
Speeding Up Recommender Systems Using
Association Rules ?

Eyad Kannout1,2[0000−0001−7543−774X]

Hung Son Nguyen1,3[0000−0002−3236−5456]

Marek Grzegorowski1,4[0000−0003−4740−0725]

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
2 eyad.kannout@mimuw.edu.pl

3 son@mimuw.edu.pl
4 m.grzegorowski@mimuw.edu.pl

Abstract. Recommender systems are considered one of the most rapidly
growing branches of Artificial Intelligence. The demand for finding more
efficient techniques to generate recommendations becomes urgent. How-
ever, many recommendations become useless if there is a delay in gener-
ating and showing them to the user. Therefore, we focus on improving
the speed of recommendation systems without impacting the accuracy.
In this paper, we suggest a novel recommender system based on Fac-
torization Machines and Association Rules (FMAR). We introduce an
approach to generate association rules using two algorithms: (i) apriori
and (ii) frequent pattern (FP) growth. These association rules will be
utilized to reduce the number of items passed to the factorization ma-
chines recommendation model. We show that FMAR has significantly
decreased the number of new items that the recommender system has
to predict and hence, decreased the required time for generating the
recommendations. On the other hand, while building the FMAR tool,
we concentrate on making a balance between prediction time and accu-
racy of generated recommendations to ensure that the accuracy is not
significantly impacted compared to the accuracy of using factorization
machines without association rules.

Keywords: Recommendation system · Association rules · Apriori al-
gorithm · Frequent pattern growth algorithm · Factorization machines ·
Prediction’s time · Quality of recommendations.

1 Introduction

Throughout 1 the past decade, recommender systems have become an essential
feature in our digital world due to their great help in guiding the users to-
wards the most likely items they might like. Recently, recommendation systems

? Research co-funded by Polish National Science Centre (NCN) grant no.
2018/31/N/ST6/00610.

1 The final publication is available at Springer via https://doi.org/10.1007/978-3-031-
21967-2 14

ar
X

iv
:2

21
1.

08
79

9v
1 

 [
cs

.L
G

] 
 1

6 
N

ov
 2

02
2



2 E. Kannout Author et al.

have taken more and more place in our lives, especially during the COVID-19
pandemic, where many people all over the world switched to online services to
reduce the direct interaction between each other. Many researchers do not ex-
pect life to return to normal even after the epidemic. All previous factors made
recommender systems inevitable in our daily online journeys.

Many online services are trying to boost their sales by implementing rec-
ommendation systems that estimate users’ preferences or ratings to generate
personalized offers and thus recommend items that are interesting for the users.
Recommendation systems can be built using different techniques which leverage
the rating history and possibly some other information, such as users’ demo-
graphics and items’ characteristics. The goal is to generate more relevant rec-
ommendations. However, these recommendations might become useless if the
recommendation engine does not produce them in a proper time frame.

Recently, the factorization machine has become a prevalent technique in the
context of recommender systems due to its capabilities of handling large, sparse
datasets with many categorical features. Although many studies have proved
that factorization machines can produce accurate predictions, we believe that
the prediction time should also be considered while evaluating this technique.
Therefore, in this paper, we work on finding a novel approach that incorporates
association rules in generating the recommendations using the factorization ma-
chines algorithm to improve the efficiency of recommendation systems. It is worth
noting that the factorization machine model is used to evaluate our method and
compare the latency of FM before and after using the association rules. However,
in practice, our method can be combined with any other recommendation engine
to speed up its recommendations.

The main contributions of this paper are as follows: 1) proposing a method
that uses the apriori algorithm or frequent pattern growth (FP-growth) algo-
rithm to generate association rules which suggest items for every user based
on the rating history of all users; 2) utilizing these association rules to create
short-listed set of items that we need to generate predictions for them; 3) em-
ploying factorization machines model to predict missing user preferences for the
short-listed set of items and evaluate the top-N produced predictions.

