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Abstract. This article studies the linear ordering problem, with ap-
plications in social choice theory and databases for biological datasets.
Integer Linear Programming (ILP) formulations are available for the lin-
ear ordering problem and some extensions. ILP reformulations are pro-
posed, showing relations with the Asymmetric Travel Salesman Prob-
lem. If a strictly tighter ILP formulation is found, numerical results
justify the quality of the reference formulation for the problem in the
Branch& Bound convergence, and the quality of the continuous relax-
ation to design rounding heuristics. This work offers perspectives to de-
sign matheuristics for the linear ordering problem and extensions.
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1 Introduction

A bridge between optimization and Machine Learning (ML) exists to optimize
training parameters of ML models, using continuous optimization and meta-
heuristics [17, 18]. Discrete and exact optimization, especially Integer Linear
Programming (ILP), is also useful to model and solve specific variants of clus-
tering or selection problems [5, 6]. In this paper, another application of ILP to
learning is studied: the Linear Ordering Problem (LOP). LOP aims to define a
common and consensus ranking based on pairwise preferences, which is used in
social choice theory. If many applications deal with a small number of items to
rank, bio-informatics applications solve large size particular instances of LOP
as median of permutations [2, 3]. An ILP formulation is available for LOP with
constraints defining facets [10, 11]. An extension of LOP considering ties relies
on this ILP formulation [2]. Current and recent works focus for consensus rank-
ing in biological datasets, and use specific data characteristics of these median
of permutation problems for an efficient resolution [1, 13].

This paper aims to analyze the limit of state-of-the art ILP solvers to solve
LOP instances for exact resolution. Several alternative ILP reformulations are
designed using similarities and recent results on the Asymmetric Travelling Sales-
man Problem (ATSP) from [14]. Comparison of Linear Programming (LP) illus-
trates and validates the work on polyhedral analysis, as in [14]. The implication
on the characteristics of ILP solving using modern ILP solvers is analyzed, as in
[4], as well as quality of LP relaxation for variable fixing matheuristics, as in [7].



2 Problem statement and reference ILP formulation

LOP consists in defining a permutation of N items indexed in [[1;N ]], based
on pairwise preferences. wi,j > 0 denotes the preference between items i and
j: i is preferred to j if wi,j is high (higher than wj,i). A ranking is evaluated

with the sum of wi,j in the N(N−1)
2 pairwise preferences implied by the ranking.

Each permutation of [[1;N ]] encodes a solution of LOP, there are thus N ! feasible
solutions. The reference ILP formulation uses binary variables xi,j ∈ {0, 1} such
that xi,j = 1 if and only if item i is ranked before item j in the consensus
permutation [11]. Such encoding allows to compute the ranking, the rank of
item i is 1 +

∑
j 6=i xj,i. ILP formulation from [11] uses O(N2) variables and

O(N3) constraints:

max
x>0

∑
i 6=j

wi,jxi,j (1)

xi,j + xj,i = 1 ∀i < j, (2)

xi,j + xj,k + xk,i 6 2 ∀i 6= j 6= k, (3)

xi,j ∈ {0, 1}, ∀i 6= j (4)

Constraints (2) model that either i is preferred to j, either j is preferred
to i. Constraints (3) ensure that xi,j variables encode a permutation: if i is
before j and j before k, i.e. xi,j = 1 and xj,k = 1, then i must be before k,
i.e. xi,k = 1 which is equivalent to xk,i = 0 using (2). Constraints (2) and
(3) are proven to be facet defining under some conditions [11]. Note that some
alternative equivalent ILP were formulated. Firstly, the problem is here defined
as a maximization, whereas it is considered as a minimization of disagreement
in [2]. Considering w′i,j = M − wi,j where M is an upper bound of the weights
wi,j , or w′i,j = wj,i, allows to consider the same problem as minimization or
maximization. Secondly, equations (3) are replaced by xi,k − xi,j − xj,k > −1.
Formulation (3) is symmetrical, and was also used for the ATSP [16]. To see the
equivalence, we use that −xi,k = xk,i − 1:

xi,k − xi,j − xj,k > −1⇐⇒ −xi,k + xi,j + xj,k 6 1
xi,k − xi,j − xj,k > −1⇐⇒ xk,i − 1 + xi,j + xj,k 6 1
xi,k − xi,j − xj,k > −1⇐⇒ xk,i + xi,j + xj,k 6 2

