
Distributed Data Streams

Jannik Castenow, Björn Feldkord, Jonas Hanselle, Till Knollmann,
Manuel Malatyali, and Friedhelm Meyer auf der Heide(B)

Paderborn University, Paderborn, Germany
{jannik.castenow,bjoern.feldkord,jonas.hanselle,
manuel.malatyali,fmadh}@upb.de, tillk@mail.upb.de

Abstract. We consider a scenario where a server is wirelessly connected
to countless sensor nodes that continuously measure data. The task of the
server is to monitor the sensors’ data. More precisely, at each time step
the server calculates a function defined over the current measurements of
the sensors. Since the sensors only have small computational power and
tight battery constraints, the communication between the server and the
sensors should be as small as possible, i.e., we aim at minimizing the
total number of messages that is transferred.

There are various conceivable problems for the setting above. We
demonstrate our approaches on the following three: In the Top-k-Value
Monitoring Problem, the server aims at identifying the k largest values.
The Top-k-Position Monitoring Problem shifts the task to identify the
sensors observing these values. Finally, the Count Distinct Monitoring
Problem obliges the server to determine the number of distinct values
currently observed.

For all three problems, we not only present communication-efficient
protocols for one time step, we also show how it can be exploited if
the input at sensors is similar between consecutive time steps to reduce
the total communication on the long term. Thereby, we utilize different
techniques – involving sampling, dynamic data structures, filter-based
approaches, and combinations of them – to demonstrate their potential
and their limits in the broad setting described above.

Keywords: Top-k · Count distinct · Distributed monitoring ·
Distributed data streams

1 Introduction

Envision a scenario where a set of tiny, lightweight sensors is distributed in a
hazardous area (e.g., an ocean, high mountains or in space) to monitor the envi-
ronment. The sensors are connected to one or multiple central servers which have
the task to track the measurements of the sensors, i.e., the servers have to com-
pute a function of the sensor values at every point in time. This task is easy to
solve as long as the sensors continuously send their current measurements to the
servers and the latter ones have enough memory and computational power to do
computations on the sensor data at every point in time. Realistic applications,
however, require a huge number of sensors (e.g., because the area is very large,
c© The Author(s) 2022
H. Bast et al. (Eds.): Algorithms for Big Data, LNCS 13201, pp. 179–195, 2022.
https://doi.org/10.1007/978-3-031-21534-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21534-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-21534-6_10

180 J. Castenow et al.

sensors are error-prone, sensors have only a limited battery lifetime, . . .) that
cannot be handled by modern server hardware, or the number of required severs
might be uneconomically expensive. Additionally, sending the measured data
of the sensors continuously to the servers leads to a rapid decrease of the sen-
sors’ batteries. Therefore, to build a feasible system, the communication between
sensors and servers needs to be severely reduced.

We consider two types of randomized algorithmic approaches to reduce the
communication: The first approach is based on Monte Carlo algorithms. Sen-
sors decide randomly to communicate their current observed value to the server.
The probability of sending a message depends on the significance of the current
observed value: If the impact on the output function is small, the probability of
sending a message is low; if the impact is high also the probability of sending a
message is high. Thus, the server is not aware of all changes in the sensor values
but with a high probability it gets to know all significant changes. With this app-
roach, the server is able to compute a correct output with a high probability. In
some scenarios (for instance in safety-critical systems), the application demands
to always compute a correct output. Here, we exploit the idea of Las Vegas
algorithms that reduce the number of sent messages with a high probability but
always compute the exact output. With a low probability many messages may
be sent, however the server can always be sure to compute the correct output.
All in all, these two approaches build a trade-off between reducing the commu-
nication and computing correct outputs, while the randomization helps to keep
the trade-off small.

Considering the scenario described above, we are interested in multiple prob-
lems. In the Top-k-Value Monitoring problem, the server is interested in the k
largest values observed by the sensors at any time. In contrast to that, the Top-
k-Position Monitoring problem tackles the case where the server is interested in
the actual sensors measuring the k largest values, e.g., to track if large values
and the set of sensors observing them are correlated. As in a lot of cases a rough
estimate on the top k positions is sufficient, we also address the Approximate
Top-k-Position Monitoring problem. Besides the largest values, the server might
also be interested in how many different values are observed to get an overview
on the global situation. This is captured in the (Approximate) Count Distinct
Monitoring problem.

The aforementioned problems have in common that in practice a lot of com-
munication can be avoided compared to a naïve approach that gathers all sensor
data at every time step at the server. For example, consider the (Approximate)
Count Distinct Monitoring problem. If a subset of the sensors observes identical
values, not all of them need to communicate their observation to the server. See
Fig. 1 for a depiction. Here, a horizontal block indicates a set of sensors observing
the same value at the same time. Optimally, only one of them would need to
communicate the value to the server. Additionally, if the value that is observed
by a fixed sensor does not change significantly as time goes, the sensor does not
need to notify the server all the time. Furthermore, observations of sensors that
are not of interest should not be communicated. This can be seen when consid-
ering the Top-k-Value Monitoring problem. It would be best if all sensors not

Distributed Data Streams 181

Fig. 1. We consider a central server that is connected to a set of sensor nodes. As
time goes, each sensor observes a sequence of values (indicated by the dots below the
sensors). Among others, communication can be avoided if a group of sensors observes
the same value at the same time (horizontal blocks).

observing one of the k largest values do not communicate at all. Note, that for
this it is required that all the sensors can receive information from the server.
In our model, we allow the server to have a cheap broadcast channel. This can
be assumed, as the central server has no need to reduce its power consumption
as opposed to the sensors.

In this paper, we examine how communication can be minimized in the prob-
lems above. Our focus is especially a theoretical analysis of techniques that allow
to capture the idea that sensor data might not change arbitrarily between con-
secutive time steps. We examine, among other things, how to use dynamic data
structures and restrictions on the adversary dictating the inputs at sensor nodes,
such that an algorithm can keep/update an existing solution for more than one
time step and reduce the overall communication.

We begin in Sect. 2 by a formal introduction of our model and the problems
we consider. We also introduce a major technique that we use called filters. After-
wards, we establish computational primitives in Sect. 2.3. In Sect. 3 we deal with
the Top-k-Value Monitoring problem followed by the Top-k-Position Monitoring
problem in Sect. 4 and the (Approximate) Count Distinct Monitoring problem
in Sect. 5.

This paper surveys results from [1 SPP,4 SPP,8 SPP,9 SPP,10 SPP] . We
only give short sketches of algorithms and proofs. For technical details, please
look at the papers above. A detailed description of the current state of the art
is presented in [10 SPP].

2 Model

In our setting there are n nodes connected to a single server. The nodes are
uniquely identified by IDs from the set {1, . . . , n} and each node i receives

182 J. Castenow et al.

(v1
i , v2

i , v3
i . . .) as a stream of data. At time t, a node i observes vt

i ∈ N and
does not know any vt′

i , t′ > t. The superscript t is omitted if it is clear from the
context.

Following the model in [3], we allow that between any two consecutive time
steps, a communication protocol exchanges messages between the server and the
nodes. The communication protocol is allowed to use a number of rounds poly-
logarithmic in n and max1≤i≤n(vt

i). Nodes can only send messages to the server
and they are able to store a constant number of integers, compare two integers
and perform Bernoulli trials with success probability 2i/n for i ∈ {0, . . . , log n}.
The server can communicate to one node directly or utilize a broadcast-channel
to send one message to all nodes simultaneously. All communication methods
described above incur unit communication cost per message, the delivery is
instantaneous, and we allow a message at time t to have a size which is log-
arithmic in n and max1≤i≤n(vt

i).
A time step t defines a point in time at which the sensor nodes obtain a

new piece of input (vt
i for node i at time t). The protocol consists of multiple

(communication) rounds: Each sensor node performs local computations and
may send a message to the server. The server collects all messages, performs
local computations and may send a message via the broadcast-channel to all
sensor nodes.

Since all nodes are synchronized, the server can detect if no sensor sends a
message and the sensor nodes can identify if the server did not send a message.
Furthermore, the server has unrestricted capacity when receiving, i.e., it can
always receive all messages that are send to it.

At the end of each round, when the communication protocol terminated, the
server decides on the output of the function for the current time t and the whole
network proceeds to the next time step t + 1.

We assume that all observed values are pairwise different for the (Approxi-
mated) Top-k-Value and Top-k-Position Monitoring Problems and coupe with a
large number of duplicates considering the (Approximate) Count Distinct Prob-
lem.

2.1 Problems

Our focus here is on three problems; the Top-k-Value Monitoring problem, the
Top-k-Position Monitoring problem and the Count Distinct Monitoring problem.
In the Top-k-Value Monitoring problem, we are interested in the largest observed
values, i.e., the ordering of the values is of special interest. Let st

1, . . . , s
t
n be the

values observed at time t (vt
1, . . . , v

t
n) sorted in descending order.

Definition 1 (Top-k-Value Monitoring). In the Top-k-Value Monitoring
problem, the server has to output st

1, . . . , s
t
k, k ≤ n at each time t.

In contrast to keeping track of the values it might be more of interest to keep
track of the nodes observing the largest values instead (for instance in safety
critical applications). This is considered in the Top-k-Position Monitoring prob-
lem.

Distributed Data Streams 183

Definition 2 ((Approximate) Top-k-Position Monitoring). In the Top-
k-Position Monitoring problem, the server has to output at each time t the
k nodes observing st

1, . . . , s
t
k – called the top-k. If we are interested in an

approximation, we need some more notation. For any constant ε ∈ (0, 1) let
E(t) := {i | vt

i ∈ ((1−ε)−1 st
k,∞)} be the set of nodes observing values which are

significantly larger than the kth largest one. In the Approximate Top-k-Position
Monitoring problem, at each time t the server has to output E(t) and k − |E(t)|
many nodes not in E(t) observing a value which is at least (1 − ε) st

k.

In the case that multiple nodes observe the same value, one might be more
interested in how many different values are observed. We approach this direction
by the Count Distinct Monitoring problem. Note, that we do not assume all
values to be distinct when discussing this problem.

Definition 3 ((Approximate) Count Distinct Monitoring). For a fixed
time step t, let dt be the number of distinct values observed by all nodes, i.e.,
dt = |{vt

i | i ∈ {1, . . . , n}}|. At each time step t the server has to output dt. In
the approximation variant, the server has to output an (ε, δ)-approximation at
each time step t, i.e.; for two constants 0 ≤ ε, δ ≤ 1, the server has to compute
a value x ∈ [(1 − ε) · dt, (1 + ε) · dt] with probability at least 1 − δ.

Explicitly, the values at times t′ < t do not matter for the output at time t.

2.2 Filter-Based Algorithms

One of our main techniques is the usage of filters. A filter defines for each sensor
an interval of values that do not influence the output function. Filtering the input
for an algorithm occurs in many different contexts. In algorithm engineering,
filtering has turned out to be a valuable tool to decrease the input size to speed
up the computation in certain cases. For instance the Filter-Kruskal algorithm
can accelerate the computation of minimum spanning trees of graphs [12]. It
improves the qKruskal algorithm which combines the original Kruskal algorithm
with the partitioning idea of QuickSort – the edges are not sorted beforehand
but a pivot edge is chosen, the problem is solved recursively on all edges with
smaller weight and afterwards (provided the spanning tree is still incomplete)
on all edges having a larger weight. Filter-Kruskal improves this by not using
all edges of larger weight as an input for the second recursive call but only those
edges which actually connect two different components of the graph, i.e., it filters
all edges that cannot be part of the minimum spanning tree. This idea has also
been applied to different problems later on, e.g., graph matching [11].

Another filtering approach with numerous applications is Kalman Filtering,
also known as Linear Quadratic Estimation. Its goal is to predict the state
of a system based on observations containing inaccuracies. It works in two
steps: First, system parameters are predicted and afterwards, the predictions
are updated as soon as the next observation (measurement with inaccuracies)
arrives using a stochastic weighted average approach. Applications of Kalman

184 J. Castenow et al.

Filtering can be found in various areas, among others navigation control of vehi-
cles, robot motion planning, and signal processing. It is also provably a valuable
tool for data stream analysis. Similar to our goal, Kalman Filtering is used to
reduce the communication in a sensor server architecture in [5]. Here, Kalman
Filtering is applied on both the server and the sensor side (the sensors provide a
data stream for the server). As long as the sensor observes values that are within
a small deviation of its current prediction, the sensor does not communicate to
the server. Once the deviation exceeds a certain threshold, the sensor updates
the server.

Next, we introduce the formal notion of filters and necessary definitions for
our model. A set of filters is a collection of intervals, one assigned to each node
such that, as long as the observed values at each node are within the given
interval, the value of the output function does not change.

Definition 4. For a fixed time t, a set of filters is defined by an n-tuple of
intervals (F t

1 , . . . , F
t
n), Fi ⊆ N∪{−∞,∞} with vt

i ∈ F t
i , such that as long as the

value of node i only changes within its interval,i.e., it holds vt′
i ∈ F t′

i = F t
i for

t′ ≥ t, the value of the output function does not change. We use F t
i = [�t

i, u
t
i] to

denote the lower and upper bound of a filter interval, respectively.

We assume that nodes are assigned filters by the server. If a node violates its
filter, i.e., the currently observed value is not contained in its filter, the node
may report the violation and its current value to the server. The server then
computes a new set of filters and sends them to the affected nodes. To calculate
a set of filters that works for the entire set of nodes, the server may need to
probe some more nodes before sending out the new filters. At the end of each
time step, no node is allowed to violate its filter. An algorithm following this
approach is called filter-based.

The easiest way of defining a set of filters is to assign the value a node
currently observes as its interval. In this case the usage of filters is not very
beneficial, so we are looking for filters that are as large as possible to minimize
the number of filter changes which is directly related to the number of exchanged
messages.

Our analysis is based on the classical competitiveness approach first used in
[13] and later on formalized by [6]; see also [2] for an overview. We compare
the communication volume of our algorithms to one of an appropriately defined
offline algorithm. In our model, a general offline algorithm knows all the input
streams in advance and can trivially solve the aforementioned problems without
any communication. To still get meaningful results regarding the quality of our
algorithms, we assume the optimal offline algorithm OPT uses filters assigned by
the server to the nodes. To lower bound the cost of OPT , we count the number
of filter updates over time.

Definition 5 (Competitive Algorithms). We call a (randomized) online
algorithm ALG c-competitive if for every instance its (expected) communica-
tion volume is by a factor of at most c larger than the communication volume of
OPT.

Distributed Data Streams 185

2.3 Computational Primitives

This section is dedicated to three subroutines that will be used in later algo-
rithms. Due to space constraints, we will use these protocols mainly as black-
boxes, see the cited literature for more details. The first subroutine is a protocol
for the Existence problem. In this problem, all nodes observe binary values,
∀i ∈ {1, . . . , n} : vi ∈ {0, 1} and the goal for the server is to output the logical
disjunction.

The Existence Protocol solves this problem in log(n) + 1 rounds. In
each round r = 0, 1, . . . , log n, all nodes that have observed the value 1 send a
message with probability 2r/n to the server. As soon as the first message reaches
the server, the protocol ends (latest if r = log(n) holds).

Theorem 1 (Existence). [9 SPP] There exists an algorithm Existence
Protocol which uses O (1) messages in expectation and at most log n+1 com-
munication rounds to solve the problem Existence.

The Existence Protocol has several applications. Most important for our
research is the detection of filter violations. The server can detect a filter violation
using only a constant number of messages on expectation.