The remainder of this paper is organized as follows. In Section 2, we provide
background information for factorization machines algorithm and association
rules in addition to reviewing some related works. In Section 3, we describe the
problem we study in this paper. Also, we present FMAR - a novel recommender
system that utilizes factorization machines and association rules to estimate
users’ ratings for new items. Section 4 evaluates and compares FMAR with
a traditional recommender system built without employing association rules.
Finally, in Section 5, we conclude the study and suggest possible future work.

2 Preliminaries

In this section, we briefly summarize the academic knowledge of factorization
machines and association rules.



Speeding Up Recommender Systems Using Association Rules 3

2.1 Factorization Machines

In linear models, the effect of one feature depends on its value. While in poly-
nomial models, the effect of one feature depends on the value of the other fea-
tures. Factorization machines [1] can be seen as an extension of a linear model
which efficiently incorporates information about features interactions, or it can
be considered equivalent to polynomial regression models where the interactions
among features are taken into account by replacing the model parameters with
factorized interaction parameters. [2].

However, polynomial regression is prone to overfitting due to a large number
of parameters in the model. Needless to say, it is computationally inefficient to
compute weights for each interaction since the number of pairwise interactions
scales quadratically with the number of features. On the other hand, factorization
machines elegantly handled previous issues by finding a one-dimensional vector
of size k for each feature. Then, the weight values of any combination of two
features can be represented by the inner product of the corresponding features
vectors. Therefore, factorization machines manage to factorize the interactions
weight matrix W ∈ Rn×n, which is used in polynomial regression, as a product
V V T , where V ∈ Rn×k. So, instead of modeling all interactions between pairs of
features by independent parameters like in polynomial regression (see Equation
1). We can achieve that using factorized interaction parameters, also known as
latent vectors, in factorization machines (see Equation 2).

ŷ(x) = w0 +

N∑
i=1

wixi +

N∑
i=1

N∑
j=i+1

wijxixj (1)

w0 ∈ R: is the global bias.
wi ∈ Rn: models the strength of the i-th variable.
wij ∈ Rn×n: models the interaction between the ith and j-th variable.

ŷ(x) = w0 +

N∑
i=1

wixi +

N∑
i=1

N∑
j=i+1

〈vi, vj〉xixj (2)

〈vi, vj〉: models the interaction between the i-th and j-th variable by factorizing
it, where V ∈ Rn×k and 〈., .〉 is the dot product of two vectors of size k.

This advantage is very useful in recommendation systems since the datasets
are mostly sparse, and this will adversely affect the ability to learn the feature
interactions matrix as it depends on the feature interactions being explicitly
recorded in the available dataset.

2.2 Association Rules

The basic idea of association rules [3][4] is to uncover all relationships between
elements from massive databases. These relationships between the items are ex-
tracted using every distinct transaction. In other words, association rules try to



4 E. Kannout Author et al.

find global or shared preferences across all users rather than finding an individ-
ual’s preference like in collaborative filtering-based recommender systems.

At a basic level, association rule mining [3][4][5] analyzes data for patterns
or co-occurrences using machine learning models. An association rule consists of
an antecedent, which is an item found within the data, and a consequent, which
is an item found in combination with the antecedent. Various metrics, such
as support, confidence, and lift, identify the most important relationships and
calculate their strength. Support metric [3][4][5] is the measure that gives an idea
of how frequent an itemset is in all transactions (see Equation 3). The itemset
here includes all items in antecedent and consequent. On the other hand, the
confidence [3][4][5] indicates how often the rule is true. In other words, it defines
the percentage of occurrence of consequent given that the antecedents occur (see
Equation 4). Finally, the lift [5] is used to discover and exclude the weak rules
that have high confidence, which can be calculated by dividing the confidence
by the unconditional probability of the consequent (see Equation 5). Various
algorithms are in place to create associations rules using previous metrics, such
as Apriori [4][6], AprioriTID [4][6], Apriori Hybrid [4][6], AIS (Artificial Immune
System) [7], SETM [8] and FP-growth (Frequent pattern) [4][9]. In the next
section, we provide more details about how we use these metrics to find the
association rules used to improve the prediction time in the recommender system.

