Skip to main content

A GaN Based Reverse Recovery Time Limiter Circuit Integrated with a Low Noise Amplifier

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1687))

Included in the following conference series:

  • 761 Accesses

Abstract

This article presents the design of a GaN-only robust low noise amplifier (LNA) monolithic microwave integrated circuit (MMIC) integrated with a reverse recovery time compensation (RRTC) circuit at the input. We use the \(\mathbf {0.25\,\mu m}\) GaN HEMT process from UMS in the complete design of robust LNA MMIC in the 5.8–6.2 GHz band. The proposed MMIC design is compact and requires a single substrate to fabricate LNA and RRTC circuits. To test the design, we apply a high power RF pulse of 40 dBm for 250 nsec and achieve a 16.8 dB reduction in gain \(S_{21}\) with an RRT limiter circuit in place. The simulated LNA takes less than 100 nsec to get back to its normal operating condition after applying a wideband (4–10 GHz) and high power (10–40 dBm) RF pulse for 250 nsec.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aamir Ahsan, S., Ghosh, S., Khandelwal, S., Chauhan, Y.S.: Physics-based multi-bias RF large-signal GaN HEMT modeling and parameter extraction flow. IEEE J. Electron Devices Soc. 5(5), 310–319 (2017). https://doi.org/10.1109/JEDS.2017.2724839

    Article  Google Scholar 

  2. Aamir Ahsan, S., Ghosh, S., Sharma, K., Dasgupta, A., Khandelwal, S., Chauhan, Y.S.: Capacitance modeling in dual field-plate power GaN HEMT for accurate switching behavior. IEEE Trans. Electron Devices 63(2), 565–572 (2016). https://doi.org/10.1109/TED.2015.2504726

    Article  Google Scholar 

  3. Andrei, C., Bengtsson, O., Doerner, R., Chevtchenko, S.A., Heinrich, W., Rudolph, M.: Dynamic behaviour of a low-noise amplifier GAN MMIC under inputpower overdrive. In: 2015 European Microwave Conference (EuMC), pp. 231–234 (2015). https://doi.org/10.1109/EuMC.2015.7345742

  4. Bahl, I.: Matching network components, chap. 6, pp. 125–148 John Wiley Sons, Ltd (2009). https://doi.org/10.1002/9780470462348.ch6. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470462348.ch6

  5. Bajpai, N., Chauhan, Y.S.: A broadband power amplifier MMIC to compensate the frequency dependent behaviour. In: 2021 IEEE MTT-S International Microwave and RF Conference (IMaRC), pp. 1–4 (2021). https://doi.org/10.1109/IMaRC49196.2021.9714648

  6. Bajpai, N., Pampori, A., Maity, P., Shah, M., Das, A., Chauhan, Y.S.: A low noise power amplifier MMIC to mitigate co-site interference in 5G front end modules. IEEE Access 9, 124900–124909 (2021). https://doi.org/10.1109/ACCESS.2021.3108596

    Article  Google Scholar 

  7. Bera, S.C.: Microwave Active Devices and Circuits for Communication. LNEE, vol. 533. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3004-9

  8. Bettidi, A., et al.: X-band T/R module in state-of-the-art GAN technology. In: 2009 European Radar Conference (EuRAD), pp. 258–261 (2009)

    Google Scholar 

  9. Chaturvedi, S., Badnikar, S.L., Naik, A.A.: Ultra wideband receiver protection limiter using 0.13\(\mu \)m pHEMT technology. In: IEEE MTT-S International Microwave and RF Conference (2017). ISBN: 978-1-586-120-717/31.00

    Google Scholar 

  10. Cui, L., Zhou, X., Li, Y.P., Wei, H.T.: Codesign of 12–22 GHz integrated pin-diode limiter and low noise amplifier. In: 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1–3 (2018). https://doi.org/10.1109/ICSICT.2018.8564886

  11. Dasgupta, A., Chauhan, Y.S.: Modeling of induced gate thermal noise in HEMTs. IEEE Microwave Wirel. Compon. Lett. 26(6), 428–430 (2016). https://doi.org/10.1109/LMWC.2016.2562642

    Article  Google Scholar 

  12. ETSI: TS 138 521-2 - V15.3.0 - 5G; NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 standalone (3GPP TS 38.521-2 version 15.3.0 Release 15). 3GPP TS 38.101-1 version 15.2.0 Release 15 15.3.0, 1–72 (2018). https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