3 From ATSP to consensus ranking, tighter formulations

LOP and ATSP have similarities: basic encoding of a feasible solution is a per-
mutation on [[1;N ]], and order matters for cost computation. If any LOP solution
is directly a permutation, ATSP solutions are Hamiltonian oriented cycles. LOP
solutions can be projected in a cycle structure, adding a fictive node 0 such that
w0,i = wi,0 = 0 opening and closing the cycle: x0,i = 1 (resp xi,0 = 1) expresses
that i is the first (resp last) item of the linear ordering. This section aims to



use polyhedral work from the TSP to tighten the reference formulation [14]. The
major difference between ATSP and LOP is the objective function. For ATSP,
binary variables yi,j ∈ {0, 1} are defined such that such that yi,j = 1 if and
only if the next item immediately after i is item j, for i 6= j ∈ [[1;N ]]. We do
not introduce a node 0 to distinguish formulations where the fictive node is not
necessary, we define binary variables fi, li ∈ {0, 1} such that fi = x0,i = 1 (resp
li = xi,0 = 1) denotes that item i is the first (resp last) in the linear ordering.
Having these variables x, y, l, f induce directly another ILP formulation for LOP,
denoted SSB for ATSP [16]:

max
x,y,f,l

∑
i6=j

wi,jxi,j (5)

xi,j + xj,k + xk,i 6 2 ∀i 6= j 6= k, (6)

yi,j 6 xi,j ∀i 6= j, (7)

xi,j + xj,i = 1 ∀i < j, (8)∑
i fi = 1 (9)∑
i li = 1 (10)

li +
∑

j 6=i yi,j = 1 ∀i, (11)

fi +
∑

j 6=i yj,i = 1 ∀i, (12)

xi,j , yi,j ∈ {0, 1}, ∀i 6= j (13)

fi, li ∈ {0, 1}, ∀i (14)

The only difference with the SSB formulation of the TSP is the objective func-
tion minimizing a weighted sum of y, f, l variables for ATSP [16]. Constraints (6)
and (8) from the SSB formulation are the identical with the reference ILP formu-
lation for LOP. Constraints (11) and (12) are TSP elementary flow constraints:
for each item there is a unique predecessor and a unique successor, 0 as node
successor or predecessor implies using variables fi, li. Unicity constraints (9) and
(10) are ATSP elementary flow constraints arriving to and leaving from the fic-
tive node. SSB can be tighten in the SSB2 formulation, replacing constraints (6)
by tighter constraints (15) from [16]:

∀i 6= j 6= k, xi,j + yi,j + xj,k + xk,i 6 2 (15)

Constraints (16) are also tightening strictly SSB2 formulation [16]:

∀i, fi + li 6 1 (16)

Constraints (16) are sub-tour cuts between node 0 and item i > 0. Sub-
tours between two cities may have a crucial impact in the resolution, as in [5].
Having variables x and constraints (6) and the tighter variants implies the other
sub-tours between two items. Indeed, yi,j + yj,i 6 xi,j + xj,i = 1.

Another formulation was proposed for ATSP without constraints (6), but
with linking constraints yi,j − xk,j + xk,i 6 1, to induce the same set of feasible
solution [9]. These constraints can be tightened in two different ways:



∀i 6= j 6= k, yi,j + yj,i − xk,j + xk,i 6 1 (17)

∀i 6= j 6= k, yi,j + yk,j + yi,k − xk,j + xk,i 6 1 (18)

Tightening only with (17) and (18) induce respectively GP2 and GP3 for-
mulations for ATSP. A strictly tighter formulation, denoted GP4, is obtained
with both sets of constraints [14]. A strictly tighter formulation is also obtained
adding (15) to (17) and (18 for ATSP. These constraints are valid for LOP, nu-
merical issues are to determine whether the quality of LP relaxation with such
tighter formulation is significantly improved.

4 Other ILP reformulations

In this section, alternative ILP reformulations for LOP are provided, adapting
also formulations from ATSP. Firstly, a formulation with O(N2) variables and
constraints is given, before three-index formulations with O(N3) variables.