Support({X} → {Y }) =
Transactions containing both X and Y

Total Number of transactions
(3)

Confidence({X} → {Y }) =
Transactions containing both X and Y

Transactions containing X
(4)

Lift({X} → {Y }) =
Confidence

Transactions containing Y
(5)

2.3 Related works

Over the past decade, a lot of algorithms concerned with improving the accuracy
of the recommendation have been constantly proposed. However, while reviewing
the research literature related to recommendation systems and what has been
done to improve the prediction’s time, we find that there is a research gap in
this area even though the speed of recommendation, besides the accuracy, is a
major factor in real-time recommender systems.

Xiao et al. [10] worked on increasing the speed of recommendation engines.
They spotted that the dimension of the item vector in a collaborative filtering
algorithm is usually very large when we calculate the similarity between two
items. To solve this problem, they introduced some methods to create a set of
expert users by selecting small parts of user data. One of these methods is based
on selecting expert users according to the number of types of products they
have purchased before. In comparison, another method calculates the similari-
ties between users and then selects expert users based on the frequency that the
user appears in other users’ K-most similar users set. The results show that us-
ing expert users in an item-based collaborative filtering algorithm has increased



Speeding Up Recommender Systems Using Association Rules 5

the speed of generating recommendations with preserving the accuracy to be
very close to original results. Tapucu et al. [11] carried out some experiments
to check the performance of user-based, item-based, and combined user/item-
based collaborative filtering algorithms. Different aspects have been considered
in their comparisons, such as size and sparsity of datasets, execution time, and
k-neighborhood values. They concluded that the scalability and efficiency of col-
laborative filtering algorithms need to be improved. The existing algorithms can
deal with thousands of users within a reasonable time. Still, modern e-commerce
systems require to scale to millions of users and hence, expect even improved
prediction time and throughput of recommendation engines. According to pre-
vious findings, we believe there is room for further improvements concerning
prediction time and efficiency of recommendation systems.

3 FMAR Recommender System

In this section, we formally provide the statement of the problem that we aim
to tackle. Then, we introduce the details of a novel recommender system that
is based on Factorization Machine and Association Rules (FMAR). We first for-
malize the problem we plan to solve. Then, we describe our proposed model
which has two versions based on the algorithm used to generate the associa-
tion rules: (i) factorization machine apriori based model, and (ii) factorization
machine FP-growth based model.

3.1 Problem Definition

In many recommender systems, the elapsed time required to generate the recom-
mendations is very crucial. Moreover, in some systems, any delay in generating
the recommendations can be considered as a failure in the recommendation en-
gine. The main problem we address in this paper is to minimize the prediction
latency of the recommender system by incorporating the association rules in the
process of creating the recommender system. The main idea is to use the asso-
ciation rules to decrease the number of items that we need to approximate their
ratings, hence, decreasing the time that the recommender system requires to
generate the recommendations. Also, our goal is to make sure that the accuracy
of the final recommendations is not impacted after filtering the items using the
association rules.

3.2 Factorization Machine Apriori Based Model

In this section, we introduce the reader to the first version of FMAR which pro-
poses a hybrid model that utilizes factorization machines [1] and apriori [4][6]
algorithms to speed up the process of generating the recommendations. Firstly,
we use apriori algorithm to create a set of association rules based on the rat-
ing history of users. Secondly, we use these rules to create users’ profile which



6 E. Kannout Author et al.

recommends a set of items for every user. Then, when we need to generate rec-
ommendations for a user, we find all products that are not rated before by this
user, and instead of generating predictions for all of them, we filter them using
the items in the users’ profile. Finally, we pass the short-listed set of items to
a recommender system to estimate their ratings using factorization machines
model.

In the context of association rules, it is worth noting that while generating the
rules, all unique transactions from all users are studied as one group. On the other
hand, while calculating the similarity matrix in collaborative filtering algorithms,
we need to iterate over all users and every time we need to identify the similarity
matrix using transactions corresponding to a specific user. However, what we
need to do to improve the recommendation speed is to generate predictions for
parts of items instead of doing that for all of them. Next, we introduce the
algorithms that we use to generate the association rules and users’ profile (cf.
Algorithm 1).

