Skip to main content

Approach to a Lower Body Gait Generation Model Using a Deep Convolutional Generative Adversarial Network

  • Conference paper
  • First Online:
Book cover Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022) (UCAmI 2022)

Abstract

Research over gait analysis has become more relevant in the last years, especially as a tool to detect early frailty signs. However, data gathering is often difficult and requires lots of resources. Synthetic data generation is a great complementary tool for data gathering that enables the augmentation of existing datasets. Despite not being a new concept, it has gained popularity in the last years thanks to Generative Adversarial Networks (GANs), a neural network architecture capable of creating data indistinguishable from the original one. In this article deep-convolutional GANs has been used to artificially expand a gait dataset containing data of the lower part of the body. The synthetic data has been studied through three approaches: looking animations of the points and comparing them to the originals; applying principal component analysis algorithm to both datasets to visually assess how each of them is distributed; and by extracting different features from both datasets to compare their statistical differences. The evaluation showed promising results, which opens a path for using synthetic data generation in the gait analysis domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I.J., et al.: Generative adversarial nets. Presented at the (2014)

    Google Scholar 

  2. Bortone, I., et al.: How gait influences frailty models and health-related outcomes in clinical-based and population-based studies: a systematic review. J. Cachexia. Sarcopenia Muscle 12, 274–297 (2021). https://doi.org/10.1002/jcsm.12667

    Article  Google Scholar 

  3. Iseri, Y., Hata, Y., Yagi, N., Saji, Y., Sakai, Y.: Rehabilitation evaluation with gait analysis mat. In: 2021 World Automation Congress (WAC), pp. 248–253. IEEE, Taipei, Taiwan (2021). https://doi.org/10.23919/WAC50355.2021.9559453

  4. Bowman, T., et al.: Wearable devices for biofeedback rehabilitation: a systematic review and meta-analysis to design application rules and estimate the effectiveness on balance and gait outcomes in neurological diseases. Sensors 21, 3444 (2021). https://doi.org/10.3390/s21103444

    Article  Google Scholar 

  5. Laranjo, A., Costa, S., Duarte, F., Carvalho, M., Arezes, P.: Evidence on the use of gait analysis - a review. In: Karwowski, W., Ahram, T., Etinger, D., Tanković, N., Taiar, R. (eds.) IHSED 2020. AISC, vol. 1269, pp. 51–56. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58282-1_9

    Chapter  Google Scholar 

  6. Lamoth, C.J., van Deudekom, F.J., van Campen, J.P., Appels, B.A., de Vries, O.J., Pijnappels, M.: Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J NeuroEngineering Rehabil. 8, 2 (2011). https://doi.org/10.1186/1743-0003-8-2

    Article  Google Scholar 

  7. Montero-Odasso, M.M., et al.: Association of dual-task gait with incident dementia in mild cognitive impairment: results from the gait and brain study. JAMA Neurol. 74, 857 (2017). https://doi.org/10.1001/jamaneurol.2017.0643

    Article  Google Scholar 

  8. Lee, H., Guan, L., Burne, J.A.: Human gait and posture analysis for diagnosing neurological disorders. In: Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), vol. 2, pp. 435–438. IEEE, Vancouver, BC, Canada (2000). https://doi.org/10.1109/ICIP.2000.899439

  9. Waite, L.M., Grayson, D.A., Piguet, O., Creasey, H., Bennett, H.P., Broe, G.A.: Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney older persons study. J. Neurol. Sci. 229–230, 89–93 (2005). https://doi.org/10.1016/j.jns.2004.11.009

    Article  Google Scholar 

  10. Yu, Y., Gong, Z., Zhong, P., Shan, J.: Unsupervised representation learning with deep convolutional neural network for remote sensing images. In: Zhao, Y., Kong, X., Taubman, D. (eds.) ICIG 2017. LNCS, vol. 10667, pp. 97–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71589-6_9

    Chapter  Google Scholar 

  11. Jiang, Y., Chang, S., Wang, Z.: TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up (2021). https://doi.org/10.48550/arXiv.2102.07074

