See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/366400234

Prudens: An Argumentation-Based Language for Cognitive Assistants

Article - December 2022

CITATIONS

0

2 authors:

Vasileios Theodoros Markos
Open University of Cyprus

8 PUBLICATIONS 10 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Knowledge Acquisition from Text and the Crowd View project

roect Collectiveness in Nature, Society, and Computing View project

READS

101

Loizos Michael

127 PUBLICATIONS 936 CITATIONS

SEE PROFILE

All content following this page was uploaded by Vasileios Theodoros Markos on 19 December 2022.

The user has requested enhancement of the downloaded file.

ResearchGate

https://www.researchgate.net/publication/366400234_Prudens_An_Argumentation-Based_Language_for_Cognitive_Assistants?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/366400234_Prudens_An_Argumentation-Based_Language_for_Cognitive_Assistants?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Knowledge-Acquisition-from-Text-and-the-Crowd?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Collectiveness-in-Nature-Society-and-Computing?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vasileios_Markos?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vasileios_Markos?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Open_University_of_Cyprus?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vasileios_Markos?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Loizos-Michael?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Loizos-Michael?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Loizos-Michael?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vasileios_Markos?enrichId=rgreq-6bea91e1c08d5d3b45671e5edf388583-XXX&enrichSource=Y292ZXJQYWdlOzM2NjQwMDIzNDtBUzoxMTQzMTI4MTEwODI2MDQxN0AxNjcxNDUwMTQ4OTM5&el=1_x_10&_esc=publicationCoverPdf

Prudens: An Argumentation-Based Language for
Cognitive Assistants

Vassilis Markos' and Loizos Michael!»2
1 Open University of Cyprus, Nicosia, Cyprus
vasileios.markos@st.ouc.ac.cy, loizosQouc.ac.cy
2 CYENS Center of Excellence, Nicosia, Cyprus

Abstract. In this short system paper, we present our implementation
of a prioritized rule-based language for representing actionable policies,
in the context of developing cognitive assistants. The language is asso-
ciated with a provably efficient deduction process, and owing it to its
interpretation under an argumentative semantics it can naturally offer
ante-hoc explanations on its drawn inferences. Relatedly, the language is
associated with a knowledge acquisition process based on the paradigm
of machine coaching, guaranteeing the probable approximate correctness
of the acquired knowledge against a target policy. The paper focuses
on demonstrating the implemented features of the representation lan-
guage and its exposed APIs and libraries, and discusses some of its more
advanced features that allow the calling of procedural code, and the
computation of in-line operations when evaluating rules.

Keywords: Logical programming - Non-monotonic reasoning - Cogni-
tive assistants.

1 Introduction

The widespread adoption of Artificial Intelligence (AI) in everyday applications
has led to an upsurging interest in the design of cognitive assistants, i.e., of sys-
tems “augmenting human intelligence”, as put by Engelbart [2]. Naturally, such
systems are required to be cognitively compatible with humans, in an effort to
facilitate human-machine interaction, which makes, explainability and under-
standability natural prerequisites as well [3[12]. Considering the above desider-
ata, argumentation-based designs seem as a proper choice that can at the same
time accommodate cognitive compatibility, while providing substantial potential
for interpretability and explainability for such systems [10/6].

Having in mind the above, with this work we present a declarative program-
ming language, Prudens, aiming to facilitate the design of cognitive assistants.
Prudens is an argumentation-based language that can fully support efficient de-
duction as described in [I1]. Moreover, Prudens is also compatible with machine
coaching, a provably efficient human-in-the-loop machine learning methodology,
under the Probably Approximately Correct (PAC) semantics [I4ITT]. Given its
reliance on arguments, Prudens can also support the design of assistants that

2 V. Markos, L. Michael

can explain their decisions, by providing the internal arguments that have led
the system to draw a conclusion as an explanation.

The rest of this paper is structured as follows: (i) in Section We present the
basic syntax of Prudens; (ii) in Section [3| we present extended features of the
language; (iii) in Section we discuss currently ongoing and future works related
to Prudens and; (iv) in Section [5| we conclude. All online resources regarding
Prudens may be found at |http://cognition.ouc.ac.cy/prudens/.

2 Basic Syntax and Semantics

First we discuss the basic syntax of Prudens, by describing the language’s basic
rule syntax and their prioritization as well as the underlying reasoning process.