Algorithm 1 Association Rules Generation Using Apriori Algorithm

1: Extract favorable reviews . ratings > 3
2: Find frequent item-sets F . support > min support
3: Extract all possible association rules R
4: for each r ∈ R do
5: Compute confidence and lift
6: if (confidence < min confidence) or (lift < min lift) then
7: Filter out this rule from R
8: end if
9: end for

10: Create users’ profile using rules in R

Algorithm 2 Users’ Profile Generation

1: for each user do
2: Find high rated items based on rating history
3: Find the rules that their antecedents are subset of high rated items
4: Recommend all consequences of these rules
5: end for

After generating the users’ profile, we can use it to improve the recommen-
dation speed for any user by generating predictions for a subset of not-rated
items instead of doing that for all of them. The filtering is simply done using
the recommended items which are extracted for every user using the association
rules (cf. Algorithm 2). Moreover, the filtering criteria can be enhanced by using
the recommended items of the closest n-neighbors of the target user. The sim-
ilarity between the users can be calculated using pearson correlation or cosine
similarity measures.



Speeding Up Recommender Systems Using Association Rules 7

On the other hand, it is noteworthy that the association rules in our experi-
ments are generated using the entire dataset which means that these rules try to
find global or shared preferences across all users. However, another way to gen-
erate the association rules is to split the dataset based on users’ demographics,
such as gender, or items’ characteristics, such as genre, or even contextual infor-
mation, such as weather and season. Thus, if we are producing recommendations
for a female user in winter season, we can use dedicated rules which are extracted
from historical ratings given by females in winter season. Following this strategy,
we can generate multiple sets of recommendation rules which can be used later
during prediction time to filter the items. Obviously, the rules generated after
splitting the dataset will be smaller. So, the prediction latency can be minimized
by selecting a smaller set of rules. In fact, this feature is very useful when we
want to make a trade-off between the speed and quality of recommendations.
Lastly, it is important to note that several experiments are conducted in order to
select the appropriate values of hyper-parameters used in previous algorithms.
For instance, min support = 250, min confidence = 0.65, number of epochs in
FM = 100, number of factors in FM = 8. However, multiple factors are taken
into consideration while selecting those values, including accuracy, number of
generated rules, and memory consumption.

Algorithm 3 FP-Tree Construction

1: Find the frequency of 1-itemset
2: Create the root of the tree (represented by null)
3: for each transaction do
4: Remove the items below min support threshold
5: Sort the items in frequency support descending order
6: for each item do . starting from highest frequency
7: if item not exists in the branch then
8: Create new node with count 1
9: else

10: Share the same node and increment the count
11: end if
12: end for
13: end for

3.3 Factorization Machine FP-Growth based Model

In this section, we introduce the second version of FMAR where FP-growth [4]
[9] algorithm has been employed to generate the association rules. In general, FP-
growth algorithm is considered as an improved version of apriori method which
has two major shortcomings: (i) candidate generation of itemsets which could be
extremely large, and (ii) computing support for all candidate itemsets which is
computationally inefficient since it requires scanning the database many times.
However, what makes FP-growth algorithm different from apriori algorithm is
the fact that in FP-growth no candidate generation is required. This is achieved



8 E. Kannout Author et al.

by using FP-tree (frequent pattern tree) data structure which stores all data
in a concise and compact way. Moreover, once the FP-tree is constructed, we
can directly use a recursive divide-and-conquer approach to efficiently mine the
frequent itemsets without any need to scan the database over and over again.
Next, we introduce the steps followed to mine the frequent itemsets using FP-
growth algorithm. We will divide the algorithm into two stages: (i) FP-tree
construction, and (ii) mine frequent itemsets (cf. Algorithm 3 and Algorithm 4).

Algorithm 4 Mining Frequent Itemsets

1: Sort 1-itemset in frequency support ascending order
2: Remove the items below min support threshold
3: for each 1-itemset do . starting from lowest frequency
4: Find conditional pattern base by traversing the paths in FP-tree
5: Construct conditional FP-tree from conditional pattern base
6: Generate frequent itemsets from conditional FP-ree
7: end for

After finding the frequent itemsets, we generate the association rules and
users’ profiles in the same way as in FM Apriori-based model. Regarding the
hyper-parameters of FP-Growth algorithm, we used min support = 60 and
min confidence = 0.65. Finally, in order to generate predictions, we employ a
factorization machines model, which is created using the publicly available soft-
ware tool libFM [12]. This library provides an implementation for factorization
machines in addition to proposing three learning algorithms: stochastic gradi-
ent descent (SGD) [1], alternating least-squares (ALS) [13], and Markov chain
Monte Carlo (MCMC) inference [14].

4 Evaluation for FMAR

In this section, we conduct comprehensive experiments to evaluate the perfor-
mance of the FMAR recommender system. In our experiments, we used Movie-
Lens 100K dataset1 which was collected by the GroupLens research project at
the University of Minnesota. MovieLens 100K is a stable benchmark dataset that
consists of 1682 movies and 943 users who provide 100,000 ratings on a scale of
1 to 5. It is important to note that, in this paper, we are not concerned about
users’ demographics and contextual information since the association rules are
generated based only on rating history.

4.1 Performance Comparison and Analysis

In order to provide a fair comparison, we use several metrics and methods to
evaluate FMAR and FM recommender systems, such as Mean Absolute Error

1 https://grouplens.org/datasets/movielens/



Speeding Up Recommender Systems Using Association Rules 9

Fig. 1: MAE Comparison Fig. 2: NDCG Comparison

(MAE), Normalized Discounted Cumulative Gain (NDCG), and Wilcoxon Rank-
Sum test. Firstly, we selected 50 users who made a significant amount of ratings
in the past. For every user, a dedicated testing set has been created by arbi-
trary selecting 70% of the ratings made by this user in the past. On the other
hand, the training set is constructed using the rest of the records in the entire
dataset, which are not used in testing sets. This training set is used to generate
the association rules and build the factorization machines model. For each eval-
uation method, we created two sets of items for every user. The first one, called
original, contains all items in the testing set. While the second one, called short-
listed, is created by filtering the original set using the association rules. Finally,
we pass both sets to the factorization machines model to generate predictions
and evaluate both versions of FMAR, i.e., Apriori-based and FP-growth-based
FM models, by comparing them with the standard FM model operating on the
complete data.

In the first experiment, we calculate the mean absolute error (MAE) gen-
erated in both recommendation engines. The main goal of this approach is to
show that the quality of recommendations is not significantly impacted after
filtering the items in the testing set using the association rules. Fig 1 compares
the mean absolute error of the predictions made using FM model with FM Apri-
ori model and FM FP-growth model for 50 users. We use a box plot, which is
a standardized way of displaying the distribution of data, to plot how the val-
ues of mean absolute error are spread out for 50 users. This graph encodes five
characteristics of the distribution of data which show their position and length.
These characteristics are minimum, first quartile (Q1), median, third quartile
(Q3), and maximum. The results of this experiment show that MAE of FMAR
in both versions, FM Apriori and FM FP-growth, is very close to MAE of FM
recommender system. However, the average value of MAE for 50 users is 0.71
using FM model, 0.80 using FMAR (Apriori model), and 0.78 using FMAR (FP
Growth model).

In the second experiment, we evaluate FMAR by comparing its recommen-
dation with FM using Normalized Discounted Cumulative Gain (NDCG) which
is a measure of ranking quality that is often used to measure the effectiveness



10 E. Kannout Author et al.

of recommendation systems or web search engines. NDCG is based on the as-
sumption that highly relevant recommendations are more useful when appearing
earlier in the recommendations list. So, the main idea of NDCG is to penalize
highly relevant recommendations that appear lower in the recommendation list
by reducing the graded relevance value logarithmically proportional to the po-
sition of the result. Fig 2 compares the accuracy of FM model with FM Apriori
model and FM FP-growth model for 50 users and shows the distribution of the
results. It is worth noting that in this test we calculate NDCG using the highest
10 scores in the ranking which are generated by FM or FMAR. The results show
that both versions of FMAR model have always higher NDCG values than FM
model which means that true labels are ranked higher by predicted values in
FMAR model than in FM model for the top 10 scores in the ranking.

In the third evaluation method, we run Wilcoxon Rank-Sum test on the
results of previous experiments. Firstly, we apply Wilcoxon Rank-Sum test to
the results of the first experiment in order to prove that the difference in MAE
between FM and FMAR is not significant, and hence, it can be discarded. So,
we pass two sets of samples of MAE for FM and FMAR. The Table 1 shows
the p-value for comparing FMAR using Apriori model and FP Growth model
with FM model. In both cases, we got p-value > 0.05 which means that the
null hypothesis is accepted at the 5% significance level, and hence, the difference
between the two sets of measurements is not significant. On the other hand, we
apply Wilcoxon Rank-Sum test to the results of the second experiment to check
if the difference in NDCG between FM and FMAR is significant. However, the
Table 1 shows that p-value < 0.05 for comparing both models of FMAR with
FM model. This means the null hypothesis is rejected at the 5% significance
level (accept the alternative hypothesis), and hence, the difference is significant.
Since FMAR model has higher NDCG than FM model, we can conclude that
FMAR outperforms FM for the highest top 10 predictions.

Model p-value

MAE (FM Vs FMAR-Apriori model) 0.29

MAE (FM Vs FMAR-FP Growth model) 0.13

NDCG (FM Vs FMAR-Apriori model) 1.74e-08

NDCG (FM Vs FMAR-FP Growth model) 0.04

Table 1: Wilcoxon Rank-Sum Test

In the last experiment, we compare FM and FMAR in terms of the speed
of their operation, measured as the number of predictions performed by the
factorization machines model. The main idea is to estimate the time necessary
to prepare recommendations for every tested user for both evaluated approaches.



Speeding Up Recommender Systems Using Association Rules 11

Fig. 3: Comparison of the speed of methods (estimated by the number of predictions
made by the factorization machine model, i.e., the lower the better)

Fig 3 shows the distribution of the results of this experiment for the selected 50
test users. Observably, the number of items that we need to predict with FMAR
is significantly lower due to using the association rules for filtering. The results
show that the FMAR model can generate predictions for any user at least four
times faster than the FM model. Finally, it is noteworthy that generating the
rules is part of the training procedure. Therefore, it is a one-time effort, and there
is no need to regenerate or update the association rules frequently in FMAR.
Therefore, the computational cost of the training procedure for every method,
including extracting the association rules, is not considered in our comparisons.

In the final analysis, all previous experimentations showed that after applying
our method, the factorization machines could perform significantly faster with
no drop in quality considering MAE and NDCG measures.

5 Conclusions and Future Work

This article introduces FMAR, a novel recommender system, which methodically
incorporates the association rules in generating the recommendations using the
factorization machines model. Our study evaluates two approaches to creating
association rules based on the users’ rating history, namely: the apriori and
frequent pattern growth algorithms. These rules are used to decrease the number
of items passed to the model to estimate the ratings, reducing the latency of the
recommender system prediction.

To evaluate our proposed model, we conducted comprehensive experiments
on MovieLens 100K dataset using the libFM tool [12] which provides imple-
mentations for factorization machines as well as machine learning algorithms.
Moreover, we presented multiple evaluation methods to compare the perfor-
mance of FMAR against the recommender system built using the factorization
machines algorithm. The experimental results show that FMAR has improved



12 E. Kannout Author et al.

the efficiency of recommender systems. Furthermore, the experiments also indi-
cate that the accuracy of FMAR is very close to the results produced by the
standard recommender system.

In the future work, we plan to incorporate more information in the process
of producing the association rules, such as users’ demographics, items’ charac-
teristics, and contextual information. Another important aspect to consider is to
evaluate our proposed model using different recommender systems and different
sizes of datasets. However, we are interested in creating a web interface where
FMAR is used to generate recommendations for users. In this scenario, we are
particularly interested in employing more advanced algorithms to generate the
association rules, such as AprioriTID [4][6], Apriori Hybrid [4][6], AIS (Artificial
Immune System) [7] and SETM [8]. We believe that using previous algorithms
would help to further improve the performance and accuracy of FMAR. As a
result, FMAR can be evaluated using different settings selected in a user-friendly
web interface.