4.1 ILP formulation with O(N2) variables and constraints

Similarly with the famous MTZ formulation [12], O(N) additional variables ni ∈
[[0, N − 1]] can directly indicate the position of the item in the ranking :

max
x,n>0

∑
i 6=j

wi,jxi,j (19)

xi,j + xj,i = 1 ∀i < j, (20)

nj +N × (1− xi,j) > ni + 1 ∀i 6= j, (21)

ni +
∑
j 6=i

xi,j = N − 1 ∀i, (22)

xi,j ∈ {0, 1}, ∀i 6= j (23)

ni ∈ [0, N − 1] ∀i (24)

Objective function (19) and constraints (20) are like previously. Constraints
(21) are similar with MTZ constraints: if i is ranked before j, i.e. xi,j = 1, then
it implies nj > ni + 1, n is a ”big M” in this linear constraint. If constraints
(20) and (21) are sufficient to induce feasible solutions for the ILP, constraints
(22) completes (21) without using any ”big M”. Indeed, ci =

∑
j 6=i xi,j counts

the number of items after i, so that there is the invariant ci + ni = N − 1. A
numerical issue is to determine if constraints (22) have a positive impact on the
quality of the LP relaxation. As big M constraints are reputed to be weak and
inducing poor LP relaxations (we refer to [5]), a numerical issue is to determine
the difference with the continuous relaxation when relaxing also constraints (21)
and (22). One note that this relaxation has a trivial optimal solution, considering



for i 6= j the value xi,j = 1 if and only if wi,j > wj,i). It induces that following
upper bound is valid, and also greater than any LP relaxation for LOP:

UB =
∑
i<j

max(wi,j , wj,i) (25)

Note that as for MTZ formulation, variables ni can be declared as continuous,
feasibility of (21) and bounds (24) implies that n variables are integer.

4.2 Three-index Flow formulation

Gouveia and Pires proposed also a three index formulation for ATSP, which is
tighter than GP2, GP3, GP4 [9]. One can adapt this formulation to LOP using
binary variables zi,j,k ∈ {0, 1} for i 6= j 6= k defined with zi,j,k = 1 if and
only if i is ranked before j (not necessarily immediately before) and j is ranked
immediately before k. Like previously, first and last items in the ranking are
marked with binaries fi, li ∈ {0, 1}. Previous binaries xi,j , yi,j ∈ {0, 1} are then
defined by xi,j =

∑
k zi,j,k + lj and yi,j = zi,i,j .

max
z,l,f>0

∑
i 6=j

wi,j

(
li +

∑
k

zi,j,k

)
(26)

li +
∑

k zi,j,k + lj +
∑

k zj,i,k = 1 ∀i < j, (27)∑
i fi = 1 (28)∑
i li = 1 (29)

li +
∑

j 6=i zi,i,j = 1 ∀i, (30)

fi +
∑

j 6=i zj,j,i = 1 ∀i, (31)

zi,j,k 6 zj,j,k ∀i, j, k, (32)

li, fi,∈ {0, 1}, ∀i (33)

zi,j,k ∈ {0, 1} ∀i, j, k (34)

Objective function and constraints (28)- (31) are unchanged from the ATSP
structures, rewritten using z, f, l variables. Constraints (27) are constraints xi,j+
xj,i = 1 Constraints (32) model that zi,j,k = 1 implies that j is ranked just
before k and thus zj,j,k = 1. This formulation has O(N3) variables and O(N3)
constraints only because of constraints (32). It is possible to have only O(N2)
constraints and preserving the validity of the integer program replacing flow
constraints (32) by the aggregated version:

∀j, k,
∑
i

zi,j,k 6 Nzj,j,k (35)

4.3 Another three-index flow formulation

z′i,j,k ∈ {0, 1} defined for i 6= j 6= k with z′i,j,k = 1 if and only if genes i, j, k are
ranked in this order. Note that improvements of LP relaxation were obtained



using similar reformulation in [15]. In this ILP formulation, we keep variables
xi,j z

′
i,j,k = 1 implies xi,j = xj,k = xi,k = 1. it induces the valid ILP formulation

for LOP:

max
x,z>0

∑
i 6=j

wi,jxi,j (36)

3z′i,j,k 6 xi,j + xj,k + xi,k ∀i 6= j 6= k (37)

z′i,j,k + z′i,k,j + z′j,i,k + z′j,k,i + z′k,j,i + z′k,i,j = 1 ∀i 6= j 6= k, (38)

xi,j ∈ {0, 1} ∀i 6= j, (39)

z′i,j,k ∈ {0, 1} ∀i 6= j 6= k (40)