  12. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017). https://doi.org/10.1109/ICCV.2017.244

  13. Yoon, J., Jarrett, D., van der Schaar, M.: Time-series generative adversarial networks. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. (2019)

    Google Scholar 

  14. Hu, Y., Wu, X., Yu, B., He, R., Sun, Z.: Pose-guided photorealistic face rotation. Presented at the (2018). https://doi.org/10.1109/CVPR.2018.00876

  15. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018). https://doi.org/10.1016/j.neucom.2018.09.013

    Article  Google Scholar 

  16. Zhu, F., Ye, F., Fu, Y., Liu, Q., Shen, B.: Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-42516-z

    Article  Google Scholar 

  17. Anicet Zanini, R., Luna Colombini, E.: Parkinson’s Disease EMG data augmentation and simulation with DCGANs and style transfer. Sensors (Basel) 20, 2605 (2020). https://doi.org/10.3390/s20092605

    Article  Google Scholar 

  18. Wang, Y., Li, Z., Wang, X., Yu, H., Liao, W., Arifoglu, D.: Human gait data augmentation and trajectory prediction for lower-limb rehabilitation robot control using GANs and attention mechanism. Machines 9, 367 (2021). https://doi.org/10.3390/machines9120367

    Article  Google Scholar 

  19. Jordan, K., Challis, J.H., Newell, K.M.: Walking speed influences on gait cycle variability. Gait Posture 26, 128–134 (2007). https://doi.org/10.1016/j.gaitpost.2006.08.010

    Article  Google Scholar 

  20. Hausdorff, J.M., Rios, D.A., Edelberg, H.K.: Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82, 1050–1056 (2001). https://doi.org/10.1053/apmr.2001.24893

    Article  Google Scholar 

  21. Verghese, J., Holtzer, R., Lipton, R.B., Wang, C.: Quantitative Gait markers and incident fall risk in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 64A, 896–901 (2009). https://doi.org/10.1093/gerona/glp033

    Article  Google Scholar 

  22. Perry, J., Burnfield, J.M.: Gait Analysis: Normal and Pathological Function. SLACK, Thorofare, NJ (2010)

    Google Scholar 

  23. Stergiou, N.: Biomechanics and Gait Analysis. Academic Press, London, San Diego, CA (2020)

    Google Scholar 

  24. Åhman, H.B., et al.: Dual-task tests discriminate between dementia, mild cognitive impairment, subjective cognitive impairment, and healthy controls – a cross-sectional cohort study. BMC Geriatr. 20, 258 (2020). https://doi.org/10.1186/s12877-020-01645-1

    Article  Google Scholar 

  25. Muir, S.W., Speechley, M., Wells, J., Borrie, M., Gopaul, K., Montero-Odasso, M.: Gait assessment in mild cognitive impairment and Alzheimer’s disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture 35, 96–100 (2012). https://doi.org/10.1016/j.gaitpost.2011.08.014

    Article  Google Scholar 

  26. Savitzky, A., Golay, M.J.E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures. https://doi.org/10.1021/ac60214a047. Accessed 12 Jul 2022

  27. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Phil. Trans. R. Soc. A. 374, 20150202 (2016). https://doi.org/10.1098/rsta.2015.0202

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank all the people who collaborated as participants in this experiment.

Funding

This work was funded by the MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES, grant number RTI2018-098780-B-I00 (national research project) and EQC2019-006053-P (WeCareLab); the 2022-PRED-20651 predoctoral contract by UNIVERSITY OF CASTILLA-LA MANCHA; and the PREJCCM2019/14 predoctoral contract by JUNTA DE COMUNIDADES DE CASTILLA-LA MANCHA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Carneros-Prado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carneros-Prado, D. et al. (2023). Approach to a Lower Body Gait Generation Model Using a Deep Convolutional Generative Adversarial Network. In: Bravo, J., Ochoa, S., Favela, J. (eds) Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022). UCAmI 2022. Lecture Notes in Networks and Systems, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-031-21333-5_42

Download citation

Publish with us

Policies and ethics