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Abstract. We study a model of programmable matter systems consist-
ing of n devices lying on a 2-dimensional square grid, which are able to
perform the minimal mechanical operation of rotating around each other.
The goal is to transform an initial shape A into a target shape B. We are
interested in characterising the class of shapes which can be transformed
into each other in such a scenario, under the additional constraint of
maintaining global connectivity at all times. This was one of the main
problems left open by [Michail et al., JCSS’19]. Note that the consid-
ered question is about structural feasibility of transformations, which we
exclusively deal with via centralised constructive proofs. Distributed so-
lutions are left for future work and form an interesting research direction.
Past work made some progress for the special class of nice shapes. We
here consider the class of orthogonal convex shapes, where for any two
nodes u, v in a horizontal or vertical line on the grid, there is no empty
cell between u and v. We develop a generic centralised transformation
and prove that, for any pair A, B of colour-consistent orthogonal convex
shapes, it can transform A into B. In light of the existence of blocked
shapes in the considered class, we use a minimal 3-node seed to trigger
the transformation. The running time of our transformation is an opti-
mal O(n2) sequential moves, where n = |A| = |B|. We leave as an open
problem the existence of a universal connectivity-preserving transforma-
tion with a small seed. Our belief is that the techniques developed in this
paper might prove useful to answer this.

Keywords: Programmable matter · Transformation · Reconfigurable
robotics · Shape formation · Centralised algorithms

1 Introduction

Programmable matter refers to matter which can change its physical properties
in an algorithmic way. This means that the change is the result following the
procedure of an underlying program. The implementation of this program can ei-
ther be a system-level external centralised algorithm or an internal decentralised
algorithm executed by the material itself. The model for such systems can be
further refined to specify properties that are relevant to real-world applications,
for example connectivity, colour [4] and other physical properties.
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As the development of these systems continues, it becomes increasingly nec-
essary to develop theoretical models which are capable of describing and ex-
plaining the emergent properties, possibilities and limitations of such systems in
an abstract and fundamental way. To this end, models have been developed for
programmable matter. For example, algorithmic self-assembly [10,19] focuses on
programming molecules like DNA to grow in a controllable way, and the Ab-
stract Tile Assembly Model [20,25], the Kilobot model [21], the Robot Pebbles
system [14], and the nubot model [26], have all been developed for this area. Net-
work Constructors [18] is an extension of population protocols [3] that allows for
network formation and reconfiguration.

The latter model is formally equivalent to a restricted version of chemical
reaction networks, which “are widely used to describe information processing
occurring in natural cellular regulatory networks” [22,11]. The CATOMS sys-
tem [23,24,12] is a further implementation which constructs 3D shapes by first
creating a “scaffolding structure” as a basis for construction. Finally, there is
extensive research into the amoebot model [7,6,9,8], where finite automata on
a triangular lattice follow a distributed algorithm to achieve a desired goal, in-
cluding a recent extension [13] to a circuit-based model.

Recent progress in this direction has been made in previous papers, for exam-
ple [16], covering questions related to a specific model of programmable matter
where nodes exist in the form of a shape on a 2D grid and are capable of perform-
ing two specific movements: rotation around each other and sliding a node across
two other nodes. The authors investigated the problem of transformations with
rotations with the restriction that shapes must always remain connected (RotC-
Transformability), and left universal RotC-Transformability as an open problem.
They hinted at the possibility of universal transformation in an arxiv draft [17].
To the best of our knowledge, progress on this open question has only been
made in [5], where, by using a small seed, connectivity-preserving transforma-
tions by rotation were developed for a restricted class of shapes. In general, such
transformations are highly desirable due to the large numbers of programmable
matter systems which rely on the preservation of connectivity and the simplicity
of movement, which is not only of theoretical interest but is also more likely
to be applicable to real-world systems. Related progress was also made in [1],
which used a similar model but with a different type of movement. The authors
allowed for a greater range of movement, for example “leapfrog” and “monkey”
movements. They accomplished universal transformation in O(n2) movements
using a “bridging” procedure assisted by at most 5 seed-nodes, which they called
musketeers.

2 Contribution

We investigate the RotC-Transformability problem, introduced in [16], which
asks to characterise which families of connected shapes can be transformed into
each other via rotation movements without breaking connectivity. The model
represents programmable matter on a 2D grid which is only capable of per-
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forming rotation movements, defined as the 90◦ rotation of a node u around a
neighbouring edge-adjacent node v, so long as the goal and intermediate cells
are empty. As our focus is on the feasibility and complexity of transformations,
our approach is naturally based on structural characterisations and centralised
procedures. Structural and algorithmic progress is expected to facilitate more
applied future developments, such as distributed implementations.

We assume the existence of a seed, a group of nodes in a shape S which
are placed in empty cells neighbouring a shape A to create a new connected
shape which is the unification of S and A. Seeds allow shapes which are blocked
or incapable of meaningful movement to perform otherwise impossible transfor-
mations. The use of seeds was established in [16], leaving open the problem of
universal RotC-Transformability. Another work [5] investigated this problem in
the context of nice shapes, first defined in [2] as a set of shapes containing any
shape S which has a central line L, where, for all nodes u ∈ S, either u ∈ L or
u is connected to L by a line of nodes perpendicular to L. Universal reconfigu-
ration in the context of connectivity-preserving transformations using different
types of movement has been demonstrated in [1]. That paper calls the seed nodes
“musketeers” and their transformation requires the use of 5 such nodes.

The present paper moves towards a solution which is based on connectivity-
preservation and the tighter constraints of rotation-only movement of [16] while
aiming to (i) widen the characterization of the class of transformable shapes
and (ii) minimise the seed required to trigger those transformations. By achiev-
ing these objectives for orthogonal convex shapes, we make further progress
towards the ultimate goal of an exact characterisation (possibly universal) for
seed-assisted RotC-Transformability.

We study the transformation of shapes of size n with orthogonal convexity
into other shapes of size n with the same property, via the canonical shape of
a diagonal line-with-leaves. Orthogonal convexity is the property that for any
two nodes u, v in a horizontal or vertical line on the grid, there is no empty cell
between u and v. A diagonal line-with-leaves is a group of components, the main
being a series of 2-node columns where each column is offset such that the order
of the nodes is equivalent to a line, and two optional components: two 1-node
columns on either end of the shape and additional nodes above each column,
making them into 3-node columns.

We show that transforming a orthogonal convex shape of n nodes into a
diagonal line-with-leaves is possible and can be achieved by O(n2) moves using
a 3-node seed. This bound on the number of moves is optimal for the considered
class, due to a matching lower bound from [16] on the distance between a line
and a staircase, both of which are orthogonal convex shapes. A seed is necessary
due to the existence of blocked orthogonal convex shapes, an example being a
rhombus. As [5] shows, any seed with less than 3 nodes is incapable of non-trivial
transformation of a line of nodes. Since a line of nodes is orthogonal convex, the
3-node seed employed here is minimal.

The class of orthogonal convex shapes cannot easily be compared to the class
of nice shapes. A diagonal line of nodes in the form of a staircase belongs to the
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former but not the latter. Any nice shape containing a gap between two of its
columns is not a orthogonal convex shape. Finally, there are shapes like a square
of nodes which belong to both classes. Nevertheless, the nice shapes that are
not orthogonal convex have turned out to be much easier to handle than the
orthogonal convex shapes that are not nice. We hope that the methods we had
to develop in order to deal with the latter class of shapes, will bring us one step
closer to an exact characterisation of connectivity-preserving transformations by
rotation.

In Section 3, we formally define the programmable matter model used in
this paper. Section 4 presents some basic properties of orthogonal convex shapes
and of their elimination and generation sequences. In Section 5, we provide our
algorithm for the construction of the diagonal line-with-leaves which, through
reversibility, can be used to construct other orthogonal convex shapes and give
time bounds for it. In Section 6, we conclude and give directions for potential
future research.

3 Model

We consider the case of programmable matter on a 2D grid, with each position
(or cell) of the grid being uniquely referred to by its (x, y) coordinates. Such a
system consists of a set V of n nodes. Each node may be viewed as a spherical
module fitting inside a cell of the grid. At any given time, each node occupies
a cell, with the positioning of the nodes defining a shape, and no two nodes
may occupy the same cell. It also defines an undirected neighbouring relation
E ⊂ V × V , where uv ∈ E iff u and v occupy horizontally or vertically adjacent
cells of the grid. A shape is connected if the graph induced by its neighbouring
relation is a connected graph.

In general, shapes can transform to other shapes via a sequence of one or more
movements of individual nodes. We consider only one type of movement: rotation.
In this movement, a single node moves relative to one or more neighbouring
nodes. A single rotation movement of a node u is a 90° rotation of u around one
of its neighbours. Let (x, y) be the current position of u and let its neighbour
be v occupying the cell (x, y − 1) (i.e., lying below u). Then u can rotate 90◦

clockwise (counterclockwise) around v iff the cells (x + 1, y) and (x + 1, y − 1)
((x−1, y) and (x−1, y−1), respectively) are both empty. By rotating the whole
system 90◦, 180◦, and 270◦, all possible rotation movements can be defined.

Let A and B be two connected shapes. We say that A transforms to B via
a rotation r, denoted A

r→ B, if there is a node u in A such that if u applies r,
then the shape resulting after the rotation is B. We say that A transforms in one
step to B (or that B is reachable in one step from A), denoted A→ B, if A

r→ B
for some rotation r. We say that A transforms to B (or that B is reachable from
A) if there is a sequence of shapes A = S1, S2, . . . , St = B, such that Si → Si+1

for all 1 ≤ i ≤ t − 1. Rotation is a reversible movement, a fact that we use
in our results. All shapes S1, S2, . . . , St must be edge connected, meaning that
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the graph defined by the neighbouring relation E of all nodes in any Si, where
1 ≤ i ≤ t, must be a connected graph.

