
properties and we have shown that the choice of matrix implementation eventu-
ally influences the range of verifiable properties.

Finally, we believe that the methods we described could be useful in other
theorem provers (both first- and higher-order) that combine functional program-
ming and automated proof methods, such as ACL2, PVS, Isabelle/HOL and Coq.
For example, in all these systems functions defining matrix operations (e.g., con-
volution) over lists are often more complex compared to their counterparts over
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matrices represented as functions, which can benefit from non-recursive defini-
tions. Overall, as these various prominent theorem proving systems work ulti-
mately with functional programs over algebraic datatypes like Imandra, our core
observations carry over to them in a natural way.
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