Furthermore, we plan to consider the changes in users’ behavior and pref-
erences by periodically updating association rules based on recent changes in
rating history. Another direction of future work is to utilize the generated asso-
ciation rules to solve the cold-start problem in recommendation systems where
the new users do not have (or have very few) ratings in the past. Finally, we
plan to use distributed stream processing engines, like Apache Flink, to examine
parallel implementations of FMAR, where the process of extracting the rules
and generating the recommendations is scalable to vast streams or large-scale
datasets.

References

1. S. Rendle, ”Factorization Machines”, in Proc. IEEE Int. Conf. Data Mining, Dec.
2010, pp. 995–1000, doi: 10.1109/ICDM.2010.127.

2. C. Freudenthaler, L. Schmidt-Thieme and S. Rendle, ”Factorization Machines Fac-
torized Polynomial Regression Models”, 2011.

3. W. Haotong, ”Data Association Rules Mining Method Based on Improved Apri-
ori Algorithm”, In 2020 the 4th International Conference on Big Data Research
(ICBDR’20) (ICBDR 2020). Association for Computing Machinery, New York,
NY, USA, 12–17. https://doi.org/10.1145/3445945.3445948.

4. N.Satyavathi, B.Rama and A.Nagaraju, ”Present State-of-The-Art of Dynamic
Association Rule Mining Algorithms”, International Journal of Engineering and
Advanced Technology, Volume-9 Issue-1, October 2019, PP: 6398-6405, doi:
10.35940/ijeat.A2202.109119.

5. B. Fuguang, L. Mao, Y. Zhu, C. Xiao, and C. Xu, ”An Improved Evaluation
Methodology for Mining Association Rules”. Axioms 2022, Volume:11, ISSN:2075-
1680, doi: 10.3390/axioms11010017.

6. Merry Kp, Rabindra Kumar Singh and Swaroop. S. Kumar, ”Apriori-hybrid al-
gorithm as a tool for colon cancer microarray data classification,” International
Journal of Engineering Research and Development, vol.4, pp. 53-57, 2012.

7. K. Khurana and S. Sharm, ”A comparative analysis of association rule mining
algorithms”, Journal of Scientific and Research Publications, Volume 3, Issue 5,
2013.



Speeding Up Recommender Systems Using Association Rules 13

8. A. Saxena and V. Rajpoot, ”A Comparative Analysis of Association Rule Mining
Algorithms”, IOP Conference Series: Materials Science and Engineering, Volume
1099, 2021, doi: 10.1088/1757-899X/1099/1/012032.

9. Y. Zeng, S. Yin, J. Liu, and M. Zhang, ”Research of Improved FP-Growth Al-
gorithm in Association Rules Mining”, Scientific Programming Journal, 2015,
ISSN:1058-9244, doi: 10.1155/2015/910281.

10. W. Xiao, S. Yao, and S. Wu, ”Improving on recommend speed of recommender
systems by using expert users”, Chinese Control and Decision Conference (CCDC),
2016: 2425–30, doi: 10.1109/CCDC.2016.7531392.

11. D. Tapucu, S. Kasap, and F. Tekbacak, ”Performance comparison of combined
collaborative filtering algorithms for recommender systems” in 2012 IEEE 36th
Annual Computer Software and Applications Conference Workshops, July 2012,
pp. 284–289, doi: 10.1109/COMPSACW.2012.59.

12. S. Rendle, ”Factorization Machines with libFM” ACM Trans. Intell. Syst. Technol.
3, 3, Article 57 (May 2012), 22 pages, doi: 10.1145/2168752.2168771.

13. S. Rendle, Z. Gantner, C. Fredenthale, and L. Schmidit-Thieme, ”Fast context-
aware recommendations with factorization machines”, In Proceedings of the 34th
ACM SIGIR Conference on Reasearch and Development in Information Retrieval,
2011, doi: 10.1145/2009916.2010002.

14. C. Fredenthaler, L. Schmidit-Thieme, and S. Rendle, ”Bayesian factorization ma-
chines” In Proceedings of the NIPS Workshop on Sparse Representation and Low-
rank Approximation, 2010.


	Speeding Up Recommender Systems Using Association Rules 