2.1 Rule Syntax

The core (“vanilla”) version of Prudens basically implements the knowledge rep-
resentation language described in [I1]. It provides constants, which correspond
to entities of the universe of discourse, as well as variables, which serve as place-
holders for constants. Moreover, first-order predicates (with variables and/or
constants as arguments) as well as propositional ones are provided, encoding
relations and conditions about the universe of discourse, respectively. Literals
are either predicates themselves or negated, with negation being understood as
classical negation within the scope of Prudens. Two literals corresponding to the
same predicate but with opposite signs are conflicting. The language, building
on the above, allows for if-then rules, which connect a set of premises, the rules’
body, with a single literal, the rules’ head. As with literals, two rules with con-
flicting heads are conflicting as well. Lastly, a list of rules alongside a priority
relation defined over all pairs of conflicting rules comprise a policy. By default,
priorities in a policy are determined by the rules’ order of appearance. That is,
the later a rule appears in the policy, the higher its priority is over conflicting
ones. Also, a context is a set of pairwise non-conflicting literals, corresponding
to a set of facts being known at the beginning of the reasoning process — see
Section for more. The language’s “vanilla” constructs are shown in Table

2.2 Reasoning

Reasoning in Prudens is performed utilizing prioritized forward-chaining seman-
tics, by exhaustively inferring all possible facts through all policy rules, respect-
ing priorities between them, given each time a set of currently known facts —
initially, the context. For instance, consider the example policy shown in Fig-
ure [T} In this case, a context containing isMonday and bobCalls would lead
us infer atWork and -answerCall, as follows: (i) At first, knowing isMonday
and bobCalls, R1 and R2 fire, allowing us to infer atWork and answerCall;
(ii) Knowing atWork, rule R3 fires, leading to -answerCall, which conflicts with
answerCall, which is resolved by preferring -answerCall over answerCall,

http://cognition.ouc.ac.cy/prudens/

Prudens: An Argumentation-Based Language for Cognitive Assistants 3

Item Syntax Example

constant Any non empty string containing alphanumeric alice, office_2
characters or underscores (a-zA-Z0-9_), start-
ing with a lowercase latter (a-z).
variable Any non empty string containing alphanumeric User, Place_23
characters or underscores (a-zA-Z0-9_), start-
ing with an uppercase latter (A-Z).
predicate Any non empty string starting with a lower- atHome, at(X, bob)
case latter (a-z) and possibly followed by an
arbitrary number of alphanumeric characters
or underscores (a-zA-Z0-9_). In case of first-
order predicates, a comma separated list of vari-
ables and/or constants should follow, enclosed
in parentheses.
literal A predicate, possibly preceded by a dash (-), -atWork, friends(X, Y)
indicating negation
rule A string starting with a non empty se- Rl :: a, b implies z
quence of alphanumeric characters or under- r2 :: f(X, 3) implies
scores (a-zA-Z0-9_), followed by : :, followed by g(X)
a comma-separated list of literals (body), fol-
lowed by the keyword implies, followed by a
single literal (head).
policy A semicolon-separated list of rules, preceded by @Knowledge
the @Knowledge keyword. Rl :: a implies z;
R2 :: a, b implies -z;
context A semicolon-separated list of pairwise non- a; b; -at(work);
conflicting literals.

Table 1. The syntax of Prudens.

@Knowledge

R1 :: isMonday implies atWork;

R2 :: bobCalls implies answerCall;
R3 :: atWork implies -answerCall;

Fig. 1. A simple propositional policy regarding phone call management.

since the former was inferred by R3, which is of higher priority than R2. (iii) Hav-
ing inferred atWork and -answerCall, nothing more may be inferred, so the
process terminates. For more on Prudens’s reasoning algorithm, see [I1].

2.3 Custom Priorities and Dilemmas

Apart from order-induced implicit rule prioritization, one may define custom
rule priorities in essentially two ways: programmatically, by providing a prior-
ity function as an optional argument to the Prudens’s core reasoning function

4 V. Markos, L. Michael

O@Knowledge
R1 :: bobCalls implies answerCall | 1;
R2 :: atWork implies -answerCall | 0;

@Knowledge
R1 :: bobCalls implies answerCall | 1;
R2 :: atWork implies -answerCall | 1;

Fig. 2. Two policies with custom priorities.

and; explicitly, by providing priorities within each rule’s declaration. Regarding
explicit priority manipulation, the language’s “vanilla” rule syntax is extended
to allow for priorities to be declared through integers following a rule’s head,
separated by a |, as in the policies shown in Figure |2l There, numbers indicate
priority, with negative values being allowed as well. So, given a context contain-
ing bobCalls; atWork;, the top policy in Figure [2] would yield answerCall,
since R1 is preferred over R2.