At the start of the transformation, we will be assuming the existence of a
seed : a small connected shape M placed on the perimeter of the given shape S
to trigger the transformation. This is essential because under rotation-only there
are shapes S that are k-blocked, meaning that at most k ≥ 0 moves can be made
before a configuration is repeated. When k = 0, no move is possible from S, an
example of 0-blocked shape being the rhombus. (see, e.g., Fig. 2).

For the sake of providing clarity to our transformations, we say that every
cell in the 2D grid has a colour from {red, black} in such a way that the cells
form a black and red checkered colouring of the grid, similar to the colouring
of a chessboard. This colouring is fixed so long as there is at least one node on
the grid. This represents a property of the rotation movement, which is that any
given node in a coloured cell can only enter cells of the same colour. We define
c(u) ∈ {black, red} as the colour of node u for a given chessboard colouring of
the grid. We represent this in our figures by colouring the nodes red or black.
See Figure 1 for an example and for special notation that we use to abbreviate
certain rotations which we perform throughout the paper.

Fig. 1: The rotation on the left is an abbreviated version of the rotations on the
right, used throughout the paper. The numbers represent the order of rotations.
Reds appear grey in print, throughout the paper.
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Fig. 2: An example of a black parity rhombus.

Any shape S may be viewed as a coloured shape consisting of b(S) blacks
and r(S) reds. Two shapes A and B are colour-consistent if b(A) = b(B) and
r(A) = r(B). For any shape S of n nodes, the parity of S is the colour of the
majority of nodes in S. If there is no strict majority, we pick any as the parity
colour. We use non-parity to refer to the colour which is not the parity.

Depending on the context and purpose, the term node will be used to refer
both to the actual entity that may move between co-ordinates and to the co-
ordinates of that entity at a given time.

4 Preliminaries

4.1 General Geometric Definitions

We now define specific sections of the shape which we will refer to extensively
throughout the paper.

Definition 1. Let A be a connected shape. Mark each cell of the grid that is
occupied by a node of A. A cell (i, j) is part of a hole of A if every infinite
length single path starting from (i, j) (moving only horizontally and vertically)
necessarily goes through a black cell. Mark every cell that is part of a hole of A
as well, to obtain a compact shape of marked cells A′. Consider now polygons
defined by unit-length line segments of the grid. Define the perimeter of A as the
minimum-area such polygon that completely encloses A′ in its interior. The fact
that the polygon must have an interior and an exterior follows directly from the
Jordan curve theorem [15].

Definition 2. Any cell of the grid that has contributed at least one of its line
segments to the perimeter and has not been marked (i.e., is not occupied by a
node of A) is the cell perimeter of shape A. See Figure 3 for an example.



Transformations by Rotation: 3 Musketeers for Orthogonal Convex Shapes 7

Definition 3. The external surface of a connected shape A, is a shape B, not
necessarily connected, consisting of all nodes u ∈ A such that u occupies a cell
defining at least one of the line segments of A’s perimeter.

Definition 4. The extended external surface of a connected shape A, is defined
by adding to A’s external surface all nodes of A whose cell shares a corner with
A’s perimeter.

Fig. 3: The light-blue dashed line is the perimeter of the shape. The red squares
are the cell perimeter, or the set of empty cells which contribute at least one
side to the perimeter. All nodes which share a side with the cell perimeter are
part of the exterior, and all cells enclosed by the exterior constitute the interior.

4.2 Orthogonal Convex Shapes

We now present the class of shapes considered in this paper together with some
basic properties about them that will be useful later.

Definition 5. A shape S is said to belong to the family of orthogonal convex
shapes, if, for any pair of distinct nodes (x1, y1), (x2, y2) ∈ S, x1 = x2 implies
(x1, y) ∈ S for all min{y1, y2} < y < max{y1, y2} while y1 = y2 implies (x, y1) ∈
S for all min{x1, x2} < x < max{x1, x2}.

Observation 1 Any discrete convex shape S is also orthogonal convex.

Observe now that the perimeter of any connected shape is a cycle drawn on
the grid, i.e., a path where its end meets its beginning. The cycle is drawn by



8 M. Connor and O. Michail

using consecutive grid-edges of unit length, each being characterized by a direc-
tion from {up, right, down, left}. For each pair of opposite directions, (up, down)
and (left, right), the perimeter always uses an equal number of edges of each
of the two directions in the pair and uses every direction at least once. For the
purposes of the following proposition, let us denote {up, right, down, left} by
{d1, d2, d3, d4}, respectively. The perimeter of a shape can then be defined as a
sequence of moves drawn from {d1, d2, d3, d4}, w.l.o.g. always starting with a d1.
Let also Ni denote the number of times di appears in a given perimeter.

Proposition 1. A shape S is a connected orthogonal convex shape if and only
if its perimeter satisfies both the following properties:

– It is described by the regular expression

d1(d1 | d2)∗d2(d2 | d3)∗d3(d3 | d4)∗d4(d4 | d1)∗

under the additional constraint that N1 = N3 and N2 = N4.
– Its interior has no empty cell.

Proof. We begin by considering the forward direction, starting from a connected
orthogonal convex shape S. For the first property, the Ni equalities hold for
the perimeter of any shape, thus, also for the perimeter of S. In the regular
expression, the only property that is different from the regular expressions of
more general perimeters is that, for all i ∈ {1, 2, 3, 4}, di−2, where the index is
modulo 4, does not appear between the first and the last appearance of di.

Assume that it does, for some i.
Then di−2 must have appeared immediately after a di−1 or a di+1, because a

di−2 can never immediately follow a di. If it is after a di−1, then this forms the ex-
pression di(di−1 | di)∗di−1di−2, which always has did

+
i−1di−2 as a sub-expression.

But for any sub-path of the perimeter defined by the latter expression, the nodes
attached to its first and last edges would then contradict Definition 5, as the hor-
izontal or vertical line joining them goes through at least one unoccupied cell,
i.e., one of the cells external to the d+i−1 part of the sub-path. The di+1 case fol-
lows by observing that, in this case, the sub-expression satisfied by the perimeter
would be di−2d

+
i+1di, which would again violate orthogonal convexity of S.

The second property, follows immediately by observing that if (x, y) is an
empty cell within the perimeter’s interior, then the horizontal line that goes
through (x, y) must intersect the perimeter at two distinct points, one to the
left of (x, y) and one to its right. Thus, these three points would contradict the
conditions of Definition 5.

For the other direction, let S be a shape satisfying both properties. For the
sake of contradiction, assume that S is not orthogonal convex, which means that
there is a line, w.l.o.g horizontal and of the form (xl, y), (xl + 1, y), . . . , (xr, y),
where (xl, y) and (xr, y) are occupied by nodes of S while (xl+1, y), . . . , (xr−1, y)
are not. Observe first that any gap in the interior would violate the second
property, thus (xl + 1, y), . . . , (xr − 1, y) must be cells in the exterior of the
perimeter of S and (xl, y), (xr, y) nodes on the perimeter. There are two possible
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ways to achieve this: d3d
+
2 d1 and d1d

+
4 d3. These combinations are impossible

to create with the regular expression, thus contradicting that S satisfies the
properties. Similarly for vertical gaps. It follows that any shape fulfilling the two
properties must belong to the family of connected orthogonal convex shapes. ut

Fig. 4: An example of two orthogonal convex shapes, with the directions of the
perimeter labelled.

Let cx denote the column of a given shape S at the x coordinate, i.e., the set
of all nodes of S at x. Let ymax(x) (ymin(x)) be the largest (smallest) y value in
the (x, y) coordinates of the cells which nodes of a column cx occupy.

Proposition 2. For any connected orthogonal convex shape S, all the following
are true:

– Every column cx of S consists of the consecutive nodes
(x, ymin(x)), (x, ymin(x) + 1), . . . , (x, ymax(x)).

– There are no three columns cx1
, cx2

, and cx3
of S, x1 < x2 < x3, for which

both ymax(x1) > ymax(x2) and ymax(x3) > ymax(x2) hold.
– There are no three columns cx′

1
, cx′

2
, and cx′

3
of S, x′1 < x′2 < x′3, for which

both ymin(x′1) < ymin(x′2) and ymin(x′3) < ymin(x′2) hold.

All the above hold for rows too in an analogous way.

Proof. For the first property, observe that any discontinuity would violate ver-
tical convexity of column cx of S, thus, vertical convexity of S. Next, assume
that the second property does not hold, that is, that there are columns cx1

,
cx2 , and cx3 of S, x1 < x2 < x3, for which both ymax(x1) > ymax(x2) and
ymax(x3) > ymax(x2) hold true. Let w.l.o.g. ymax(x3) ≤ ymax(x1). Then the hor-
izontal line joining (x3, ymax(x3)) and (x1, ymax(x3)) passes through an empty
cell above (x2, ymax(x2)), thus contradicting orthogonal convexity of S. A sym-
metrical argument holds for the third property. The proof for rows is identical,
by rotating the whole system 90°. ut

Lemma 1. For all n ≥ 3, the maximum colour-difference of a connected horizo-
ntal-vertical convex shape of size n is n− 2bn/3c.
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Proof. We shall perform a column-based analysis of the maximum colour-differe-
nce of a shape S, assuming w.l.o.g. that the majority colour is black. By Propo-
sition 2, every column is a consecutive sequence of nodes. This implies that
every even-length column has an equal number of blacks and reds, thus does not
contribute to the colour-difference of S. It also implies that every odd-length
column can contribute at most 1 (−1) to the colour-difference and a contri-
bution of 1 (−1, resp.) happens iff that column starts and ends with a black
(red, resp.), including the case of single-node columns. As a consequence, for
a shape to maximise its colour-difference it must be maximising the number
of black-parity odd-length columns while minimising the number of red-parity
odd-length columns.