Corollary 1 (Filter Violation). [9 SPP] There is a protocol Existence
Protocol which uses O (1) messages in expectation to identify a filter violation.
In case there are multiple filter violations one is drawn uniformly at random. If
no filter violation occurs no message takes place.

Additionally, the Top-k Protocol is able to solve the Top-k-Value Monitoring
problem. The protocol uses similar ideas as the Existence Protocol: Nodes
draw a height from a geometric distribution and a tree like structure is built.
Initially, s1 is determined by collecting a sample of all values, broadcasting the
largest one and continuing until s1 is determined. The same idea is used to find
s2, . . . , sk.

Theorem 2 (Top-k). [4 SPP] The Top-k Protocol uses k+log(n)+2 mes-
sages in expectation and O (k + log n) expected number of rounds to solve the
Top-k-Value Monitoring problem.

3 Top-k-Value Monitoring

In this section we consider problems regarding the k largest values at the current
time step t. We design and analyze Las Vegas algorithms, i.e., we always output
the correct values and can show that the total communication and number of
rounds are polylogarithmic with high probability.

Consider a general input for the Top-k problem over time. The values might
change over time as well as the nodes holding the Top-k values. As a conse-
quence, in a worst-case situation we cannot reuse any information from previous

186 J. Castenow et al.

time steps and need to recompute the output from scratch. To counteract this
possibility, we consider two different approaches.

In our first approach, we restrict the number of values which can change
between queries, and parameterize the result in this number. We show that we
can build up a data structure which preserves important information as long
as there are not too many updates. This makes answering queries much more
efficient, as we use the data structure to quickly reduce the number of candidate
nodes which potentially hold the desired result.

In our second approach, we consider filter-based algorithms for the problem.
These algorithms have the advantages discussed in Sect. 2.2, i.e., they are very
effective if the changes in the output are not too large. To conduct a meaningful
worst-case analysis, we consider the competitiveness of the algorithms against a
filter-based offline algorithm.

Before we give the details of our solutions, we shortly mention that our proto-
cols which compute the Top-k from scratch are essentially optimal with respect
to the amount of communication. Intuitively, we can show that an algorithm can-
not do much better than performing a binary search on n values. The algorithm
can always ask a set of nodes for their value, and then broadcast the maximum
to ‘eliminate’ all nodes with a smaller values for the process. Formally, Yao’s
minimax principle considering a random permutation as input can be applied.
Each input occurs with probability (1/n!) and it is shown that any deterministic
algorithm needs at least Ω (log n) messages on expectation which yields:

Theorem 3 ([8 SPP]). Every comparison-based randomized algorithm requires
at least Ω (log n) messages on expectation to compute the maximum in our model.

3.1 Dynamic Distributed Data Structure

In this section we consider a data structure for the rank related problems of
Top-k and k-Select. The k-Select problem asks to identify the data item with
rank k. We consider the approximate version, where we have to output an item
with rank in [(1− ε)k, (1 + ε)k] with probability at least 1− δ. An approximate
version with weaker conditions will also help us to solve the Top-k problem.
For the bounds on communication, we consider the following setting: Only when
there is a query for the Top-k or for k-Select, the output is determined. We allow
the parameters to be different from query to query and, furthermore, we allow
multiple k-Select queries at the same time step.

Our results are based on the idea of maintaining a (distributed) data struc-
ture which is used to answer a query and is informed about each update. More
precisely, at every point in time, the data structure keeps track of an approxi-
mation of a data item with rank k. These approximations can be exploited by
the protocols for a Top-k or k-Select computation to significantly decrease the
communication and, interestingly, also the time bounds, rendering this approach
very powerful.

The data structure supports the following operations: Top-k: Output
{st

1, . . . , s
t
k}, StrongSelect: Output d ∈ {st

(1−ε)k, . . . , st
(1+ε)k} and WeakSelect:

Distributed Data Streams 187

Output d with st
k·logc1 n ≤ d ≤ st

k·logc2 n, with c1, c2 > 1. The Top-k and
StrongSelect operations answer queries for the Top-k and k-Select problems,
while the operation WeakSelect supports the other two. Our data structure
guarantees the following:

Theorem 4 ([4 SPP]). There is a distributed data structure with expected
amortized total communication cost for an update of O (1/polylog n). The amor-
tized number of rounds for an update is O (1). The data structure is able to
answer a k-Select query correctly with probability at least 1 − δ. For that,
O (1/ε2 log 1/δ + (log log n)2) messages and O (log log n

k) rounds are required
on expectation. Additionally, the expected total communication cost to answer a
Top-k query is O (k+log log n) and the expected number of rounds is O (log log n).
The output is always correct.

Our data structure is designed as follows. We maintain a Sketch(t) about the data
items received at time t in the server. The task of such a sketch is to maintain
items to answer WeakSelect queries instantly. A Sketch(t) is a subset of data
items denoted by {rt

1, . . . , r
t
m}, where m ≤ log n. We call Sketch(t) correct if

it consists of a set of data items {r1, . . . , rm} such that, for each k = 1, . . . , n,
there exists rk such that st

k·logc1 n ≤ rk ≤ st
k·logc2 n. We say the data item rk is

the representative of the set of data items d with sk·logc1 n ≤ d ≤ sk·logc2 n. To
answer the WeakSelect query for a specific rank in [k · logc1 n, k · logc2 n], we
simply output the representative rk+1.

Computing a Sketch is somewhat expensive, hence we want it to be valid even
after some values have been updated. It is easy to see that for appropriately
chosen constants c1, c2, up to logc n values can change without the property
being lost. In conclusion, we can achieve the stated performance guarantees by
computing a Sketch which is valid for logc n updates, after which we recompute it
from scratch. The WeakSelect operation simply returns an appropriate element
from the Sketch.

Now, recall that there is a protocol for Top-k which uses k + log(n) + 1
messages and O (k + log n) rounds in expectation (Theorem 2). These bounds
hold when the protocol is executed on n nodes without using any information
from previous time steps. We can now utilize our Sketch in the following way:
We execute a WeakSelect operation with input k, such that we receive a data
item d of size at most st

k·logc2 n. Then, we execute the Top-k protocol only for
nodes which hold a data item smaller than d, i.e., we execute the protocol only
on O (k log n) nodes instead of n, yielding the desired bound. The bound on the
StrongSelect operation can be obtained in a similar fashion.

3.2 Filter-Based Algorithm

We turn our attention to filter-based algorithms which we evaluate in the frame-
work of competitive analysis. We are going to compare the algorithm against
an optimal offline algorithm, which knows all of the future input in advance.
To make this analysis meaningful, it is necessary to also restrict the offline algo-
rithm to a filter-based approach. The important part of the filter-based approach

188 J. Castenow et al.

is that the offline algorithm has to communicate a set of valid filters to the nodes.
In accordance to Definition 4, this means that the offline algorithm at least has
to communicate each time the output changes.

The algorithm works as follows: First, the k largest values are determined
using the Top-k-Protocol of Theorem 2 . Afterwards, the server broadcasts sk

such that all nodes i with vi ≥ sk define their filter to Fi := [vi, vi] and the
remaining nodes i with vi < sk to Fi := [−∞, sk]. Whenever a node with one
of the k largest values observes a different value, a filter violation occurs such
that the node sends a message to the server. Each of the other nodes (those
with filters Fi := [−∞, sk]) that observes a filter violation executes the Top-k-
Protocol (to prevent that every node sends a message). The server unifies and
outputs the k largest values of the nodes without a filter violation from the past
time step and the new values of the current time step. This algorithm has the
following guarantees.

Theorem 5 ([4 SPP]). There is an online algorithm which monitors the Top-
k-Values and is O (k + log n)-competitive against an optimal filter-based offline
algorithm.

4 Top-k-Position Monitoring

In this section we consider monitoring the IDs of the nodes which observe the
Top-k values rather than the values themselves [8 SPP,9 SPP]. The intuitive
advantage is that small updates to the values of the nodes holding the Top-k
do not necessarily mean a change in the Top-k positions. Hence, in a scenario
where there are a lot of small fluctuations in the observed values but the overall
ranking of nodes stays the same, we have to utilize much less communication if
we monitor the nodes.

We only consider filter-based algorithms in this section. For the general app-
roach as in Sect. 3.1, there is no further benefit from monitoring only the posi-
tions, as the entire data structure approach aims at optimizing cases in which
only a fraction of nodes observe new values. On the other hand, it directly pro-
vides a solution for the positions since nodes can always send their IDs along
with their values.

For the filter-based algorithm, we expect less communication due to the rea-
son explained above. In fact, we observe an increase in the competitive ratio for
the position monitoring: Under worst-case input sequences, the offline algorithm
can gain a greater advantage in comparison to the online algorithm.

Theorem 6 ([10 SPP]). Let each sensor node observe values from 1, . . . , Δ.
There is an online algorithm which monitors the Top-k-Positions and has a com-
petitiveness of O (k + log n + logΔ) compared to a filter-based offline algorithm.

4.1 Filter-Based Top-k-Position Monitoring

The main observation for our approach is that for this problem it is sufficient to
send only a single value v which divides the Top-k from the remaining nodes,

Distributed Data Streams 189

i.e., a value which is between the kth and the (k + 1)st largest value. Based on
this observation, the main task for the online algorithm is to decide where to set
the value v which divides the Top-k and the remaining sensor nodes from each
other. Since no information about the future is known, and the adversary has no
restriction in the process of generating the values that the sensor nodes observe
in future time steps, we simply take the median value.

Top-k Position protocol: Initially identify the kth and (k+1)st largest values
and the respective sensor nodes (using the one-shot protocol). As long as the
Top-k-Positions do not change, define the bound for the filters as the median
value between the kth and the (k + 1)st largest value.

In addition to the execution of the one-shot protocol from Theorem 2, this
strategy yields additional O (logΔ) messages in expectation by applying the
Existence Protocol from Theorem 1 for identifying a filter violation. Viola-
tions can occur until we have found the correct separation between the kth and
(k+1)st largest value, which takes at most logΔ steps, because by choosing the
median value, we essentially perform a binary search for the correct value. Note,
that since the adversary is offline adaptive, it is easy to see that every online
algorithm needs at least Ω(logΔ) messages which easily translates to an overall
lower bound of Ω(k + log n+ logΔ) on the competitiveness for any randomized
online algorithm. By this, the bound in Theorem 6 is asymptotically tight.