Constraints (37) are linking constraints related to the definition of variables
x, z: z′i,j,k = 1 implies xi,j = xj,k = xi,k = 1. Constraints (38) express that
each triplet i 6= j 6= k is assigned in exactly one order in a permutation, re-
placing constraints of type xk,i + xi,j + xj,k. Constraints (38) induce that this
ILP formulation has also O(N3) variables and O(N3) constraints. Note that a
similar constraint can be defined as cut for the previous ILP formulation, with
an inequality:

zi,j,k + zi,k,j + zj,i,k + zj,k,i + zk,j,i + zk,i,j 6 1 (41)

Table 1. Implemented formulations, denomination, variables, constraints

Formulation Variables Constraints nbVar nbConstraints

LOP ref x (2), (3) O(N2) O(N3)

LOP SSB2 x, f, l, y (7) - (12), (15, (16) O(N2) O(N3)
LOP GP3 x, f, l, y (7) - (12), (18) O(N2) O(N3)

LOP MTZ x, n (20), (22) O(N2) O(N2)

LOP flowGP z, f, l (27)- (31),(32) O(N3) O(N3)
LOP flowGP aggr z, f, l (27)- (31),(35) O(N3) O(N2)
LOP flow2 x, z′ (37), (38) O(N3) O(N3)

5 Computational experiments and results

Numerical experiments were proceeded using a workstation with a dual processor
Intel Xeon E5-2650 v2@2.60GHz, for 16 cores and 32 threads in total. Cplex
was used to solve LPs and ILPs, in its version 20.1. Cplex was called using
OPL modeling language and OPL script. LocalSolver in its version 10.5 was
used as a heuristic solver benchmark to be able to compare primal solutions
in cases where optimal solutions are not proven. The maximal time limit for
Cplex and LocalSolver was set to one hour, Cplex was used with its default



parameters. It was necessary to generate specific instances for this study, it is
presented before the analysis of numerical experiments. Code and instances will
be available online.

5.1 Data generation and characteristics

As mentioned by [1, 13], characteristics of instances is crucial in the difficulty of
instances. In many social choice applications and datasets, N is small, so that
exact resolution with the reference ILP formulation is almost instantaneous. For
the biological application, N is very large but median of permutations among
similar permutations is easier than general instances. In the extreme case where
wi,j coefficients encode a permutation (median of 1-permutation, trivial prob-
lem), trivial bounds UB give the optimal, and all the LP relaxation of the ILP
formulations give the integer optimal solution. For this numerical study, as in
[14], quality of polyhedral descriptions are analyzed on the implications on the
quality of LP relaxation using diversified directions of the objective function.
Three generators were used for the goal of this study:

• aleaUniform (denoted aUnif): wi,j for i 6= j are randomly generated with a
uniform law in [[0, 100]].
• aleaSum100 (denoted aSum): uniform generation in [[0, 100]] such that wi,j +
wj,i = 100: for i < j wi,j is randomly generated [[0, 100]] and wj,i is then set
to wj,i = 100− wi,j .

• aleaShuffle (denoted aShuf): max(N/2, 20) random permutations are gen-
erated (with Python function shuffle), wi,j are then computes using Kendall-
τ distance and Kemeny ranking, as in [1–3].

A fourth generator was coded, as in aleaShuffle but generating small perturba-
tions around a random permutation, with small (and not so small perturbations).
Actually, the results were very similar for all the ILP formulations, as for the
1-median trivial instances, these instances were much easier. This illustrates that
real-life instances for median of permutations are much easier than unstructured
and random instances. The three generators allows to analyze the impact of some
structures of instances in the difficulty and quality of ILP and LP resolution.

Number of items N was generated with values N ∈ {20, 30, 40, 50, 100}. For
each generator and value of N , 30 instances are generated and results are given
in average for each group of 30 similar instances, with the denomination XX−N
where XX ∈ {aUnif,aSum,aShuf}. Lower and upper bounds v(i) on instance i are
compared with the following gap indicator to the Best Known Solution (BKS),
denotes BKS(i):

gap =
| v(i)− BKS(i) |

BKS(i)
(42)

For N ∈ {20, 30, 40}, BKS are optimal solutions proven by Cplex. For N ∈
{50, 100}, LocalSolver always provides the BKS. There is also no counter-example
where LocalSolver do not find an optimally proven solution in one hour, we note
that LocalSolver is also very efficient in short time limits.



Table 2. Comparison of the average gaps to the BKS for the LP relaxations of formu-
lations recalled in Table 1 and the naive upper bound (25)

Instances (25) ref/SSB2 GP3 MTZ flow-GP flow-GP-agg flow2

aUnif-20 12,86 % 0,02 % 10,49 % 10,84 % 5,22 % 11,53 % 12,86 %
aUnif-30 14,86 % 0,17 % 13,20 % 13,39 % 7,34 % 13,98 % 14,86 %
aUnif-40 16,98 % 0,60 % 15,68 % 15,78 % 9,22 % 16,16 % 16,98 %
aUnif-50 17,84 % 1,12 % 16,80 % 16,86 % 10,22 % 17,17 % 17,84 %
aUnif-100 21,65 % 3,17 % 21,10 % 21,11 % - 21,25 % 21,65 %

aSum-20 19,00 % 0,05 % 15,56 % 16,13 % 7,26 % 17,23 % 19,00 %
aSum-30 21,96 % 0,31 % 19,53 % 19,84 % 10,25 % 20,45 % 21,96 %
aSum-40 24,40 % 1,18 % 22,52 % 22,70 % 12,53 % 23,21 % 24,40 %
aSum-50 26,24 % 2,25 % 24,71 % 24,83 % 14,16 % 25,23 % 26,24 %
aSum-100 31,44 % 4,97 % 30,64 % 30,65 % - 30,84 % 31,44 %

aShuf-30 1,93 % 0,00 % 1,39 % 1,42 % 0,29 % 1,89 % 1,93 %
aShuf-40 1,44 % 0,00 % 1,18 % 1,18 % 0,42 % 1,42 % 1,44 %
aShuf-50 1,41 % 0,00 % 1,18 % 1,18 % 0,44 % 1,40 % 1,41 %
aShuf-100 1,80 % 0,02 % 1,65 % 1,55 % - 1,80 % 1,80 %

5.2 Comparing LP relaxations

To analyze the quality of polyhedral descriptions of ILP formulations, Table
2 presents gaps of LP relaxations of ILP formulations for LOP and the naive
upper bound (25), following a similar methodology to [14]. Table 3 presents the
computation time to calculate LP relaxation, to appreciate the impact of the
number of variables and constraints recalled in Table 1. These tables illustrate
the difficulty of instances, aShuf are quite easy instances with good naive upper
bounds and LP relaxations. Datasets aSum and aUnif induce more difficulties
with worse continuous bounds, and aSum is even more difficult than aUnif.

Contrary to ATSP where GP2, GP3, SSB2 are not redundant [14], (3) induce
much better LP relaxations for LOP than (17) and (18). Adding (17) and (18) in
ILP formulations with (3) or (15) does not induce any difference in the quality
of LP relaxation. The explanation for the difference between ATSP and LOP is
the different nature of the objective function, polyhedron defined by constraints
are identical, but objective function in x or y changes the projection on the
space of interest. It explains why in Table 1, we remove constraints of type (3)
to highlight the difference of quality of LP relaxation.

The standard flow formulation flow-GP improves significantly the quality of
LP relaxation of GP3, as for the ATSP, but it is still significantly worse than
SSB formulations. Computation time of LP relaxation is much higher with flow-
GP, for N = 100 computations were stopped in one hour without termination.
With aggregation (35) instead of (32), LP relaxation is computed quickly, but
the quality of LP relaxation is dramatically decreased, the continuous bounds
are very close to the naive upper bounds. MTZ adaptation has the quickest LP
relaxation, but the continuous bounds are close to the ones of GP3. Last flow
formulation always provides exactly the naive upper bounds, constraints (41)
does not tighten flow-GP formulation.



Table 3. Comparison of the average time (in seconds) to compute LP relaxations for
ILP formulations recalled in Table 1

Instances ref SSB2 GP3 MTZ flow-GP flow-GP-agg flow2

aUnif-20 0,04 0,14 0,32 0,00 1,21 0,06 0,07
aUnif-30 0,28 0,75 1,08 0,01 7,62 0,18 0,25
aUnif-40 0,49 2,27 3,58 0,03 38,60 0,53 0,83
aUnif-50 0,95 5,59 10,55 0,12 173,49 1,36 2,32
aUnif-100 26,63 278 839 1,04 - 18,24 54,61

aSum-20 0,04 0,17 0,33 0,00 1,20 0,06 0,07
aSum-30 0,29 0,77 1,08 0,01 7,48 0,19 0,25
aSum-40 0,50 2,12 3,43 0,03 37,10 0,55 0,83
aSum-50 0,95 5,65 10,74 0,12 168,24 1,40 2,27
aSum-100 27 282,46 819 1,75 - 17,40 55,63

aShuf-30 0,06 0,24 1,04 0,01 6,18 0,18 0,27
aShuf-40 0,16 0,84 3,73 0,04 26,86 0,49 0,74
aShuf-50 0,33 2,17 11,63 0,13 98,88 1,32 2,13
aShuf-100 17,7 353,5 1360 1,76 - 16,45 51,34

LP relaxation of the reference formulation is of an excellent quality, which
illustrates polyhedral results and proven facets from [11]. In Table 1, reference
and SSB2 formulations have the same values: except on three instances, LP
relaxation are the same (with a tolerance to numerical errors on the last digit).
On instance number 27 in aUnif-20 and instances number 17 and 29 in aSum-20,
SSB2 improves the reference formulation around 0.01%, making a difference of
one unit in the integer ceil rounding of the continuous relaxation. With additional
experiments, the difference is only due to (3) instead of (15), no difference was
observe adding only (16). With this result, this shows that SSB2 formulation for
LOP is in theory strictly tighter than the reference formulation, but with small
and rare improvements and a larger computation time for the LP relaxation.

5.3 Comparing Branch&Bound convergences

Table 4 analyzes the impact of Cplex cuts and heuristics at the root node,
before branching in the Branch&Bound (B&B) tree, for ILP formulations ref
and SSB2. If SSB2 improves slightly LP relaxation quality, additional variables
and constraints can help modern ILP solvers detecting other structures for cut
generation, as in [4]. For LOP, computations at the root node of B&B tree are
much slower with SSB2, coherently with the double number of variables, but
the efficiency of cuts and primal heuristics is significantly worse with the heavier
SSB2 formulation. Having a larger ILP model, heavier matrix operations for
generation of cutting planes are needed by Cplex, and this stop earlier cuts
that would have been generated using the reference formulation, the size of ILP
matrix is crucial here. Note also that Table 4 shows that few improvement of LP
relaxation is provided at the root node of B&B tree.

These elements explain the difference in the B&B convergence in one hour
allowing branching, the reference ILP formulation is largely superior. For some



Table 4. Comparison of Lower Bounds (LB) and Upper Bounds (UB) of formulations
ref and SSB2 after Cplex cuts and heuristics at the root node (i.e. before branching).
Common UB with the LP relaxation are also provided for comparison

LP UB LB time UB LB time
ref,SSB2 ref SSB2

aUnif-20 0,02% 0,00% 0,00 % 0,1 0,00 % 0,00 % 0,4
aUnif-30 0,17% 0,00% 0,00 % 1,5 0,09 % 0,50 % 14
aUnif-40 0,60% 0,44% 0,22 % 30,5 0,52 % 4,58 % 159
aUnif-50 1,12% 0,96% 0,82 % 212,9 0,98 % 5,27 % 1336
aUnif-100 3,17% 3,07% 5,49 % 3600 3,15 % 7,37 % 3600

aSum-20 0,05% 0,00% 0,00 % 0,12 0,00 % 0,00 % 0,55
aSum-30 0,31% 0,02% 0,02 % 2,0 0,16 % 0,79 % 20
aSum-40 1,18% 0,75% 0,32 % 64 0,95 % 5,08 % 296
aSum-50 2,25% 1,82% 0,95 % 297 1,95 % 6,72 % 989
aSum-100 4,97% 4,82% 6,87 % 3600 4,95 % 9,62 % 3600

aShuf-30 0,00% 0,00% 0,00 % 0,14 0,00 % 0,00 % 0,86
aShuf-40 0,00% 0,00% 0,00 % 0,37 0,00 % 0,00 % 2,9
aShuf-50 0,00% 0,00% 0,00 % 0,90 0,00 % 0,00 % 8
aShuf-100 0,02% 0,02% 0,02 % 477 0,02 % 6,02 % 3395

instances with N = 40 or N = 50, ref formulation can converge in ten minutes
whereas a significant gap between lower and upper bounds remains after one
hour. This validates the reference formulation as baseline ILP model for [2].

5.4 Variable Fixing heuristics

The excellent quality of the LP relaxation with the reference formulation allows
to investigate the quality of heuristics using continuous solutions of the LP re-
laxation, as in [7]. Variable Fixing (VF) denotes here a heuristic reduction of
the search space based on the LP relaxation, to set integer values to variables in
the ILP resolution based on some values of the LP relaxation. For instance, on
may fix a variable fixing preprocessing for variables with an integer value in the
continuous relaxation, expecting that these integer decisions are good.

In general, it makes a difference to apply VF preprocessing on zeros ans ones
in the LP relaxation, as in [7]. This makes in general many possibilities of VF
preprocessing, also with specific rules to select a subset of variable to fix [7].
For LOP, imposing xi,j = 1 implies fixation xj,i = 0 with constraints (2). Note
also that constraints (3) may induce having continuous solution with variables
xi,j = xj,k = xk,i = 2/3, so that rounding to ones variables lower that 2/3
induce direct infeasibility on the corresponding (3) constraint. This property
does not hold rounding to ones variables that are superior to 0.7 Hence, two VF
strategies were implemented, on one hand fixing the integer value, and on the
other hand considering the threshold for rounding to 0.7. Actually, there were
slight difference for these two strategies. Experiments were also done using the
quick MTZ relaxation for the LP relaxation, this was significantly degrading the
performance of the VF heuristic.



Table 5. Comparison of gaps to BKS and computation time of Cplex in ILP solving
using the reference formulation, without and with Variable Fixing (VF) preprocessing
on integer values in the LP relaxation of the reference formulation. BKS are optimums
for N 6 40, for N > 50 BKS were given by LocalSolver

LB time (sec) LB time (sec)
Instances ref ref + VF

aUnif-20 0,00 % 0,1 0,01 % 0,04
aUnif-30 0,00 % 1,5 0,04 % 0,62
aUnif-40 0,00 % 30,5 0,17 % 13
aUnif-100 5,49 % 3600 2,36 % 3600

aSum-20 0,00 % 0,13 0,05 % 0,06
aSum-30 0,00 % 2,1 0,09 % 0,77
aSum-40 0,00 % 63,5 0,43 % 12,7
aSum-100 6,87 % 3600 3,14 % 3600

aShuf-30 0,00 % 0,13 0,00 % 0,03
aShuf-40 0,00 % 0,37 0,00 % 0,08
aShuf-50 0,00 % 0,92 0,00 % 0,12
aShuf-100 0,00 % 1820 0,00 % 35,7

Table 5 compares the gap to BKS and computation time using the VF prepro-
cessing to the basic reference formulation. For small and easy instances where
the reference formulation gives optimal solutions, the degradation of the ob-
jective function is small with the VF heuristic, speeding up significantly the
computation time. For the largest instances with N = 100, VF matheuristic
is significantly better that the exact resolution, illustrating the difficulty of the
ILP solver to find good primal solutions with its primal heuristics. The primal
solutions of matheuristic are in this case also significantly worse than the ones
of LocalSolver, the VF speed up is not sufficient to reach and advanced phase of
the B&B convergence

6 Conclusions and perspectives

If the reference ILP formulation seemed to be improvable using ATSP results,
only a slightly tighter ILP formulation is obtained after this reformulation work.
Analyzing the ILP convergence with a modern ILP solver shows that the LP
relaxation is of an excellent quality with the LP relaxation, but is fewly im-
proved after. Also, primal heuristics are not efficient on the problem, a basic VF
matheuristic improves significantly the primal solutions for difficult instances.
Also, this paper illustrates the graduated difficulty of instances.

These results offer perspectives for the biological application [1]. Matheuris-
tics can be used in this context, also with the extension ties, and using properties
of their easier median of permutation instances allowing specific reduction space
operators [1, 13]. Perspectives are also to combine matheuristics and local search
approaches which are efficient for the problem, as shown by LocalSolver bench-
mark on this study, and also with [8].
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