Consider any internal (i.e., which is not the leftmost or the rightmost) black-
parity column cx of S of length 1. Due to connectivity of S, the single black
node (x, y) forming cx must have the red neighbours (x − 1, y) and (x + 1, y).
Note now that cx−1 and cx+1 cannot both have nodes above y nor both below y,
as any of these would violate horizontal convexity of S. If only one of these two
columns has additional nodes, then the contribution to the colour-difference by
these 3 columns is 1 by using 5 nodes. If both columns have additional nodes,
then let w.l.o.g. cx−1 have nodes above y and cx+1 below y. Then, again, the best
contribution to the colour-difference is 1 by using 5 nodes, obtained by adding
one black to each column. Adding more nodes to any of these cases cannot
improve the 1/5 ratio.

Next, over all columns of odd length at least 3, the maximum contribution
is obtained by the length-3 column (black, red, black), which contributes to the
colour-difference 1 per 3 nodes.

Consequently, given n ≥ 3 nodes, a shape maximising the colour-difference
is the one consisting of bn/3c columns of length 3 and n− 3bn/3c ≤ 2 terminal
single-node columns, for a maximum colour-difference of bn/3c+ n− 3bn/3c =
n− 2bn/3c, as required. This shape, which we call the diagonal line-with-leaves,
is depicted in Figure 5. ut
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Fig. 5: The diagonal line-with-leaves shape on n nodes, consisting of k red nodes
and 2k black nodes arranged in bn/3c columns of length 3, plus at most 2
terminal single-node columns at the left and right ends.

A staircase is a shape of the form (x, y), (x+1, y), (x+1, y+1), (x+2, y+1), . . .
or (x, y), (x, y + 1), (x + 1, y + 1), (x + 1, y + 2), . . .. An extended staircase is a
staircase Stairs = {(xl, yd), (xl, yd + 1), (xl + 1, yd + 1), (xl + 1, yd + 2), . . .}
with a bicolour pair at (xl − 1, yd), (xl − 1, yd + 1) or at (xl − 1, yd − 1), (xl −
1, yd). Additionally, there are three optional node-repositories, BRep, RRep and
a single-black repository. BRep = {(xl, yd + 2), (xl + 1, yd + 3), (xl + 2, yd +
4), . . .}, RRep = {(xl, yd − 1), (xl + 1, yd), (xl + 2, yd + 1), . . .} and the single-
black repository at (xl − 2, yd).

4.3 Elimination and Generation Sequences

For convenience, we define E(S) = {R1, Rp, C1, Cq} as the set containing the
first and last rows and columns of a given shape S (omitting S when clear
from context), called terminal rows/columns, and adjacent : E → E′, where
E′ = {R2, Rp−1, C2, Cq−1}, as a function mapping R1 to R2, Rp to Rp−1, C1 to
C2 and Cq to Cq−1.

Recall that, by Proposition 2, every row/column of a horizontal/vertical con-
vex shape is a line.

Let S be a connected orthogonal convex shape. A shape elimination sequence
σ = (u1, u2, . . . , un) of S is a permutation of the nodes of S satisfying the
following properties. Let St = St−1 \ {ut}, where 1 ≤ t ≤ n and S0 = S.
Observe that Sn is always the empty shape. The first property is that, for all
1 ≤ t ≤ n − 1, St must be a connected orthogonal convex shape. Moreover, for
all 1 ≤ t ≤ n, ut must be a node on the external surface of St−1. Essentially,
σ defines a sequence S = S0[u1]S1[u2]S2[u3] . . . Sn−1[un]Sn = ∅, where, for all
1 ≤ t ≤ n, a connected orthogonal convex shape St is obtained by removing the
node ut from the external surface of the shape St−1.

A row elimination sequence σ of S is an elimination sequence of S which
consists of p sub-sequences σ = σ1σ2 . . . σp, each sub-sequence σi, 1 ≤ i ≤ p,
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satisfying the following properties. Sub-sequence σi consist of the k = |Ri| nodes
of row Ri, where u1, u2, . . . , uk is the line formed by row Ri. Additionally, σi is
of the form σi = σ1

i σ
2
i , where (i) σ1

i = (u1, . . . , uk) or σ1
i = (uk, . . . , u1) and σ2

i

is empty or (ii) there is a uj ∈ Ri, for 2 ≤ j < k, such that σ1
i = (u1, . . . , uj)

and σ2
i = (uk, . . . , uj+1) or (iii) there is a uj ∈ Ri, for 1 ≤ j < k − 1, such

that σ1
i = (uk, . . . , uj+2) and σ2

i = (u1, . . . , uj+1). We shall call any such sub-
sequence σi an elimination sequence of row Ri. A column elimination sequence
of S can be obtained by rotating the whole system by 90°.

Given a connected orthogonal convex shape S of n nodes, a shape generation
sequence σ = (u1, u2, . . . , un) of S is a permutation of the nodes of S satisfying
the following properties. Let St = St−1 ∪ {ut}, where 1 ≤ t ≤ n and S0 = ∅.
Observe that Sn = S. Any shape generation sequence also satisfies the following
properties, which it shares with the shape elimination sequence. The first prop-
erty is that, for all 1 ≤ t ≤ n−1, St must be a connected orthogonal convex shape.
Moreover, for all 1 ≤ t ≤ n, ut must be placed in the cell perimeter of St−1. Es-
sentially, σ defines a sequence ∅ = S0[u1]S1[u2]S2[u3] . . . Sn−1[un]Sn = S, where,
for all 1 ≤ t ≤ n, a connected orthogonal convex shape St is obtained by adding
the node ut to the cell perimeter of St−1.

Let S be an extended staircase of n nodes. An extended staircase generation
sequence σ = (u1, u2, . . . , un) of S is a generation sequence of S which consists of
q sub-sequences σ = σ1σ2 . . . σq, where each σi contains the nodes of the column
Ci of S, ordered such that they do not violate the properties of a shape generation
sequence. A diagonal line-with-leaves generation sequence is an extended staircase
generation sequence where the repository of the constructed extended staircase
is ∅.

Lemma 2. Every connected orthogonal convex shape S has a row (and column)
elimination sequence σ.

Proof. Let R1 be the bottom-most row of S, u1, u2, . . . , uk being the line formed
by row R1. It is sufficient to prove that there is an elimination sequence σ1 of R1,
as this can then be applied repeatedly to each subsequent bottom-most row Ri,
2 ≤ i ≤ p, until S becomes empty, σ then being obtained by σ = σ1, σ2, . . . , σp.

If there is a single node uj in R1 which is adjacent to a node v in R2, then,
if 2 ≤ j ≤ k− 1, σ1 = (u1, . . . , uj , uk, . . . , uj+1) is an elimination sequence of R1

and, if j = 1 or j = k the same holds for σ1 = (uk, . . . , u1) and σ1 = (u1, . . . , uk),
respectively. This holds because, in all these cases, only removing uj+1 before
the last step in the sequence could disconnect the shape, thus, connectivity is
preserved. Moreover, orthogonal convexity is not violated by any removal as this
would contradict either the assumption that R1 is bottom-most or the fact that
nodes are only removed from the current endpoints of R1.

Finally, observe that if multiple nodes in R1 are adjacent to distinct nodes in
R2, then these must necessarily be consecutive, otherwise orthogonal convexity
would be violated in R2. Setting any of those nodes of R1 as the uj+1 of the
previous case, will again give elimination sequences of R1. ut
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Lemma 3. For any connected orthogonal convex shape S of n nodes, given a
row elimination sequence σ of S and a diagonal line-with-leaves generation se-
quence σ′ of a fixed parity which is colour-order preserving w.r.t σ, the maximum
imbalance of any prefix of size m ≤ n of σ′ is at most O(2m/3).

Proof. Assume w.l.o.g that the parity of σ is black. If S is a diagonal line-with-
leaves with the red parity, where each column in S has 3 nodes, then every prefix
of σ′ of m nodes will have an imbalance of 2 red nodes for every black node for
all m nodes, leading to the maximum imbalance of O(2m/3). ut

Lemma 4. For any diagonal line-with-leaves generation sequence σ generating
a shape S with a fixed parity column by column, for any sub-sequence σ′ which
is a prefix of σ, the number of non-parity nodes in σ′ cannot exceed the number
of parity nodes by more than 2.

Proof. Assume that there is such a σ′, constructing a diagonal line-with-leaves S′

of q columns C1, C2, . . . , Cq. It must be the case that, in the process of construct-
ing S, the shape generation sequence generates the shape constructed by σ′. We
assume w.l.o.g. that the parity of σ (and by extension σ′) is black. Therefore,
each column Ci in S′ constructed by σ′ must have at least one black node neigh-
bouring every red node to preserve connectivity. Therefore, σ′ has two possible
locations to store additional red nodes without increasing the number of black
nodes: by placing one red node in C1 and by placing another in Cq. Placing any
more red nodes violates the structure of a black parity diagonal line-with-leaves
by making the lowest node in any Ci the non-parity colour, and is therefore
impossible. ut

For the next proof, we ignore the trivial shape of a node surrounded by four
other nodes.

Lemma 5. Let S be a connected orthogonal convex shape. Then there is a row
(column) elimination sequence of S which has no single-coloured 3-sub-sequence.

Proof. Assume that every row (column) elimination sequence σ has such a single-
coloured 3-sub-sequence σ′ = (ui, ui+1, ui+2). Assume there is a row R of S such
that ui, ui+1, ui+2 ∈ R. Recall that a row elimination sequence for a given row
R is of the form σ1σ2 resulting from the partitioning of R into two consecutive
lines, where at most one can be empty. It follows that σ′ cannot be a sub-
sequence of σ1 or σ2 because each is an alternating sequence of colours. So, σ′

must be spanning the switching point from σ1 to σ2, sharing a 2-sub-sequence
with either the suffix of σ1 or the prefix of σ2. But that 2-sub-sequence cannot be
single-coloured because each of σ1 and σ2 is an alternating sequence of colours.