Naturally, allowing for custom priorities, there might be cases where two rules
are incomparable, either because no priority between them has been explicitly
determined, or because they are of the same priority, as in Figure [2| (bottom).
Such cases are called dilemmas. Since there is no clear way to resolve a dilemma,
the reasoning engine abstains from making a decision, ignoring both rules and
proceeding with the reasoning process. Any dilemmas encountered throughout
a reasoning cycle are noted and returned separately from the rest inferences.

3 Extended Syntax and Semantics

Apart from the language’s core features presented in Section [2] there are several
additional features that are offered by Prudens, as discussed below.

3.1 The Unification Predicate

Prudens comes with a built-in multipurpose binary predicate, denoted by 7=(-,-).
The unification predicate holds true provided that its two arguments are unifi-
able. So, for instance, given a rule like: R1 :: £(X), 7=(X, Y) implies g(Y);
and a context containing f(2), we would get g(2) as an inference. In general,
(function-free) unification is conceptualized as with most logical programming
interfaces; so two constants unify if they are equal, a variable unifies with any
constant and two (unassigned) variables always unify. We shall note at this point
that the unification predicate might not be used as a head literal in any rule.
The very same predicate also allows for numerical operations within its ar-
guments, provided that they do not invoke any variables that remain unassigned
once all other body predicates are grounded. So, a rule like R1 :: £(X), 7=(Y,
X+3) implies g(Y); with a context containing f(2) would infer g(5) but R2
10 £(X), 7=(Y-3, X) implies g(Y); with the same context would not, since

Prudens: An Argumentation-Based Language for Cognitive Assistants 5

@Knowledge
Rl :: calls(X), friend(X) implies answer(X);
R2 :: calls(X), time(H, M), ?lessThan(H, 17) implies -answer(X);

@Procedures
function lessThan(a, b) {
return parseFloat(a) < parseFloat(b);

}

Fig. 3. A policy indicating that any calls before 17:00 should be rejected, with the help
of a procedural predicate (lessThan), evaluating numerical comparisons.

there is no value assigned to Y by the time the predicate is evaluated. Any math-
ematical expressions within ?=(-,-) should adhere to ECMAScript 6 syntax.

3.2 On-the-fly Math Operations

Prudens also allows for math operations to be executed within any predicate,
given the restrictions mentioned above, about unassigned variables within the
unification predicate. Also, similarly to the unification predicate, numerical op-
erations may not be used in head literals. For instance, the following rule: R1
f(X, 2*X) implies double; given a context containing f(2,4) infers double.
An equivalent rule, avoiding within-predicate operations, would be R2 :: f(X,
Y), 7=(Y, 2%X) implies double;, which, however, introduces an additional
variable, Y, and leads to slightly slower processing time. Thus, whenever possi-
ble, within-predicate math operations should be preferred against 7=(-,-).

3.3 Procedural Predicates

Prudens allows for users to determine their own procedural predicates through
procedural code. Namely, one may provide general Boolean functions as a pred-
icate’s “definition”. For instance, expanding our running call management exam-
ple, let us consider the following scenario: we would like to answer all friends
calls, on condition that it is past 17:00. Assuming that time (H,M) represents
the time of the call, a policy that captures this functionality is shown in Fig-
ure [3l There, the procedural binary predicate ?lessThan, which compares its
two arguments and holds true whenever its first argument is less than its sec-
ond, facilitates an efficient execution of numerical comparisons. So, a context
containing calls(alice), friend(alice) and time(16,43) would result to
-answer (alice) using the above policy. However, substituting time(16,43)
with time (18,12) would result to answer (alice), as expected.

When working with procedural predicates there are several things one should
keep in mind: (i) the @Knowledge keyword should always come before the @Procedures

6 V. Markos, L. Michael

O@Knowledge
R1 :: £(A), g(X) implies h(X,A); @Knowledge
R1 :: bobCalls implies answer;
R2 :: atWork implies reject;
@Knowledge
R1 :: £(A), g(X) implies h(X,A); Cl :: answer # reject;

R2 :: h(X,b) implies z(X);

Fig. 4. Two first-order policies (left) and one with a compatibility constraint (right).

keyword; (ii) predicate names, when referenced in a rule’s body, should be pre-
ceded by a ?; (iii) procedural predicates are not allowed as rule heads; (iv) pred-
icate declarations should adhere to ECMAScript 6 standards; (v) no function
calls are allowed within a procedural predicate other than built-in functions of
JavaScript; (vi) every argument of a procedural predicate is by default consid-
ered to be a string, so in case they are supposed to be treated as integers or
floats, the built-in JavaScript parseInt and parseFloat functions should be
used, respectively.