While this strategy performs generally well under minimal changes to the
input values, a lot of communication can occur if, e.g., the nodes holding the
kth and (k + 1)st largest values often switch positions, but these values are
almost the same. In such a situation, it might be sufficient not to take note of
the exact Top-k (e.g., for outdoor temperature one degree differences might not
matter to us). We address this by proposing an algorithm calculation positions
for Approximate Top-k as by Definition 2.

4.2 Filter-Based Approx. Top-k-Position Monitoring

In this section we allow the online algorithm to have some errors in its output and
compare against an optimal offline algorithm which solves the exact problem.
Recall that monitoring the Approximate Top-k-Positions allows (only) the online
algorithm to choose nodes as an output which are ’close’ to the kth largest value
(see Definition 2). Observe that filters are allowed to overlap if we consider the
relaxation of the Top-k-Position problem.

We want to make use of the allowed error in the following way: When solving
the exact problem, we had to search the value domain for the correct separation
between the kth and (k + 1)st ranked value. Allowing an error means that we
only need to find an approximation of this separating value, resulting in a faster
search. In fact, if we introduce an additive error (say M), it is easy to see that
the competitiveness compared to a filter-based offline algorithm which solves the
exact problem is reduced from O (k+log n+logΔ) to O (k+log n+log(Δ−M)).

However, if we use the standard notion of a multiplicative error the following
disadvantage occurs: If the values we search for are smaller, the range of values

190 J. Castenow et al.

which lie within the margin of error also becomes smaller. So in a way, the
criterion for a valid outputs becomes stricter when dealing with smaller values.

To circumvent this shortcoming, we first apply a binary search strategy on a
logarithmic scale which terminates after log logΔ filter violations and stops with
the property that the allowed error can only vary within constant factors. Applying
the approach from the algorithm in Theorem 6 with an early stopping rule, the
following can be achieved:

Theorem 7 ([10 SPP]). Let each sensor node observe values from 1, . . . , Δ.
There is an online algorithm which monitors the Approximate Top-k-Positions
with a competitiveness of O (k+ log n+ log logΔ+ log 1/ε) compared to a filter-
based offline algorithm which monitors the exact Top-k-Positions.

4.3 Approximate Offline Algorithm

In this section, we study a variant in which the optimal offline algorithm is
allowed to introduce an error, i.e., both the online and offline algorithms monitor
the Top-k-Positions approximately. It turns out that it is much more challenging
for online than for offline algorithms to take advantage of the relaxed conditions
for a correct output, resulting in a significantly higher competitive ratio. This
fact is formalized in a lower bound of Ω(n) (for constant k) [9 SPP], which is
much larger than previous upper bounds of O (k + log n + logΔ) for the exact
problem. Intuitively speaking, the online algorithm has to choose where to set
filters, but also has to choose a subset of nodes the output is based on which
significantly increases the lower bound:

Theorem 8 ([10 SPP]). Any filter-based online algorithm which solves the
approximate Top-k Position Monitoring problem cannot be better than
Ω(n + logΔ)-competitive.

We consider two settings in which we compare to an approximate offline algo-
rithm and design algorithms for the respective settings: First, an online algorithm
has the task to solve the problem with the same error ε as the offline algorithm
and second, an online algorithm is allowed to use 2ε, i.e., twice the error of the
offline algorithm.

For the first setting, the online algorithm is allowed to make use of the same
error ε as the offline algorithm, which results in a competitiveness of O (n2 logΔ)
(assuming reasonable values of ε or simply assuming to be constant). Intuitively
speaking, in this scenario the online algorithm has to solve two questions at the
same time: The bounds of the filter intervals, and the choice of the subset of
nodes for the output.

Theorem 9 ([9 SPP]). Assuming ε is a constant, there is an online algorithm
for the approximate Top-k Position Monitoring problem which is O (n2 · logΔ)-
competitive.

Distributed Data Streams 191

This interaction between the two questions leads to a gap between the lower
bound and the upper bound stated above. To reduce the power of the adversary
but still to consider the problem of choosing a subset of nodes for the output, we
consider an augmented version which allows the online algorithm to use an error
of 2ε compared to ε in the offline algorithm. The algorithm is O (n)-competitive
(again with reasonable assumptions on ε and also on the relation of n and Δ).
In this setting with a constant number of filter violations it is possible to argue
on the placement of filters and thus the combination of filter placement and the
subset of the nodes do not take that much of a role expressed in the following:

Theorem 10 ([9 SPP]). Assuming ε is a constant and logΔ = O (n), there
is an online algorithm for the approximate Top-k Position Monitoring problem
which is O (n)-competitive against an optimal offline algorithm using an error
of 2ε compared to the error of ε of the offline algorithm.

5 (Approximate) Count Distinct Monitoring

In the following section, we consider the Count Distinct Monitoring problem
where the server is tasked to count how many different values are observed at the
sensors. More specifically, we establish an (ε, δ)-approximation of the number of
distinct values dt at time step t. On a high level, our approximation scheme shows
how one can combine both a filter-based approach together with a sampling
technique to shrink the required communication. Due to space constraints, we
only explain our techniques on a high level. For details we refer to [1 SPP].

The key idea for estimating dt is to follow a sampling approach on the values
(not on the nodes). We create a sample out of all values and use the Existence
Protocol (Theorem 1) to identify a representing node for each sampled value,
i.e., one node per value of the sample set observing the value. Then, we monitor
the identified representing nodes to keep track of dt over time. For the monitor-
ing, a filter-based approach is utilized, allowing us to compare the communication
volume of our protocol to a minimal filter-based one as already done in previous
sections.

We are able to achieve an (ε, δ)-approximation that is kept valid for multiple
time steps depending on how much the values change in consecutive time steps
(parameterized by σ). Using the filter-based approach, our analysis relates to
the number of messages exchanged by an optimal filter-based approach (R∗). In
total, we arrive at the theorem below.

Theorem 11 ([1 SPP]). There is an (ε, δ)-approximation for the Count Dis-
tinct Monitoring problem for T time steps that uses O ((σ+δ)R∗ log n

dt
T 1

ε2 log 1
δ)

messages. Here, the change in the number of nodes observing a fixed value
between consecutive time steps is upper bounded by a constant factor σ ≤ 1/2
and R∗ is the minimum number of changes of representatives for a given input.

The bound stated above is comprised of different aspects which are reflected
by factors stemming from a sampling approach Θ(1/ε2 log 1/δ), the fact that

192 J. Castenow et al.

the number of domain changes is bounded Θ(σ + δ) and the competitiveness of
monitoring the representative for one domain (O (log n · R∗

v)) with respect to
R∗

v, the number of representatives to monitor that a value v was observed used
by an optimal offline algorithm.

The bound of the algorithm can also be expressed as O (log n·R∗
S ·1/ε2 log 1/δ)

where R∗
S denotes the optimal number of representatives for the sample set S

throughout the time period T . Furthermore, focusing on the aspect of dynamic
algorithms, the bound can also be expressed as O ((σ+δ) ·T ·1/ε2 log 1/δ). Note
that these bounds are different bounds for the same algorithm and only reflect
different input sequences more properly.

5.1 Computation for One Time Step

The computation for one time step takes place in two phases. First, a constant
factor approximation for dt is created. In the second phase, the constant approx-
imation is used to determine a sufficiently large probability that is broadcasted
to the sensors, which in turn create a sample out of all observed values that is
reported to the server. Based on the size of the sample set and the previously
calculated probability, the server can estimate dt up to a factor of ε with a
probability of at least 1 − δ.

It is crucial here that we do a random experiment for a value, i.e., all sensors
observing the same value should see the same outcome of the random experiment.
This can be achieved by a public coin [7]. A public coin is a random string
consisting of fully unbiased bits that is common for all sensor nodes. It can be
implemented by having the same pseudorandom number generator at each sensor
initialized by a common seed that is broadcasted by the server at the beginning
of each phase of the algorithm. Note that such an approach only increases the
communication complexity by an additive constant. A set of sensors (observing
the same value) is able to do a random experiment together by considering the
same substring of the public coin (which is predefined by the value the sensors
are observing).

For a constant factor approximation we first let the sensors draw a random
number with the public coin based on a geometric distribution, i.e., we generate
a random height hv for each value v. Then the server triggers a communication of
the values of largest height by polling the heights from largest to smallest in syn-
chronous rounds. Thereby, for each value that is communicated, the Existence
Protocol is used (cf. Theorem 1) to bring down the number of communicated
messages to a constant.

After we have a constant factor approximation, we calculate a probability p
which is broadcasted to the sensors. With probability p a value is communicated
to the server in the second phase. Whether or not a value is communicated is
again decided for all sensors observing the value using the public coin. For each
of the values selected in this phase, the Existence Protocol is used again
(cf. Theorem 1) to identify a representing sensor. Such a representing sensor
witnesses that the sampled value is observed. p is chosen with respect to ε,

Distributed Data Streams 193

δ and the constant factor approximation such that the server can compute an
(ε, δ)-approximation based on the number of received values of the second phase.

In the end, most of the communication happens due to the chosen probability
to have a sufficiently large sample of the observed value. Thus, we arrive at the
theorem below.

Theorem 12 ([1 SPP]). There is an (ε, δ)-approximation algorithm for the
Count Distinct Monitoring problem for one time step using O (1/ε2 log 1/δ) mes-
sages on expectation.

5.2 Monitoring over Multiple Time Steps

In the worst case values might change arbitrarily between multiple consecutive
time steps and a sensor that was used as a representative for a value might
not be of use even after a single round. However, as argued before, one expects
based on practical scenarios that the values that are observed at a fixed sensor
are similar in consecutive time steps. To analyze the quality of our algorithm
with regard to the significance of changes in consecutive time steps, we use a
filter-based approach. The idea is to reuse the results of the (relatively) costly
computation of one time step for consecutive time steps as long as the values are
similar to a certain degree. The filter is implemented by the representing sensors
that are identified, i.e., we compare how many times our protocol has to identify
such a representing sensor compared to how many times an optimal filter-based
algorithm has to do this (R∗).

Recapitulate that using a public coin, a sample set of values was determined.
The server keeps track of the sample after an initial (ε, δ)-approximation is done.
Thereby, any sensor sends a message to the server if it observes a value in the
sample that has not been observed previously. The server estimates based on such
messages how many values are in total newly observed. Similarly, if a represen-
tative for a value in the sample stops observing the latter, a new representative
is searched (using the Existence Protocol, cf. Theorem 1) and if none is
found, the server estimates how many values left in total. Since any filter-based
algorithm has to communicate at some point when an optimal representative
sensor stops observing its value, our result depends on the minimum possible
number of such changes R∗ as it can be seen in Theorem 11.

6 Conclusion

In this work we elaborated on models for dynamic input sequences and designed
and analyzed algorithms which handle these settings. The respective bounds
reflect this by comparing the communication to an optimal filter-based algorithm
or by introducing parameters expressing how ’fast’ an instance changes from time
step to time step. We have also shown that there is an algorithm which combines
these two techniques properly.

194 J. Castenow et al.

As a next step it would be interesting to see how these techniques perform in
the presence of sliding windows. The fact that sensors are not capable of storing
the entire history of the data stream has an influence on the output quality or
the number of messages the sensors need to send to the server, although these
values might not be relevant for the current time step.

Another aspect on the input streams might have a significant impact on
communication bounds: Assuming the streams have a structured property, e.g.,
be provided by some random process and thus might be assumed to generate
similar observations in consecutive rounds at a respective sensor node. With
such an assumption in mind we assume to get bounds in return which reflect the
communication complexity to be proportional in the ability of projecting future
observations based on past observations.

References

1 SPP. Bemmann, P., et al.: Monitoring of domain-related problems in distributed
data streams. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol.
10641, pp. 212–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-72050-0_13

2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, Cambridge (1998)

3. Cormode, G.: The continuous distributed monitoring model. SIGMOD Rec.
42(1), 5–14 (2013). https://doi.org/10.1145/2481528.2481530

4 SPP. Feldkord, B., Malatyali, M., Meyer auf der Heide, F.: A dynamic distributed
data structure for top-k and k -select queries. In: Böckenhauer, H.-J., Komm,
D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Altitudes.
LNCS, vol. 11011, pp. 311–329. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98355-4_18

5. Jain, A., Chang, E.Y., Wang, Y.: Adaptive stream resource management using
kalman filters. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, Paris, France, 13–18 June 2004, pp. 11–22 (2004).
https://doi.org/10.1145/1007568.1007573

6. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive
snoopy caching. Algorithmica 3(1), 77–119 (1988). https://doi.org/10.1007/
BF01762111

7. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication
complexity. Comput. Complex. 8(1), 21–49 (1999). https://doi.org/10.1007/
s000370050018

8 SPP. Mäcker, A., Malatyali, M., Meyer auf der Heide, F.: Online top-k-position
monitoring of distributed data streams. In: IPDPS, pp. 357–364. IEEE Com-
puter Society (2015). https://doi.org/10.1109/IPDPS.2015.40

9 SPP. Mäcker, A., Malatyali, M., Meyer auf der Heide, F.: On competitive algo-
rithms for approximations of top-k-position monitoring of distributed streams.
In: IPDPS, pp. 700–709. IEEE Computer Society (2016). https://doi.org/10.
1109/IPDPS.2016.91

10 SPP. Malatyali, M.: Big data: sublinear algorithms for distributed data streams.
Ph.D. thesis, University of Paderborn, Germany (2019)

https://doi.org/10.1007/978-3-319-72050-0_13
https://doi.org/10.1007/978-3-319-72050-0_13
https://doi.org/10.1145/2481528.2481530
https://doi.org/10.1007/978-3-319-98355-4_18
https://doi.org/10.1007/978-3-319-98355-4_18
https://doi.org/10.1145/1007568.1007573
https://doi.org/10.1007/BF01762111
https://doi.org/10.1007/BF01762111
https://doi.org/10.1007/s000370050018
https://doi.org/10.1007/s000370050018
https://doi.org/10.1109/IPDPS.2015.40
https://doi.org/10.1109/IPDPS.2016.91
https://doi.org/10.1109/IPDPS.2016.91

Distributed Data Streams 195

11. Osipov, V.: Algorithm Engineering for fundamental Sorting and Graph Prob-
lems. Ph.D. thesis, Karlsruhe Institute of Technology (2014). http://digbib.
ubka.uni-karlsruhe.de/volltexte/1000042377

12. Osipov, V., Sanders, P., Singler, J.: The filter-kruskal minimum spanning tree
algorithm. In: Proceedings of the Eleventh Workshop on Algorithm Engineer-
ing and Experiments, ALENEX 2009, New York, New York, USA, 3 January
2009, pp. 52–61 (2009). https://doi.org/10.1137/1.9781611972894.5

13. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging
rules. Commun. ACM 28(2), 202–208 (1985). https://doi.org/10.1145/2786.
2793

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000042377
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000042377
https://doi.org/10.1137/1.9781611972894.5
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/2786.2793
http://creativecommons.org/licenses/by/4.0/

	Distributed Data Streams
	1 Introduction
	2 Model
	2.1 Problems
	2.2 Filter-Based Algorithms
	2.3 Computational Primitives

	3 Top-k-Value Monitoring
	3.1 Dynamic Distributed Data Structure
	3.2 Filter-Based Algorithm

	4 Top-k-Position Monitoring
	4.1 Filter-based Top-k-Position Monitoring
	4.2 Filter-Based Approx. Top-k-Position Monitoring
	4.3 Approximate Offline Algorithm

	5 (Approximate) Count Distinct Monitoring
	5.1 Computation for One Time Step
	5.2 Monitoring over Multiple Time Steps

	6 Conclusion
	References