Next, we consider the situation where σ′ spans multiple rows. Note that if S
is a series of one node rows, then σ′ cannot contain nodes belonging to different
rows of S because any row elimination sequence must switch colour to move
between rows. If there are two rows R1 and R2, then if R2 is even then we
can select the colour by selecting between σ1 and σ2. If R2 is odd, then both
sequences can start with the same colour, but because each alternates there
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cannot be a 3-sub-sequence unless one is immediately followed by the other.
This is only possible if R2 is a 3 node line and there is a third line R3 with one
node. Because we ignore the trivial shape, there must be an R4, and by rotating
the row elimination sequence we can get a σ without σ′. ut

Given an extended staircase S, an empty slot is a cell in the cell perimeter
of S which can be occupied by a node u such that T = S ∪ {u} is an extended
staircase.

We now present an algorithm (see Algorithm 1), which given a row elim-
ination sequence σ returns an extended staircase generation sequence σ′. The
algorithm, which is stated in more general terms and works for a larger set of
bi-coloured sequences, first constructs a prefix of 4-5 nodes (4 plus an optional
repository for a black node) and then extends it by placing nodes on the stair-
case. If this is not possible, then it places nodes in the repository corresponding
to the colour of the node.

The following is an informal description of Algorithm 1. By assumption, it
expects the first two nodes of the input sequence to form a bicolour pair, the
third node to be black, and no single-colour 3-sub-sequence to ever arrive. The
algorithm positions the pair vertically and the black to its right at (xl, yd). If the
fourth node is black, it goes to an optional single-black repository to the left of
the pair and the fifth node must then be red. Otherwise the fourth node is red.
In both cases, a red will be placed over the (xl, yd) black. Thus, the prefix of the
shape constructed by the algorithm always consists of two vertical pairs and the
possibility of a black stored at the single-black repository to their left. If the next
node is a red it will be stored in the first red repository position at (xl, yd−1).
If not, it is a black. In both cases the next black will start a new column to the
right and the algorithm has finished the construction of the prefix having reached
its invariant configuration. The invariant satisfies the following properties. New
columns always start with the placement of a black. The red repository position
of that column below the black and the black repository of the previous column
are unoccupied at that point. Any nodes that alternate colours keep growing
the staircase part of the shape, preserving the above invariant conditions. If two
consecutive nodes of the same colour ever arrive, the second of these nodes will
be stored to the first available position of the repository corresponding to its
colour. This keeps growing a staircase extended with an upper black and a lower
red repository. Both repositories are diagonal lines of consecutive nodes attached
to the staircase, starting from its bottom left and having no gaps. The current
length of the staircase is an upper bound on the length of the red repository and
on the length of the black repository plus 1.

The following assumptions are made by Algorithm 1. The third node is always
a black node. This is a necessary technical assumption that we shall later ensure
is always satisfied by our transformations. Variables NB , NR are assumed to be
always set to the current #nodes in the black, red repository, respectively. The
single-black repository at (xl− 2, yd), not counted in NB , stores the fourth node
if both the third and the fourth node of the sequence are black.
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Algorithm 1 ExtendedStaircase(σ)

Input: row elimination sequence σ = (u1, u2, . . . , un)
Output: extended staircase generation sequence σ′ = (u′

1, u
′
2, . . . , u

′
n) which is colour-

order preserving w.r.t. σ

NB , NR: current #nodes in the black and red repository, respectively

if c(u1) = red and c(u2) = black then . 1st and 2nd are always a bicolour pair
u′
1 = (xl − 1, yd), u′

2 = (xl − 1, yd + 1)
else

u′
1 = (xl − 1, yd − 1), u′

2 = (xl − 1, yd)
end if
u′
3 = (xl, yd) . Assumption that 3rd is always black

if c(u4) = black then
To be stored at the single-black repository
u′
5 = (xl, yd + 1) . 5th must be red
i = 6

else
u′
4 = (xl, yd + 1)
i = 5

end if

for all remaining i ≤ n do
If first of new column, then u′

i = (xr + 1, yu) . this is always black
if c(ui) 6= c(ui − 1) then

if c(ui) = black then
u′
i = (xr + 1, yu)

else
u′
i = (xr, yu + 1)

end if
else

if c(ui) = black then
u′
i = (xl +NB , yd +NB + 2)

else
u′
i = (xl +NR, yd +NR − 1)

end if
end if

end for
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Lemma 6. Let σ be a bicoloured sequence of nodes that fulfills all the following
conditions:

– The set of the first two nodes in σ is not single-coloured.
– The third node of σ is black.
– σ does not contain a single-coloured 3-sub-sequence.

Then there is an extended staircase generation sequence σ′ = (u′1, u
′
2, . . . , u

′
n)

which is colour-order preserving with respect to σ.

Proof. The sequence σ′ is the one obtained by applying Algorithm 1 to σ. The
algorithm begins by placing the first 4 or 5 nodes of σ′, depending on whether
u3 is red or black respectively. The result is a shape-prefix with 4 nodes, possibly
with an extra black in the repository, with 2 empty black slots and 2 empty red
slots neighbouring the nodes in (xl, yd) and (xl, yd + 1). We now begin to follow
the loop of Algorithm 1. When we extend the staircase by one node, this creates
a new column with two empty slots for the opposite colour, one in the new
column and another in the repository of a third column. When we add a node of
that colour to the column, we create two new empty slots for the first colour in
the same manner. As a result, the number of empty slots in the repositories only
rises as the staircase extends. Therefore, the 3 node restriction of the second
condition for σ is the minimum necessary for the worst case where we have only
2 empty slots, and the σ′ derived from such a σ by the construction algorithm
generates an extended staircase as required. ut

ExtendedStaircase is an algorithm which creates an extended staircase gen-
eration sequence from a row elimination sequence of a connected orthogonal
convex shape.

Lemma 7. For an extended staircase generation sequence σ generated by Ex-
tendedStaircase, every shape generated by a prefix of σ is orthogonal convex.

Proof. Observe that an extended staircase consists of 4 diagonal lines of nodes:
the two diagonals of Stairs, and the two nodes which connect to and extend
them, BRep and RRep. The construction of Stairs never has a gap between
nodes as the lines of the algorithm which add nodes to it require the colour
of the nodes to alternate and the algorithm alternates between creating a new
column and adding another node to it. The diagonal lines BRep and RRep grow
node by node from the first column of Stairs to the last. Their sizes are therefore
upper bounded by the size of Stairs, and there can be no vertical or horizontal
gap. ut

Lemma 8. For any connected orthogonal convex shape S of n nodes, given a
row elimination sequence σ = (u1, u2, . . . , un) of S where the set of the first two
nodes in σ is not single-coloured and u3 is black, there is an extended staircase
generation sequence σ′ = (u′1, u

′
2, . . . , u

′
n) which is colour-order preserving w.r.t σ

and such that, for all 1 ≤ i ≤ |σ|, Di = {u′1, u′2, . . . , u′i} is a connected orthogonal
convex shape.
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Proof. By Lemma 5, σ will not have a single-coloured 3-sub-sequence. Therefore,
by our assumption about σ and Lemma 6 we have a σ′. We can then place the
nodes of σ′ as in Algorithm 1. By Lemma 7, all prefixes σ′i of σ′ construct an
orthogonal convex shape (excluding the black repository), and therefore all Di

are connected orthogonal convex shapes. ut

Observation 2 For any connected orthogonal convex shape S of n nodes, if the
set of the first two nodes in the row elimination sequence σ = (u1, u2, u3, . . . , un)
is single-coloured, u3 is black and there is an empty cell c of the opposite colour
in the cell perimeter of S such that if c is occupied by v then S ∪ {v} is an
orthogonal convex shape, then S ∪ {v} \ u1 has a row elimination sequence σ′

where the set of the first two nodes in σ′ is not single-coloured.

The anchor node of the shape S of p rows R1, R2, . . . , Rp is the rightmost
node in the row Rp, counting rows from bottom to top. ExtendedStaircase is an
algorithm which creates an extended staircase generation sequence from a row
elimination sequence of a connected horizontal-vertical convex shape.

Lemma 9. Let S be a connected orthogonal convex shape of n nodes divided
into p rows R1, R2, . . . , Rp, and σ = (u1, u2, . . . , un) a row elimination sequence
from R1 to Rp of S. If the bottom node of the first two nodes placed by Extended-
Staircase is fixed to (xc, yc +1), where (xc, yc) are the co-ordinates of the anchor
node of S, the shape Ti = ExtendedStaircase(σi), where σi = (u1, u2, . . . , ui),
1 ≤ i ≤ n, fulfills the following properties:

– S ∪ Ti is a connected shape.
– S ∩ T = ∅.
– excluding the single-black repository, Rp ∪ Ti is an orthogonal convex shape.

Proof. Let u1, u2, . . . , ui be the nodes in the sequence σi. If the first node is
black, Algorithm 1 places a node in (xl − 1, yd − 1), otherwise it places it in
(xl − 1, yd). By Lemma 7, all σi generate an orthogonal convex shape, so Ti
cannot be a disconnected shape. Therefore, the shape S ∪ Ti is connected. In
addition, the co-ordinates (xl − 1, yd − 1) and (xl − 1, yd) represent the two
potential bottom-left corners of the shape T . Therefore, there can be no overlap
(i.e. placement of nodes in occupied cells) as the existence of a node of S in the
space T is constructed in would contradict the definition of an anchor node. In
addition, the cell (xl − 2, yd) (the single-black repository) is always empty as a
node in that cell would have the y co-ordinate yd, which is above the anchor node
at yd− 2 or yd− 1, violating the definition of the anchor node. Finally, since the
nodes u1 and u2 construct a column, and every node u3, . . . , un (excluding the
single-black repository) is necessarily to the right of this column, there cannot
be a violation of orthogonal convexity with the row Rp. ut

Lemma 10. For any extended staircase W ∪ T of n nodes, where W is the
Stairs, T ⊆ {BRep ∪ RRep} and k = |T |, given a shape elimination sequence
σ = (u1, u2, . . . , uk) of T , there is a diagonal line-with-leaves generation sequence
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σ′ = (u′1, u
′
2, . . . , u

′
k) which is colour-order preserving w.r.t σ and such that, for

all 1 ≤ i ≤ |σ|, Di = W ∪ {u′1, u′2, . . . , u′i} is a connected orthogonal convex
shape.

Proof. We use a shape elimination sequence σ of T which alternates between
taking nodes from the black repository BRep and the red repository RRep. It
does this until only one repository remains. We can then use σ′ to place the nodes
ofD as in the for loop of Algorithm 1, effectively extendingW . If we maximise the
size of σ then the resulting Dk, a Stairs with only one repository, is equivalent
to a diagonal line-with-leaves. By Lemma 7, all prefixes Di generated by σ′ are
connected orthogonal convex shapes (excluding the black repository). ut

5 The Transformation

In this section, we present the transformation of orthogonal convex shapes, via
an algorithm (Algorithm 2) for constructing a diagonal line-with-leaves from any
orthogonal convex shape S. For the first step of the algorithm, we generate a
6-robot from the seed and the shape, which we then use to transport nodes.
By using a row elimination sequence of S and an extended staircase generation
sequence, we convert the initial shape S into an extended staircase. We then use
appropriate elimination and generation sequences focused on the repositories
of the extended staircase, to convert the latter into a diagonal line-with-leaves.
Given any two colour-consistent orthogonal convex shapes A and B and their
diagonal line-with-leaves D, our algorithm can be used to transform both A into
D and B into D and, thus, A into B, by reversing the latter transformation.

Our transformations rely on the use of a k-robot, a shape with k nodes which
is responsible for transporting nodes. The k-robot extracts a node u if it is
positioned such that u rotates around a node of the robot and the result is a
k + 1-robot where u is the load of the robot. The k + 1-robot places its load in
the cell c if it is positioned such that the load rotates into c and the result is a
k-robot.
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Algorithm 2 HVConvexToDLL(S,M)

Input: shape S ∪ M , where S is a connected orthogonal convex shape of n nodes
and M is a 3-node seed on the cell perimeter of S, row elimination sequence
σ = (u1, u2, . . . , un) of S, extended staircase generation sequence of W ∪ T = σ′ =
(u′

1, u
′
2, . . . , u

′
n) which is colour-order preserving w.r.t. σ, shape elimination sequence

σ = (u1, u2, . . . , u|T |) of T , shape generation sequence of X = σ′ = (u′
1, u

′
2, . . . , u

′
|T |)

which is colour-order preserving w.r.t. σ
Output: shape G = W ∪X ∪M , where G is a diagonal line-with-leaves and M is a

connected 3-node shape on the cell perimeter of S.
R← GenerateRobot(S,M)
σ ← rowEliminationSequence(S)
σ′ ← ExtendedStaircase(σ)
W ∪ T ← HVConvexToExtStaircase(S,R, σ, σ′)
σ ← repsEliminationSequence(W ∪ T )
σ′ ← stairExtensionSequence(W ∪ T )
G← ExtStaircaseToDLL(W ∪ T,R, σ, σ′)
TerminateRobot(G,R)

5.1 Robot Traversal Capabilities

6-Robot Movement We first show that for all S in the family of orthogonal
convex shapes, a connected 6-robot is capable of traversing the perimeter of S.
We prove this by first providing a series of scenarios which we call corners, where
we show that the 6-robot is capable of making progress past the obstacle that
the corner represents. We then use Proposition 1 to show that the perimeter of
any S is necessarily made up of a sequence of such corners, and therefore the
6-robot is capable of traversing it.
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Algorithm 3 HVConvexToExtStaircase(S,R, σ, σ′)

Input: shape S ∪ R, where S is a connected orthogonal convex shape of n nodes
and R is a 6-node robot on the cell perimeter of S, row elimination sequence σ =
(u1, u2, . . . , un) of S, extended staircase generation sequence σ′ = (u′

1, u
′
2, . . . , u

′
n)

which is colour-order preserving w.r.t. σ
Output: shape T ∪R, where T is the extended staircase generated by σ′

for all 1 ≤ i ≤ n do
source← σi

dest← σ′
i

while R cannot extract source do
if R can climb then

Climb(R)
else

Slide(R)
end if

end while
Extract(R, source)
while R cannot place its load in dest do

if R can climb then
Climb(R)

else
Slide(R)

end if
end while
Place(R, dest)

end for
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Algorithm 4 ExtStaircaseToDLL(W,R, σ, σ′)

Input: extended staircase W = Stairs ∪ {BRep ∪ RRep} and a 6-robot R on its cell
perimeter, shape elimination sequence σ = (u1, u2, . . . , u|T |) of T ⊆ {BRep∪RRep},
shape generation sequence σ′ = (u′

1, u
′
2, . . . , u

′
|T |) which is colour-order preserving

w.r.t. σ
Output: shape Stairs′∪R′, where Stairs′\Stairs is an extension of Stairs generated

by σ′ and R′ is a 6-robot which is colour-consistent with R.
for all 1 ≤ i ≤ |T | do

source← ui

dest← u′
i

while R not at source do
if R can climb then

ClimbTowards(R, source)
else

SlideTowards(R, source)
end if

end while
Extract(R, source)
while R not at dest do

if R can climb then
ClimbTowards(R, dest)

else
SlideTowards(R, dest)

end if
end while
Place(R, dest)

end for
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(a) The height 1 cases, with widths 1 and 2+.

(b) The height 2 case.

(c) The height 3+ case.

(d) An extreme version of the partial quad-
rant, when a quadrant consists of a single
line.

Fig. 6: The five cases considered in the proof, four corner cases and one edge
case where a section of the perimeter does not correspond to a corner case due
to its structure. Striped circles represent the nodes on the exterior of the shape.
Hollow circles represent potential space for additional nodes for corner scenarios
which are not in this set (due e.g. to having longer horizontal/vertical lines).
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We define progress as the movement of the 6-robot upwards and to the right
of its starting position, i.e. any change in the position of the shape such that the
shape is in the same a×b formation but the co-ordinates of all of the nodes have
increased. This is equivalent to being able to traverse the relevant section of a
perimeter. Our goal is to show that attaining the maximum progress (i.e. the
movement which maximises the increase in the co-ordinates while preserving
the formation) for each corner is possible. Since we can construct a series of
corners where every corner follows from the point of maximum progress of the
previous corner, it follows that for such a series we can make progress indefinitely.
By rotating the robot and the quadrant as necessary, we can make the same
argument for progress in any direction, which is equivalent to being able to
traverse a perimeter indefinitely, provided we also show that the perimeter is
necessarily made up of such corners.

We begin by considering the up-right quadrant, that is any cells which neigh-
bour the section of the perimeter defined by the regular expression d1(d1 | d2)∗d2
(d2 | d3)∗d3, where d1, d2 and d3 are up, right and down respectively, as our base
case.

Let C be a set of orthogonal convex shapes, where each shape is a corner
scenario for the up− right quadrant, depicted in Figure 8. Given a corner-shape
scenario C ∈ C consisting of a horizontal line (xl, yd), (xl+1, yd), . . . , (xr, yd) and
a vertical line (xr, yd), (xr, yd+1), . . . , (xr, yu), as depicted in Figure 8, we define
its width w(C) = |xr − xl|, i.e., equal to the length of its horizontal line, and its
height h(C) = |yu − yd|, i.e., equal to the length of its vertical line, excluding in
both cases the corner node (xr, yd).

Fig. 7: A visual representation of the variables we use in our proof.
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(a) The height 1 cases, with widths 1 and 2+.

(b) The height 2 case.

(c) The height 3+ case.

Fig. 8: The four basic corner scenarios of C.

Lemma 11. For any orthogonal convex shape S, the extended external surface
defined by the regular expression d1(d1 | d2)∗d2 (d2 | d3)∗d3 of the shape can be
divided into a series of shapes S0, S1, . . ., where all Si ∈ C.

Proof. By Proposition 1, there is the section of the perimeter of orthogonal con-
vex shapes which is defined by the regular expression d1(d1 | d2)∗d2 (d2 | d3)∗d3,
where d1, d2 and d3 are up, right and down respectively. This section of the
perimeter forms a “quadrant” where all movement is in the up and right direc-
tions, terminated by the first d3, as can be seen in the examples in 4. By the
regular expression, the nodes on the perimeter must necessarily form alternating
horizontal and vertical lines. We can therefore divide this section of the perime-
ter into a series of subsections, where in each subsection we have a horizontal
line which connects to a vertical line via the right-most node on the horizontal
line. The cases in Figure 8 cover all potential widths and heights where this ver-
tical line positioning constraint holds. This even holds for the edge cases where
a vertical ending at (xr, yu) is immediately followed by another vertical starting
at (xr + 1, yu), provided we allow (xr, yu) to act both as (xr, yu) and (xl, yd) for
each case respectively. Therefore, they cover all potential cases in the quadrant,
and since the quadrant is made up of these cases, it covers the extended external
surface of the whole quadrant. ut

Given that the quadrant is made up of cases from C, if the 6-robot is able to
move from one vertical to another for all Si ∈ C, it is able to do so for any up-
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right quadrant of the perimeter until it runs into the d3 line. We now show that
this movement is possible, first for this quadrant and later for all four quadrants.

Lemma 12. For all shapes C ∈ C, if a 2 × 3 shape (the 6-robot) is placed in
the cells (xl − 2, yd + 1), (xl − 1, yd + 1), (xl, yd + 1), (xl − 2, yd + 2), (xl − 1, yd +
2), (xl, yd + 2), it is capable of translating itself to (xr − 2, yu + 1), (xr − 1, yu +
1), (xr, yu + 1), (xr − 2, yu + 2), (xr − 1, yu + 2), (xr, yu + 2).

Proof. For our proof strategy, we present a series of motions which for all shapes
C ∈ C lead the 6-robot from the leftmost node of the horizontal to the topmost
node of the vertical. We group some of these motions into high-level motions (i.e.
moving the whole 6-robot by moving individual nodes). We begin by noting that
we can perform repetitive motions to traverse a horizontal or vertical line to the
end. Our first motion is sliding, depicted in Figure 9, where pairs of nodes rotate
around each other to slide across a line. By reorienting the shape, the 6-robot
and its movement vertically, it follows that the 6-robot can slide up vertical lines
as well. The second action is a special version of the slide depicted in Figure 10.
This slide is slower but allows the object to preserve connectivity in the situation
where only one or two nodes are connected to the line. We are therefore already
able to claim that moving across and onto lines is possible. What remains is the
intersection of horizontal and vertical lines.
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Fig. 9: Sliding across a horizontal
line.

Fig. 10: Sliding onto a horizontal
line. The steps are repeated after
the third configuration to reach the
fourth configuration.
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Our first is the case where the 6-robot lies on a horizontal of arbitrary width,
and attempts to climb a vertical of height 3. It does by following the series of
rotations in Figure 11. The result is that the robot lies on top of the vertical
line, and is therefore able to use the slide and/or special slide movements (if
necessary) to move across the horizontal line at the top (not depicted) to the
next vertical. This climbing procedure can be performed no matter how long the
first horizontal (i.e. the one the robot lies on initially) is. In addition, there is a
section of the movement which puts the seed in the position to slide vertically
(see Figure 12), allowing a modified version the same procedure to climb verticals
of arbitrary height.

Finally, there are the solutions for the cases where the height is 2 (Figure
13) and where the height is 1 (Figure 14 and 15). Note that unlike the former
movement, the latter movements vary depending on the width (2+ and 1 re-
spectively). ut

Theorem 1. For any orthogonal convex shape S, a 6-robot is capable of travers-
ing the perimeter of S.

Proof. By Lemma 12 we have shown for the up-right quadrant firstly that it
is possible to slide across a horizontal of arbitrary width no matter the robot’s
initial position, that it is possible to climb a height 3 vertical, that part of this
movement can be repeated indefinitely to climb verticals of arbitrary height,
that special movements exist for smaller verticals and that all of this is possible
no matter how long the horizontal line the object lies on is.

By rotating the robot and the quadrant as necessary, we are able to repli-
cate our movements for all other quadrants: d4(d4 | d1)∗ (the left-up quadrant)
d2(d2 | d3)∗ (the right-down quadrant) and d3(d3 | d4)∗ (the left-down quadrant).
All that remains is the transition between the quadrants.

There are two cases. In the first case, the next quadrant consists of multiple
lines. In this case, when the line signifying the end of the current quadrant is
met it is sufficient to begin movements appropriate to travelling in the next
quadrant. However, there is an edge case where a quadrant consists of a single
line. In this case, a unique movement is necessary (see Figure 16) to transfer the
6-robot onto the line. These movements are then followed by special slides to put
the object into position for the next quadrant. Naturally, these transformations
are reversible and can be mirrored as well. We are therefore able to deal with
any quadrant transition, even rotating the 6-robot around a single node.

Therefore, because we can move through any variant of all quadrants and
transition between them, a 6-robot can traverse the perimeter of any orthogonal
convex shape. ut
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Fig. 11: Climbing a height 3 vertical with a width 1 horizontal. All figures are
read as pairs of columns, top-down.
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Fig. 12: Climbing a vertical of arbitrary height with an arbitrary width horizon-
tal. The process starts as in Figure 11, and the upwards slide in the first column
of snapshots can be repeated for as long as necessary to climb the wall. This
corresponds to case (c) of Figure 8.
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Fig. 13: Climbing a height 2 vertical with an arbitrary width horizontal. This
corresponds to case (b) of Figure 8.

Fig. 14: Climbing a height 1 vertical with a width 1 horizontal. This corresponds
to the first (a) case of Figure 8.
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Fig. 15: Climbing a height 1 vertical with a width 2+ horizontal. This corresponds
to the second (a) case of Figure 8.

Fig. 16: Movement into a new quadrant consisting of a line of length 1.
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7-Robot Movement We consider once again the up-right quadrant, and gen-
eralise to other quadrants later. We say a cell c = (x, y) is behind the robot if x
is smaller than the x-coordinate of every node in the robot.

The load of a 7-robot S is any node u such that S \ {u} is a 2 × 3 shape.
The position of the robot is an offset of the y axis (see yd from Figure 7) for
the purpose of the initial positioning of the 7-robot. For our transformations, we
maintain the invariant that the 7-robot, after any of its high-level movements,
will return to the structure of a 2 × 3 shape with a load. For this invariant,
we assume that the load is always behind the 2× 3 shape (while remaining con-
nected). We will show in the proof why the situation where the load is positioned
differently does not need to be considered. We therefore use (x, y|y′) to refer to
the co-ordinates of the two cells (x, y) and (x, y′) behind the robot which can
contain the load, keeping it attached to the robot while the latter is a 2 × 3
shape. The colouring of a 7-robot is good if the load is in the higher of the two
possible positions, and bad if it is in the lower position. Bad colouring usually
means the resulting transformations are more difficult.

Lemma 13. For all shapes C ∈ C, if a 2× 3 shape with a load (the 7-robot) is
placed in the cells (xl− 3, yd + 1|yd + 2), (xl− 2, yd + 1), (xl− 1, yd + 1), (xl, yd +
1), (xl− 2, yd + 2), (xl− 1, yd + 2), (xl, yd + 2), it is capable of translating itself to
(xr − 3, yu + 1|yu + 2), (xr − 2, yu + 1), (xr − 1, yu + 1), (xr, yu + 1), (xr − 2, yu +
2), (xr − 1, yu + 2), (xr, yu + 2).

Proof. We present a series of motions which for all shapes C ∈ C lead the 7-robot
from the leftmost node of the horizontal to the topmost node of the vertical. As in
Lemma 12, we group some of these motions into high-level motions (i.e. moving
the whole 7-robot by moving individual nodes).

Our first motion is sliding, depicted in Figures 17 and 18. The 7-robot can
alternate between these two transformations to slide over the horizontal line of
C. Alternating between the two is possible because the final configuration of
each has the form required by the initial configuration of the other. The second
motion is also a version of sliding, called special sliding, depicted in Figures 19-21.
The purpose of special sliding is to bring the 7-robot “onto” the horizontal line,
when it starts from an extreme position from which the sliding motion does not
apply. Figures 19 and 20 cover the cases where only the bottom-right node of the
7-robot is attached to the horizontal line, while Figure 21 the case where there
are two points of attachment but the robot colouring is bad. By special sliding,
the 7-robot can move onto the horizontal line and sliding can then be used to
move it across the horizontal, until its bottom-right node is at (xr − 1, yd + 1),
i.e., in one of the initial configurations of Figures 22 and 24 (disregarding the
height of the vertical). This covers the horizontal part of C. It remains to be
shown that the 7-seed can then climb up and then onto the vertical part of C.
We do this with a motion which we refer to as climbing, which covers a few sets
of cases.

For the first set of cases, we consider the situations where the height of the
vertical is 1. If the colouring is good, then we can rotate the load above the
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vertical. This is depicted in Figure 22. Note that the load necessarily takes the
higher of the two possible cells behind the robot at the start of the translation. If
the colouring is bad, then the movements depend on the width of the horizontal,
which can be 1 (Figure 23), and 2+ (Figure 24). Note that these movements
always deposit the 7-robot in the position for a special slide, and the load always
remains behind the robot.

For the next set of cases, we consider the situations where the height of
the vertical is 2. Our first is the case where the colouring is bad. In this case,
we follow the rotations of Figure 25. When the colouring is good, we have two
additional cases. We can follow the rotations of Figure 26 and Figure 27 to climb
up and onto the vertical, respectively.

Finally, we consider the cases where the height of the vertical is at least 3.
When the height is exactly 3 and the colouring is bad, we can follow Figure
28 to reach the top of the vertical and then Figure 27 to climb onto it. In the
good colouring case, we can repeat the rotations of Figure 26 and Figure 29
until we reach the top of the vertical, and then perform the rotations of Figure
22 or Figure 27, depending on whether the load is in the higher or lower of the
two possible positions. We do the same for when the height is over 3 and the
colouring is bad, but begin with the Figure 28 rotation.

We have thus shown how the 7-robot can climb up and onto verticals of
any possible length. Putting everything together, starting from one of the initial
positions specified by the lemma statement relative to the horizontal line of
C, the 7-robot can use special sliding to move onto the horizontal, followed by
sliding to move across it, and finally climbing to move up and onto the vertical,
for all possible widths and heights of C. Moreover, the final position of the 7-
robot relative to the vertical is as required by the statement. ut

Theorem 2. For any orthogonal convex shape S, a 7-robot is capable of travers-
ing the perimeter of S.

Proof. By Lemma 13 we have shown for the up-right quadrant firstly that it
is possible to slide across a horizontal of arbitrary width no matter the robot’s
initial position, that it is possible to climb a height 2 vertical, that part of this
movement can be repeated indefinitely to climb verticals of arbitrary height, that
special movements exist for the height 1 vertical and that all of this is possible
no matter how long the horizontal line the object lies on is, nor whether the
7-robot is red or black.

By rotating the robot and the quadrant as necessary, we are able to repli-
cate our movements for all other quadrants: d4(d4 | d1)∗ (the left-up quadrant)
d2(d2 | d3)∗ (the right-down quadrant) and d3(d3 | d4)∗ (the left-down quadrant).
All that remains is the transition between the quadrants.

There are two cases. In the first case, the next quadrant consists of multiple
lines. In this case, when the line signifying the end of the current quadrant is
met it is sufficient to begin movements appropriate to travelling in the next
quadrant. However, there is an edge case where a quadrant consists of a single
line. In this case, a unique movement is necessary (see Figure 30 and Figure 31)
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to transfer the 7-node object onto the line, with the exact movement depending
on whether the first node of the line is the same or a different colour from the
load. These movements are then followed by special slides to put the object into
position for the next quadrant. Naturally, these transformations are reversible
and can be mirrored as well. We are therefore able to deal with any quadrant
transition, even rotating the 7-node object around a single node.

Therefore, because we can move through any variant of all quadrants and
transition between them, a 7-robot can traverse the perimeter of any orthogonal
convex shape. ut

Fig. 17: Sliding across a line with a 7-node robot - case 1
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Fig. 18: Sliding across a line with a 7-node robot - case 2
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Fig. 19: Sliding on a line with a 7-node robot - case 1

Fig. 20: Sliding on a line with a 7-node robot - case 2
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Fig. 21: Sliding on a line with a 7-node robot - case 3. The transformation of
Figure 17 can be applied for further movement.

Fig. 22: Climbing on top of a vertical when the load is in the upper cell.
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Fig. 23: Climbing a height 1 vertical with a width 1 horizontal and bad colouring

Fig. 24: Climbing a height 1 vertical with a width 2+ horizontal and bad colour-
ing
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Fig. 25: Climbing on top of a vertical of height 2 from position 0 with bad
colouring.
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Fig. 26: Climbing a vertical of height 2+

Fig. 27: Climbing on top of the vertical from position 1 when the load is in the
lower cell.
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Fig. 28: Climbing a vertical of height 3 from position 0 with bad colouring.
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Fig. 29: Climbing a vertical of height 3+ from position 2+.
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Fig. 30: Movement into a new quadrant consisting of a line of length 1 when the
perimeter node is not the same colour of the load. To reach the configuration
after the dots, the operation is repeated in an inverted manner.
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Fig. 31: Movement into a new quadrant consisting of a line of length 1, with the
perimeter node the same colour as the load. To reach the configuration after the
dots, we follow a rotated version of the transformation in Figure 27.
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Repository Traversal Whenever the single-black repository is occupied, the
robot may need to traverse a non-convex region when moving between S and
the extended staircase. The following lemma shows that this is not an issue.

Lemma 14. If the single-black repository of the extended staircase is occupied,
then both the 6-robot and the 7-robot are able to traverse past it.

Proof. We present a series of motions which for all variants of the shapes C ∈ C
created by the addition of a node to the left of the vertical lead both the 6-robot
and the 7-robot to the point where further movement to the topmost node of
the vertical is equivalent to movement across an orthogonal convex shape. We
refer to the gap as the set of empty cells between the single-black repository and
the node below it. As before, we group some of these motions into high-level
motions (i.e. moving the whole robot by moving individual nodes). When there
is no node below the single-black repository, then the shape is orthogonal convex
and therefore, by Theorem 1 and Theorem 2, the robot can traverse past the
single-black.

Our first motion is sliding. If there is a 1-cell gap, then the robot can still
traverse past the cell by using the special slide (Figure 10) for the 6-robot and
the slides (Figure 17 and Figure 18) for the 7-robot, because these movements do
not depend on the existence of a node in (xl− 2, yd− 1) to provide connectivity.
If there is a gap of 2 or more cells, then the robot must use special movements
(Figure 32, Figure 33 and Figure 34) to traverse past it. The next motion is
climbing. There are special movements (Figure 35) which allow the 6-robot to
climb a gap of size 2, 3 and 4+. There are more movements for the 7-robot,
when the gap is of size 2 (Figure 36), 3 (Figure 37) and 4+ (Figure 38).

We have thus shown how both types of robot can climb up and onto verticals
with the additional node of any possible length. Putting everything together,
the robot can use special sliding to move across a 1-cell gap, followed by special
motions for larger gaps, and finally another set of special motions to climb a
vertical, for all possible widths and heights. Moreover, the final position of the
robot allows for the resumption of regular movement i.e. those which allow the
robot to traverse an orthogonal convex shape. ut
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Fig. 32: Sliding a 6-robot on a line with a black repository with a gap of size 2
and 3+. All movement after the final positions is equivalent to orthogonal convex
movement.
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Fig. 33: Sliding a 7-robot on a line with a black repository with the load in the
high position, with a gap of size 2 and 3+. Note the movement after the dots
can be repeated for gaps larger than 3.
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Fig. 34: Sliding a 7-robot on a line with a black repository with the load in the
low position, with a gap of size 2 and 3+. Note the movement after the dots can
be repeated for gaps larger than 3.
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Fig. 35: Climbing a 6-robot on a line with a black repository, with a gap of size
2, 3 and 4+.
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Fig. 36: Climbing a 7-robot on a line with a black repository with a gap of size
2.
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Fig. 37: Climbing a 7-robot on a line with a black repository with a gap of size
3.
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Fig. 38: Climbing a 7-robot on a line with a black repository with a gap of size
4+.
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5.2 Initialisation

Robot Generation We now prove that we can generate a 6-robot from the
orthogonal convex shape S with the help of the 3 musketeers.

Lemma 15. Let S be a connected orthogonal convex shape. Then there is a
connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to
the bottom-most row of S, such that S ∪M can reach a configuration S′ ∪M ′
satisfying the following properties. S′ = S \{u1, u2, u3}, where {u1, u2, u3} is the
3-prefix of a row elimination sequence σ of S starting from the bottom-most row
of S. M ′ is a 6-robot on the perimeter of S′.

Proof. Let Ri, i ≥ 1, be the ith row of S counting bottom up. Assume first
that |R1| ≥ 5 and that the elimination sequence σ can start from the rightmost
node (x, y) of R1 (the leftmost case is symmetric). If σ can continue without
switching direction for at least 3 steps, then placing M as a horizontal line at
(x, y− 1), (x− 1, y− 1), (x− 2, y− 1) gives the required 6 robot. If not, then for
at least one of the two endpoints, σ can make 2 steps before switching, let that
endpoint w.l.o.g. be again the rightmost node. Placing M at (x− 2, y− 1), (x−
3, y− 1), (x− 4, y− 1) allows it to lift the two rightmost nodes, become a 5-seed,
travel to the other endpoint and lift it, thus becoming a 6-robot.

Next, let |R1| ∈ {3, 4}. Then, aligning the 3 nodes of M below the rightmost
3 nodes of R1 immediately gives the required 6-robot.

If on the other hand |R1| = 2 or |R1| = 1, then M can be placed so that
a 5-seed or a 4-seed, respectively, is attached to the bottom of row R2. If it is
a 5-seed then it can reach the rightmost/leftmost endpoint of R2 and lift that
node, thus becoming a 6-robot. If it is a 4-seed then if |R2| ≥ 2 it can reach
the rightmost/leftmost endpoint of R2 and lift two nodes, possibly one node
from each endpoint, thus becoming a 6-robot. The only remaining case is when
a 4-seed is attached to R2 and |R2| = 1. In that case, the configuration of the
4-seed and the single node of R2 can be transformed into a 5-seed attached to
the bottom of row R3, from which the previous case can again be applied. ut

Fig. 39: Some seed placements. The striped circles represent the orthogonal con-
vex shape S.

Prefix Construction The x-gradient and y-gradient of two neighbouring nodes
is the difference in the x and y co-ordinates of the two nodes, respectively. A
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parity rhombus is a shape where every line is of odd length and the same colour,
and the x-gradient and y-gradient of every node on the end of every line is at
most 1.

To construct the extended staircase from an orthogonal convex shape S, we
must first retrieve a sequence of 3 nodes u1, u2, u3 from S, where u3 is black. We
assume w.l.o.g. that S is a black parity shape. We now show with the following 4
lemmas that this is possible, even in the edge case where S is a parity rhombus.

Lemma 16. For any shape S∪M , where S is a black parity rhombus of n nodes
divided into p rows, R1, R2, . . . , Rp and M is a 6-robot, it is possible for M to
extract two black nodes and a red node u1, u2, u3 from S.

Proof. We extract these nodes by following the procedure of Figure 40. This ex-
ample is for a rhombus with 5 rows but, by Theorem 1 and Theorem 2, additional
rows can be navigated and so do not fundamentally change the procedure.

An orthogonal convex shape S divided into p rows, R1, R2, . . . , Rp is line-like
if the first node in Ri is above the last node in Ri−1 for all 0 < i ≤ p.

A line l blocks an empty cell c in an orthogonal convex shape S if there
is a node in l such that adding a node to c would cause S to lose orthogonal
convexity.

Lemma 17. For any shape S ∪ R where S is a non-red parity connected or-
thogonal convex shape of n nodes divided into p rows, R1, R2, . . . , Rp and R is a
6-robot, it is possible for R to extract a bicolour pair of nodes u, v from S, where
the resulting shape S′ = S \ {u, v} is a connected orthogonal convex shape.

Proof. We divide our proof into cases. In the first case, S is line-like and the
rows R1 and Rp have black nodes which can be extracted. In this case, we can
extract the node and then the following node, which is necessarily of the opposite
colour. If only one of R1 and Rp has a black node which can be extracted, we can
rotate S by 180◦ to ensure that the row containing the black does not contain
the anchor node and then extract from it. If neither row has a black node which
can be extracted, then the line-like shape has a red parity, which violates our
assumption of a black parity shape.

If S is not line-like, then we consider the row Rp. If Rp is of length ≥ 4, then
we can extract two nodes from Rp without breaking connectivity by extracting
from the side furthest from the point where Rp−1 connects to Rp. If Rp is of
length 3 and Rp−1 is of length ≥ 2, then we can extract two nodes from Rp,
leaving one connected to Rp−1. If Rp is of length 3 and Rp−1 is of length 1, then
we can extract 2 nodes unless Rp−1 is connected to the middle node of Rp. In
this case, Rp−2 to R1 must be a single node and we can extract from the other
end of the line starting with R1 as the existence of a column after Rp−1 would
violate convexity. If Rp is of length 2, then we can extract Rp. If Rp and Rp−1
are of length 1 each, then we can extract them. This leaves the cases where Rp

is of length 1 and Rp−1 is of length ≥ 1. If Rp−1 is of length ≥ 4 then we can
move Rp if necessary and extract two nodes from Rp−1. If Rp−1 is of length 2
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Fig. 40: Converting a black parity rhombus.
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then we can rotate Rp into Rp−1 and the resulting situation is equivalent to Rp

of length 3.
If S has a single red node in Rp and Rp−1 is of length 3, then for S to have

a black parity ≥ 0, there must be some row Ri which is an odd length black
line. We can move the node in Rp to either end of this line, unless there is a row
Rj which blocks this, by extending further than the ends of Ri. If Rj = Ri+1

or Rj = Ri−1, then Rj cannot block Ri. If Rj is an odd length black line or
even length line, we can place Rp on it. If Rj is an odd length red line, then to
maintain parity, there must be another odd length black line. If there is a line Rk

which neighbours Ri and has a greater length than it, then Rj cannot block Ri.
Therefore, given b odd length black lines, for every line to be blocked there must
be at least r = b+ 1 odd length red lines, one long line to block the nodes and b
lines to connect them together into a shape. Including Rp, such a shape would
have a red parity of at least 2, and is therefore impossible via assumption. We
can therefore move Rp, creating a new situation where extraction of two nodes
from Rp−1 is possible.

If S has a single black node in Rp and Rp−1 is of length 3, then if Rp−2 is
of length 2 we can move the node in Rp to it and extract from Rp−1. If Rp−2 is
also of a length ≥ 3 then unless S is a black parity rhombus it is possible for the
6-robot to extract the node in Rp and move away from Rp−1. After that, the red
node from Rp−1 can be rotated. The robot can then store the black node it is
carrying on the red node by moving around the perimeter of the shape, which is
still orthogonal convex. Finally, the 6-robot can extract both the black node and
the red node. If S is a black parity rhombus then by Lemma 16 we can extract
two nodes from it using special movements. ut

Lemma 18. For any shape S ∪M , where S is a non-red parity connected or-
thogonal convex shape of n nodes divided into p rows, R1, R2, . . . , Rp and M is a
6-robot, it is possible for M to extract a black node u from S, where the resulting
shape S′ = S \ {u} is a connected orthogonal convex shape.

Proof. We consider two cases for when the black nodes are the majority, and
when they are exactly n/2.

In the first case, since S is majority black by assumption, there must be
at least one row Ri which is a single black node or a line of odd length which
begins and ends with a black node. We can extract a black node from this line,
unless such an extraction will violate orthogonal convexity. This occurs if the
neighbouring lines Ri−1 and Ri+1 are of the same length. For S to have black
parity, this implies the existence of another odd length line from which a black
node can be extracted. More generally, given x odd length lines which end in
reds, by the pigeonhole principle there must be x+ 1 odd length lines ending in
blacks, implying at least one can be extracted from without violating orthogonal
convexity. Moreover, the removal cannot break connectivity, because this would
imply Ri−1 and Ri+1 are single red nodes on either end of Ri, which also implies
the existence of another odd length line to maintain the ratio of black to red
nodes.
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In the second case, we try to extract a black node from the bottom row Rp.
If this is not possible, it implies either that Rp is an odd length line with red
parity or Rp is an even length line and Rp−1 is a single red node connected to
the black node at the end of Rp. In either case, the existence of a row which is of
red parity implies the existence of an odd length line of black parity to maintain
the overall parity of the shape. A similar pigeonhole principle argument to the
first case follows, both for orthogonal convexity and connectivity.

There is a special case where the black node to be extracted happens to be
the anchor node. In this scenario, we simply rotate the shape 180◦, giving us
an equivalent scenario where the black node is in Rp and thus guaranteed to be
accessible. ut

Lemma 19. For any shape S ∪M , where S is a non-red parity connected or-
thogonal convex shape of n nodes divided into p rows, R1, R2, . . . , Rp and M is
a 6-robot, it is possible for M to extract a sequence of nodes (u1, u2, u3) from S,
where u1, u2 is a bicolour pair, u3 is black, and S \ {u1, u2, u3} is a connected
orthogonal convex shape.

Proof. By Lemma 17, we can extract two nodes from a S. The 6-robot places
these nodes on the anchor node. By Lemma 18 we can then extract a black node
from S. The 6-robot places this node as well.

5.3 Transformations between Shapes

In this section, we show that, given our previous results, we are now in the
position to convert an orthogonal convex shape into another such shape. We
begin with the conversion of an extended staircase into a diagonal line-with-
leaves, then the orthogonal convex shape to the diagonal line-with-leaves, and
then our main result follows by reversibility.

Transforming S to Extended Staircase

Lemma 20. Let S be a connected orthogonal convex shape with n nodes di-
vided into p rows R1, R2, . . . , Rp. Given a row elimination sequence σ = (u1, u2,
. . . , un) of S, an extended staircase generation sequence σ′ = (u′1, u

′
2, . . . , u

′
n)

which is colour-order preserving w.r.t. σ, and a 6-robot placed on the external
surface of S, for all 1 ≤ i < n the 6-robot is capable of picking up the node ui,
moving as a 7-robot to the empty cell u′i and placing it, and then returning as a
6-robot to ui+1.

Proof. We follow the procedure of Algorithm 3. By Theorem 1 and Theorem 2,
the 6-robot R and 7-robot R∪ui can climb and slide around the external surface
of S. We use this to move to each ui, extract it, move to the cell for u′i and then
place a node of the same colour as ui in it, substituting ui for a node in R as
necessary to create new 6-robot. By Lemma 9, so long as we approach Ti from
Rp, we can climb onto and off Ti to place the nodes using the same movements
as the previous theorems. By Lemma 14, placing a black node in the repository
cell does not inhibit movement. ut
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Transforming Extended Staircase to Diagonal-Line-with-Leaves

Lemma 21. Let W ∪ T ∪R be the union of the Stairs of an extended staircase
W , T ⊆ {BRep∪RRep} from the extended staircase and a 6-node robot R on the
cell perimeter of S ∪T . Given a shape elimination sequence σ = (u1, u2, . . . , un)
of T , a diagonal line-with-leaves generation sequence σ′ which is colour-order
preserving w.r.t. σ and a 6-robot placed on the external surface of S, for all
1 ≤ i ≤ n the 6-robot is capable of picking up the node ui, moving as a 7-robot
to u′i and placing it, and then returning as a 6-robot to ui+1.

Proof. We follow the procedure of Algorithm 4. By Theorem 1 and Theorem 2,
the 6-robot R and 7-robot R∪ui can climb and slide around the external surface
of S ∪ T . We use this to move to each ui, extract it, move to the cell for u′i and
then place a node of the same colour as ui in it, substituting ui for a node in
R as necessary to create new 6-robot. Since the placement of u′i is extending
Stairs, the resulting shape is always orthogonal convex for all 1 ≤ i ≤ n. ut

Transforming S to Diagonal-Line-with-Leaves

Lemma 22. Let S be a connected orthogonal convex shape. Then there is a
connected shape M of 3 nodes (the 3 musketeers) and an attachment of M to
the bottom-most row of S, such that S∪M can reach the configuration D, where
D is a diagonal line-with-leaves which is colour-consistent with S.

Proof. We follow the procedure of Algorithm 2. By Lemma 15 we can form a
6-robot from S∪M . By Lemma 20, we can build an extended staircase from the
resulting shape. By Lemma 21, we can then build a diagonal line-with-leaves.
Finally, by reversibility, we can place R such that the removal of 3 nodes leaves
a larger diagonal line-with-leaves D which is colour-consistent with S. ut

5.4 Time Analysis and Wrapping Up

Lemma 23. There exists a connected orthogonal convex shape of n nodes S and
a diagonal line-with-leaves T and such that any strategy which transforms S into
T requires O(n2) time steps in the worst case.

Proof. To construct T , we must transfer nodes using the robot to the anchor
node. In the worst case, S is a staircase, and the robot must move nodes from
one end to the other. It must therefore make O(cn2) moves, where c is the
maximum number of rotations needed for the robot to move one step. When the
extended staircase has been constructed, it must be converted into a diagonal
line-with-leaves. In the worst case every column in the staircase has 4 nodes, and
the robot must extend Stairs until one repository has a single node. Therefore,
the robot must make O(2cn2) moves to travel on both sides of Stairs. Combining
the worst cases of both procedures therefore takes O(3cn2) = O(n2) time steps.

Proposition 3. For any two connected orthogonal convex shapes S and T which
are colour-consistent, Algorithm 2 generates the diagonal line-with-leaves D and
G such that D = G.
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Theorem 3. Let S and S′ be connected colour-consistent orthogonal convex
shapes. Then there is a connected shape M of 3 nodes (the 3 musketeers) and an
attachment of M to the bottom-most row of S, such that S ∪M can reach the
configuration S′ in O(n2) time steps.

Proof. By Lemma 22, we can convert S into a diagonal line-with-leaves T . By
reversibility, we can convert T into S′. By Lemma 23, this procedure takes O(n2)
time steps. ut

6 Conclusions

There are some open problems which follow from the findings of our work. The
most obvious is expanding the class of shapes which can be constructed to achieve
universal transformation. An example of a bad case is the “double spiral”, which
is a line forming two connected spirals. In this case, preserving connectivity af-
ter the removal of a node requires the robot to get to the centre of a spiral,
which may not be possible without a special procedure to “dig” into it without
breaking connectivity. Finally, successfully switching to a decentralised model of
transformations will greatly expand the utility of the results, especially because
most programmable matter systems which model real-world applications imple-
ment programs in this way. This in turn could lead to real-world applications
for the efficient transformation of programmable matter systems.

Fig. 41: An example of the double spiral shape.
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