3.4 Partially Grounded Contexts

Literals in a context, in contrast to what is demanded by the language’s “vanilla”
version, may be partially or even totally ungrounded. That is, a context may
well contain literals like £ (Y), even if Y is a free variable. In any such case, vari-
ables propagate throughout inferences, unifying with other variables whenever
it makes sense. For instance, consider the policies shown left in Figure [4] Using
the top left one with a context containing £ (Y); g(3); one infers h(3,Y). Using
a context containing £ (Y) with the policy shown bottom left in Figure [4] this
time, we infer z(3). Note here that fresh variables, not used elsewhere in the
underlying policy, should be preferred in contexts.

3.5 Extended Conflict Semantics

In the vanilla version of the language, two literals are considered conflicting
in case they stem from the same predicate but have opposite signs. Prudens,
however, also allows for rules that determine broader conflicts between arbitrary
predicates. Such rules are called compatibility constraints and adhere to the
following syntax:

ruleName :: predl # pred2;

So, for instance, using the policy shown in Figure {4 (right) and a context con-
taining bobCalls; atWork;, one infers reject, since C1 declares reject and
answer as conflicting literals. Note at this point that there are no assumed pri-
orities between compatibility constraints, in contrast to what is the case with
the rest rules in a policy.

Prudens: An Argumentation-Based Language for Cognitive Assistants 7

4 Ongoing and Future Work

Below we briefly present some of the most prominent works in progress invoking
Prudens as well as discuss possible future directions.

4.1 Deduction, Induction & Abduction

So far, Prudens has been utilized as the underlying deductive engine for ma-
chine coaching [I1], an interactive human-in-the-loop methodology that allows a
human coach to train a machine on a certain task by providing advice to it, echo-
ing ideas from McCarthy’s advice taking machines [9]. Furthermore, Prudens’s
semantics allow for abductive reasoning as well. Hence, a candidate domain of
application is, among others, Neural-Symbolic Integration [4], where machine
coaching could be used as an induction mechanism to train the symbolic module
and Prudens could serve as the underlying knowledge representation language
for both deduction as well as abduction, extending ideas found in [13].

4.2 Natural Language Interfaces

While cognitively easier than imperative programming, declarative programming
still requires from the programmer to be accustomed to some sort of coding for-
malism. Consequently, interfaces that allow users to program using natural lan-
guage provide a user-friendly and cognitively simple alternative to sheer coding.
We are currently working towards two independent Natural Language Interfaces
(NLIs). The first one relies on building a NL-to-Prudens translator utilizing ma-
chine coaching [5] to learn the underlying translation grammar. Here, Prudens
itself is used at the meta-level as the interaction language between the human
coach and the machine. The second one is the design of a Controlled NLI for Pru-
dens, in the spirit of other works in the field of Logical Programming, like Logical
English [7]. Apart from the aforementioned ongoing projects, Large Language
Models are also under consideration as appropriate NL-to-Prudens translators,
with the potential of also capturing Prudens’s reasoning semantics [IJ.

4.3 Applications

At the time of writing this, there are two applications being developed utiliz-
ing Prudens in the background. The first one, a mobile call assistant, intends
to use machine coaching so as to elicit a user’s preferences regarding their calls
and notifications management, with Prudens serving as the knowledge represen-
tation language in the background. Inspired by previous work on chess coach-
ing [8], where again Prudens had been used in the background for deductive
and inductive purposes, our second ongoing project is related to another strat-
egy game: Minesweeper. There, users are asked to explain to an agent how to
play Minesweeper successfully, again utilizing machine coaching as the learning
methodology, with Prudens facilitating human-machine interaction.

8 V. Markos, L. Michael
5 Conclusions

We have presented Prudens, an argumentation-based language for the design
of cognitive assistants. We have discussed its syntax as well as any additional
features it provides. Moreover, we have presented several currently developed and
future applications as well as extensions of Prudens, aiming to further facilitate
the design of cognitive assistants by non-experts.

Apart from the aforementioned ongoing projects, we are also working on the
direction of generating comprehensive visualizations about Prudens and its in-
ternal processes. Namely, effort is being put on visualizing the reasoning process
of Prudens in a step-by-step manner, so as to facilitate user understanding and,
consequently, build more trust with the end-user. At the same time, we are also
working on knowledge-graph based explanation representations, again, as an at-
tempt to make Prudens more accessible to a less expert audience. Ultimately,
our goal is to build an easy-to-use ecosystem for Machine Coaching, allowing for
an efficient and thorough in situ assessment of Machine Coaching.

Acknowledgements This work was supported by funding from the European
Regional Development Fund and the Government of the Republic of Cyprus
through the Research and Innovation Foundation under grant agreement no.
INTEGRATED/0918,/0032, from the EU’s Horizon 2020 Research and Innova-
tion Programme under grant agreements no. 739578 and no. 823783, and from
the Government of the Republic of Cyprus through the Deputy Ministry of Re-
search, Innovation, and Digital Policy.

References

1. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N.; Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M.,
Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such, F.P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W.H., Nichol,
A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saunders,
W., Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder, P., McGrew,
B., Amodei, D., McCandlish, S., Sutskever, 1., Zaremba, W.: Evaluating Large
Language Models Trained on Code (2021). https://doi.org/10.48550/ARXIV.2107.
03374, https://arxiv.org/abs/2107.03374

2. Engelbart, D.C.: Augmenting Human Intellect: A Conceptual Framework. In: SRI
Summary Report AFOSR-3223 (1962)

3. de Graaf, M., Malle, B.F.: How People Explain Action (and Autonomous Intelligent
Systems Should Too). In: AAAI Fall Symposia (2017)

4. Hammer, B., Hitzler, P.: Perspectives of Neural-Symbolic Integration, vol. 77 (01
2007). https://doi.org/10.1007 /978-3-540-73954-8

5. Toannou, C., Michael, L.: Knowledge-Based Translation of Natural Language into
Symbolic Form. In: Proceedings of the 7th Linguistic and Cognitive Approaches

https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1007/978-3-540-73954-8
https://doi.org/10.1007/978-3-540-73954-8

10.

11.

12.

13.

14.

Prudens: An Argumentation-Based Language for Cognitive Assistants 9

To Dialog Agents Workshop - LaCATODA 2021. pp. 24-32. Montreal, Canada
(2021), |http://ceur-ws.org/Vol-2935 /#paper3

Kakas, A., Michael, L.: Cognitive Systems: Argument and Cognition. IEEE Intel-
ligent Informatics Bulletin 17, 14-20 (12 2016)

Kowalski, R.: English as a logic programming language. New Generation Com-
puting 8(2), 91-93 (Aug 1990). |https://doi.org/10.1007/BF03037468, https://doi.
org/10.1007/BF03037468

Markos, V.: Application of the Machine Coaching Paradigm on Chess Coaching.
Master’s thesis, School of Pure & Applied Sciences, Open University of Cyprus
(2020)

McCarthy, J.: Programs with Common Sense. In: Proceedings of Teddington Con-
ference on the Mechanization of Thought Processes (1958)

Mercier, H., Sperber, D.: Why Do Humans Reason? Arguments for an Argu-
mentative Theory. Behavioral and Brain Sciences 34(2), 57-74 (2011). https:
//doi.org/10.1017,/S0140525X10000968

Michael, L.: Machine Coaching. In: IJCATI 2019 Workshop on Explainable Artifi-
cial Intelligence. pp. 80-86. Macau, China (2019), https://www.researchgate.net/
publication/334989337 Machine Coaching

Miller, T.: Explanation in Artificial Intelligence: Insights from the Social
Sciences. Artificial Intelligence 267, 1-38 (2019). |https://doi.org/https://doi.
org/10.1016/j.artint.2018.07.007, https://www.sciencedirect.com /science/article/
pii/S0004370218305988

Tsamoura, E., Hospedales, T., Michael, L.: Neural-Symbolic Integration: A Compo-
sitional Perspective. Proceedings of the AAAT Conference on Artificial Intelligence
35(6), 5051-5060 (May 2021), https://ojs.aaai.org/index.php/AAAI/article/view/
16639

Valiant, L.G.: A Theory of the Learnable. In: STOC ’84: Symposium on Theory
of Computing. pp. 1134-1142 (1984)

http://ceur-ws.org/Vol-2935/#paper3
https://doi.org/10.1007/BF03037468
https://doi.org/10.1007/BF03037468
https://doi.org/10.1007/BF03037468
https://doi.org/10.1007/BF03037468
https://doi.org/10.1017/S0140525X10000968
https://doi.org/10.1017/S0140525X10000968
https://doi.org/10.1017/S0140525X10000968
https://doi.org/10.1017/S0140525X10000968
https://www.researchgate.net/publication/334989337_Machine_Coaching
https://www.researchgate.net/publication/334989337_Machine_Coaching
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://ojs.aaai.org/index.php/AAAI/article/view/16639
https://ojs.aaai.org/index.php/AAAI/article/view/16639
https://www.researchgate.net/publication/366400234

	Prudens: An Argumentation-Based Language for Cognitive Assistants