  13. Ghosh, S., Dasgupta, A., Khandelwal, S., Agnihotri, S., Chauhan, Y.S.: Surface-potential-based compact modeling of gate current in ALGaN/GaN HEMTs. IEEE Trans. Electron Devices 62(2), 443–448 (2015). https://doi.org/10.1109/TED.2014.2360420

    Article  Google Scholar 

  14. van Heijningen, M., et al.: C-band single-chip radar front-end in ALGaN/GaN technology. IEEE Trans. Microw. Theory Tech. 65(11), 4428–4437 (2017). https://doi.org/10.1109/TMTT.2017.2688438

    Article  Google Scholar 

  15. Huang, T., Axelsson, O., Bergsten, J., Thorsell, M., Rorsman, N.: Achieving low-recovery time in ALGaN/GaN HEMTs with AlN interlayer under low- noise amplifiers operation. IEEE Electron Device Lett. 38(7), 926–928 (2017). https://doi.org/10.1109/LED.2017.2709751

    Article  Google Scholar 

  16. Huang, T., Axelsson, O., Bergsten, J., Thorsell, M., Rorsman, N.: Impact of ALGaN/GaN interface and passivation on the robustness of low-noise amplifiers. IEEE Trans. Electron Devices 67(6), 2297–2303 (2020). https://doi.org/10.1109/TED.2020.2986806

    Article  Google Scholar 

  17. Liero, A., Dewitz, M., kuhn, S., Chaturvedi, N., Xu, J., Rudolph, M.: On the recovery time of highly robust low-noise amplifiers. IEEE Trans. Microw. Theory Tech. 58(4), 781–787 (2010). https://doi.org/10.1109/TMTT.2010.2041519

  18. Lim, C.L.: Recovery time of the schottky-pin limiter. Microw. J. 55(11), 66–72(2012)

    Google Scholar 

  19. Looney, J., Conway, D., Bahl, I.: An examination of recovery time of an integrated limiter/LNA. IEEE Microwave Mag. 5(1), 83–86 (2004). https://doi.org/10.1109/MMW.2004.1284947

    Article  Google Scholar 

  20. Provost, Z.O., et al.: High robustness S-band GaN based LNA. In: 2019 14th European Microwave Integrated Circuits Conference (EuMIC), pp. 243–246 (2019). https://doi.org/10.23919/EuMIC.2019.8909569

  21. Schuh, P., Sledzik, H., Reber, R.: Gan-based single-chip frontend for next-generation x-band AESA systems. Int. J. Microw. Wirel. Technol. 10(5–6), 660–665 (2018). https://doi.org/10.1017/S1759078718000557

    Article  Google Scholar 

  22. Suijker, E.M., et al.: Robust ALGaN/GaN low noise amplifier MMICs for c-, ku- and ka-band space applications. In: 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 1–4 (2009). https://doi.org/10.1109/csics.2009.5315640

  23. Sun, M., Lu, Y., Huai, Y.: Low capacitance ESD protection circuits for GaAs RF ICs. J. Electrostat. 65(3), 189–199 (2007). https://doi.org/10.1016/j.elstat.2006.07.016

    Article  Google Scholar 

  24. Wanum, M., Vliet, F.: A 58-dBm S-band, pp. 3034–3042 (08 2013)

    Google Scholar 

  25. Yagbasan, C., Aktug, A.: Robust x-band GaN LNA with integrated active limiter. In: 2018 48th European Microwave Conference (EuMC), pp. 1205–1208 (2018). https://doi.org/10.23919/EuMC.2018.8541779

  26. Yagbasan, C., Aktuğ, A.: Robust x-band GaN LNA with integrated active limiter. In: 2018 13th European Microwave Integrated Circuits Conference (EuMIC), pp. 237–240 (2018). https://doi.org/10.23919/EuMIC.2018.8539928

Download references

Acknowledgement

The work was funded in part by the IUSSTF/USISTEF/9th call/EC-059/2018/2019–20, SwarnaJayanti Fellowship under Grant DST/SJF/ETA-02/2017–18 and in part by the FIST Scheme of the Department of Science and Technology under Grant SR/FST/ETII-072/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Bajpai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bajpai, N., Chauhan, Y.S. (2022). A GaN Based Reverse Recovery Time Limiter Circuit Integrated with a Low Noise Amplifier. In: Shah, A.P., Dasgupta, S., Darji, A., Tudu, J. (eds) VLSI Design and Test. VDAT 2022. Communications in Computer and Information Science, vol 1687. Springer, Cham. https://doi.org/10.1007/978-3-031-21514-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21514-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21513-1

  • Online ISBN: 978-3-031-21514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics