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Abstract. We propose a method SPGNet for 3D human pose estimation
that mixes multi-dimensional re-projection into supervised learning. In
this method, the 2D-to-3D-lifting network predicts the global position
and coordinates of the 3D human pose. Then, we re-project the estimated
3D pose back to the 2D key points along with spatial adjustments. The
loss functions compare the estimated 3D pose with the 3D pose ground
truth, and re-projected 2D pose with the input 2D pose. In addition,
we propose a kinematic constraint to restrict the predicted target with
constant human bone length. Based on the estimation results for the
dataset Human3.6M, our approach outperforms many state-of-the-art
methods both qualitatively and quantitatively.

Keywords: Machine Learning for Multimedia · Pattern processing

1 Introduction

3D human shape and posture estimation from a single image or video is a fun-
damental topic in computer vision. Unfortunately, it is not easy to estimate 3D
body shape and posture directly from monocular images without any 3D infor-
mation. The problem of 3D human shape and posture estimation can be defined
as giving images as the input, and generating a 3D skeleton as the output. A
typical 3D skeleton consists of 3D points for 17 joints. Mathematically it can
be written as a mapping function f(M) = x, where M is a fixed-sized matrix
representing the image input and x is a matrix representing the 3D joints (size
is (17, 3) in our case). Generally, f is applied to each frame of the video.

Before deep learning was widely used, massive 3D labeled data and 3D pa-
rameters with prior knowledge were necessary to deal with this problem [1]. After
introducing the deep learning strategy, some approaches extract the 3D human
pose based on the input image directly without any intermediate stage. Some
of the existing strategies rely on convolutional neural networks to learn visual
representations successfully from a very large dataset [23,19]. However, recent
research has shifted to two-stage approaches. The 2D key points detection algo-
rithm is first used to acquire the 2D poses from images. Then, 2D-to-3D pose
lifting is applied as the second stage [3,18,15]. Existing methods have focused on
optimizing the loss functions or neural network structures [3,18,15,20].
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Fig. 1: General workflow of our SPGNet, take 2D key points as input, and esti-
mate the 3D pose with its global position. The 2D re-projection combines both
estimations and loss to optimize the model.

Inspired by the cycle consistency in unsupervised learning, some approaches
re-map the predicted 3D poses to 2D poses in a semi-supervised learning frame-
work [20]. Like following the CycleGAN Loss, the network is designed incorpo-
rating two components. One is the mapping from 2D to 3D. Another one is re-
mapping 3D to 2D and comparing the re-projected 2D poses with the 2D input.
However, the results for unlabeled videos are relatively unremarkable and the
training process is relatively slow. In our work, we also extract the intermediate
2D pose. However, we do not intuitively deploy the CycleGAN semi-supervised
learning framework, which leads us to avoid the abovementioned drawbacks.

We design SPGNet, a novel neural network architecture that combines tradi-
tional supervised learning with a spatial projection that re-projects the predicted
3D poses to 2D poses. Instead of traditional loss functions based on the ground
truth and 3D pose output, we introduce the 2D MPJPE loss (defined as Equa-
tion 3). As shown in Fig. 1, SPGNet computes the 2D projection of 3D poses
output with the estimated global position. The 2D MPJPE loss minimizes the
re-projected 2D poses with the 2D poses input, which reuses the 2D poses input
during the learning process. This approach increases the accuracy of 3D pose
prediction. Overall, our main contributions are:

1. Introducing an adaptive supervised training framework for 3D human pose
estimation under the category of 2D-to-3D lifting approach.

2. Exploiting the 2D pose input efficiently and improving robustness by pre-
senting a re-projection loss, which is based on global pose estimation from
2D poses and the 2D poses themself.

Our model achieves 45.3 millimeters accuracy in Protocol 1 and 35.7 millimeters
in Protocol 2 in the Human3.6M dataset, which are 0.6% and 1.4% relative
improvements over previous approaches [28].
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2 Related Work

Previous research on 3D Human Pose Estimation can be classified into two main
categories. The first category extracts the 3D human pose based on the input
image directly without any intermediate stage. Under this category, some recent
approaches rely on convolutional neural networks to learn visual representations
successfully from very large datasets. The predicted accuracy has increased con-
siderably during the past few years [23,19]. The second category consists of two
stages, namely 2D key points detection from video and 2D-to-3D pose lifting
[3,18,15].

2.1 2D Key Joint detection

Before estimating 3D human pose, many methods require labeled key joints. In-
accurate key joint labels may cause pose prediction to fail. Initially, 2D human
pose was estimated based on Deep Neural Networks (DNNs), later Convolu-
tional Neural Networks (CNNs) have shown more advantages in 2D key joint
detection [27,24,16,29,25]. CNN-based models have outstanding performances in
extreme test conditions (body occlusion or low-resolution images). A heatmap
is generated to show the possibilities of a specific joint shown in an image and
the estimate is refined to improve localization. Reusing the hidden layer in the
CNN-based model, Tompson et al. proposed a method that uses heatmap, works
as a regularizer to find their output, and increases the accuracy [24]. A similar
method proposed by Yang et al. uses an end-to-end mixture of parts model
[29]. In their method, the probability is calculated by the softmax function and
a Max-sum algorithm is applied between pose parts. The pose machine uses
multi-stage differentiable iterations to the joint on the heat-map to finally con-
verge to one solution [27,16]. The pose machine combines the previous output
and the updated prediction for the same input image in each subsequent stage.

2.2 Image to 3D pose

Without estimating the 2D human pose, the 3D pose can be constructed directly
through an image. This method minimizes the effects of error prediction during
the 2D pose estimation, and in general, it can be more robust [26,21,9]. Ad-
ditionally, it eliminates the limitation of the unlabeled image used for training
[30]. One of the methods uses Pose Orientation Net (PONet) and generates heat
maps: limb confidence maps and 3D orientation maps. With these heat maps,
the model uses a fixed-length skeleton to match with the 3D orientation maps
and complete the missing limbs in a 3D pose using sub-networks [26]. For a
more specific pose, Ruiz et al. used three loss functions for each angle’s rotation,
with classification and regression [21]. Another approach proposed by Yang et
al. uses the Generative Adversarial Networks (GANs) to directly predict the 3D
pose using unlabeled images in outdoor scenarios [30]. Therefore, skipping 2D
pose detection provides a solution for unpaired 2D-to-3D data training [9,12].
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2.3 2D-to-3D pose lifting

3D pose estimation can be lifted from 2D human pose joints [15,3,18]. During
the training, some approaches directly using 2D human pose ground truth as
input [11,5]. This approach ensures the accuracy of the inputs and distraction is
minimized. Moreover, 2D label on the image is easier to obtain. Some datasets,
like Human3.6M and HumanEval, contain multiple 2D views, and EpipolarPose
with another method estimate 3D pose from different directions at the same
frame. The mixture of the multi-views provides consistency loss and recovers the
pose via triangulation [11]. The model can be optimized by blending multiple 2D
views into the same 3D pose. Depth prediction is important for some 2D-to-3D
approaches. The simpler method uses binary ordinal depth relation prediction,
while other have explicit depth prediction on each joint [3,17,18].

Fig. 2: Supervised training framework with a 3D pose model with predicted 2D
pose sequence input. In addition to the kinematic constraint and MPJPE loss,
we concatenate the global position and key points of the 3D poses to perform
the projection. Finally, we compare the re-projected 2D pose and original input
2D poses to compute a 2D MPJPE loss and perform backpropagation.

3 Proposed Method

In this section, we briefly explain the details of the proposed SPGNet architec-
ture, as shown in Figure 2.
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3.1 Problem Formulation

To better illustrate our method, we first formulate the 3D pose estimation prob-
lem as a 2D-to-3D lifting pipeline. Then, we assume the dataset defined as
D = {(xi, yi)}Ni=1 consisting of N data, where each data xi is associated with a
corresponding label yi. Here, xi ∈ RM×2 represents the one frame input of 2D
pose key points. Similarly, yi ∈ RM×3 represent estimated 3D pose key points
labels, where M denoted as number of joints for each human pose. In order to
take advantage of temporal information between frames, we define the sequence
of input for one frame as vector {xk ∈ R1×M×2|k = 1, 2, 3...J}, where J repre-
sents the number of frames in the input sequence. The goal is to optimize the
prediction function (estimated 3D pose key points in three dimensions) f from
the training data,

f(x;W ) = argmax
y∈D

F (x, y;W ) (1)

where W is the weight of the neural network and F is the optimizing function.

3.2 Spatial Projection Guided Approach

In the training process, SPGNet contains three components: an encoder, a pro-
jector and loss functions. First, the encoder processes the input 2D key points,
aiming to transform the data into precise 3D coordinates that represent the es-
timated human pose. Then, the projector transforms the estimated 3D human
pose into a re-projected 2D pose for computing the similarity with the original
input. Finally, multiple loss functions guide the backpropagation of the neural
network in order to learn helpful representations in the latent space.

The Encoder First, we encode our input data through an encoder and obtain
the predicted 3D pose key points in three dimensions. Then, we decompose our
output t̂i for a certain frame into t̂ki and t̂pi , where t̂

k
i is the predicted 3D pose

key points coordinates in a certain 2D plane and t̂pi is the spatial information to
confirm the global position of pose. In this case, t̂ki ∈ RM×2, which is the (x, y)
coordinates of each joint of a 3D pose in three dimensions. Similarly, t̂pi ∈ RM is
just the (z) coordinate as predicted by the position. We do same decomposition
for label yi and gain yki , y

p
i for further loss computation.

The Projector A projector is utilized to map the estimated 3D human pose
into the re-projected 2D pose. In order to minimize the impact of lens distor-
tion on projection, we chose the nonlinear projector. The schematic diagram is
shown in Figure 3. This schematic diagram shows the forward projection onto
the image plane that maps (x, y, z) coordinate into the (x, y) plane. The center
is the camera center, and the focal length is the distance between the camera
center and the image plane along the principal axis perpendicular to the image
plane. These two parameters represent the spatial geometry relationship of the
3D pose in low dimensions. Another essential aspect to consider is the camera
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Fig. 3: Schematic diagram of the spatial dimension projection for SPGNet. The
projector simulates the real camera to maintain consistency. The 3D estimated
pose is projected to a 2D image with the same principle point, focal length,
radial distortion and tangential distortion.

distortion. It is a kind of optical aberration that causes a straight line in the scene
to not remain straight in an image. There are two common camera distortions.
First, the radial distortion causes the magnification of the image to decrease
or increase with distance from the principal axis. Second, tangential distortion
occurs because the lens assembly is not centered and parallel to the image plane.
Fixing lens distortion during projection can increase projection accuracy. Conse-
quently, the projector has several intrinsic camera parameters as input to ensure
the projection is at a right angle, specified by the particular dataset. Here, we
define focal length, center, radial distortion, and tangential distortion as fc, ce,
dr, and dt, respectively. The pseudocode of nonlinear projection is summarized
in Algorithm 1.

Algorithm 1: Nonlinear projector mapping estimated 3D pose to re-
projected 2D pose.
1 Projector (t̂ki , t̂

p
i , fc, ce, dr, dt);

Input : Estimated 3D pose t̂ki , estimated global position t̂pi , intrinsic camera
parameters (fc, ce, dr, dt)

Output: Re-projected 2D pose pose2d
2 posedepth = t̂ki /t̂

p
i ;

3 posecons = Clamp (posedepth) with (min = −1,max = 1) ;
4 r = Sum (posecons) value between (x, y) coordinates;
5 concat = Concatenates the given sequence (r, r2, r3) ;
6 R = Sum (1 + (dr · concat)) value between (x, y, z) coordinates;
7 T = Sum (dt · posecons) value between (x, y) coordinates;
8 posetrans = posecons · (R+ T ) + dt · r ;
9 pose2d = fc · posetrans + ce ;

10 return pose2d
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Loss functions Usually, deep learning models predict the target without re-
straint. Thus, we propose the kinematic constraint loss as a penalty to maintain
consistency. This is under the assumption that the length of human bones is
constant from beginning to end. We construct the output 3D pose pairs (α̂, β̂),
where α̂ is the previous predicted frame t̂, and β̂ is current predicted frame.
Then, we define kinematic constraint loss as follows:

Lkc(α̂; β̂) =
1

2M

M∑
i=1

P∑
j=1

abs(‖α̂i − α̂j‖2 − ‖β̂i − β̂j‖2) (2)

Where, α̂j is the parent joint of the current joint α̂i. The 3D human pose can
be regarded as a tree-like structure. Each joint has at least one connection with
the other joint (parent), and some of them have multiple connections. Thus, for
a particular joint, the number of connections is determined by the P denoted
as parents. The dummy variable P depends on a specific dataset that consists
of an indeterminate number of joints. The constant 0.5 is a multiplier for model
stability because the repeated bone length would be calculated twice. Note that
the first predicted frame does not have α̂. Thus, we omit the computation of the
loss function for the first predicted frame. This loss can be regarded as a penalty
between consecutive frames and effectively maintaining the length of the bone,
as shown in Section 4.5.

The loss function for estimated 3D human pose is simply the mean per joint
position error (MPJPE), which is the Protocol 1 used in many existing work:

Lmpjpe(t̂
k
i ; y

k) =
1

M

M∑
i=1

‖t̂ki − yki ‖2 (3)

The MPJPE loss will calculate the euclidean distance between all the joints of
the predicted 3D pose and the ground truth. During the backpropagation, the
loss gradient provides information for optimizing the degree of the key point’s
accuracy. Notably, the ground truth is in the camera space, transformed by
using the intrinsic and extrinsic camera parameters. Therefore, for the global
position yp, MPJPE cannot hold the depth information of the 3D pose. We use
the weighted MPJPE loss function for estimated global position to retain the
maximum spatial feature:

Lwmpjpe(t̂
p
i ; y

p) =
1

M

M∑
i=1

1

yki
‖t̂pi − y

k
i ‖2 (4)

The inverse term 1/yki is the regularization term compared with MPJPE loss
to force the predicted 3D pose centered around the trim area. This is assuming
that the pose object cannot move very far away from the camera position. The
model learns the 3D pose characteristics of centralization in terms of results. In
addition, the weighted MPJPE loss significantly increases the accuracy of the
projected 2D pose and reduces the error caused by the abnormal predicted global
position.
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3.3 Design of Encoder

The architecture of the 2D-to-3D lifting neural network we designed is a temporal
dilated convolutional model inspired by previous lifting approaches [15,20]. The
neural network is fully implemented with the residual connections [6] in order to
transform the sequence of input x defined in 3.1 through temporal convolutional
layers. In detail, each residual blocks can be defined as

z = D(σ(N(C(x)))), (5)

where z is the extracted feature, C is the convolutional layer with 1024 input
sizes except the input layer and 1024 output sizes, B is the batch normalization
layer, σ is the ReLU activation layer, and finally, D is the dropout layer. Two
residual blocks form a residual connection shown in Figure 2. The number of
residual blocks depends on the number of input frames. For example, input x
with J = 243 needs 8 residual blocks for residual connections. Reminder, the
input convolutional layer has 2 ·M input size to adapt the 2D key points, where
M is defined in Section 3.1. Finally, the output layer is a convolutional layer
with output size 3 ·M , fitting with size of estimated 3D pose, defined as:

t̂i = Cout(z), (6)

where t̂i is the output of encoder for one frame defined in Section 3.2.

Table 1: Detailed results under Protocol 1 (MPJPE)
Methods Martinez Sun Yang Lee Pavllo Cai Xu Our

[15] [22] [30] [13] [20] [2] [28]
Direct. 51.8 52.8 51.5 40.2 45.1 44.6 37.4 37.5
Discuss. 56.2 54.8 58.9 49.2 47.4 47.4 43.5 44.7
Eat 58.1 54.2 50.4 47.8 42.0 45.6 42.7 41.8
Greet 59.0 54.3 57.0 52.6 46.0 48.8 42.7 42.1
Phone 69.5 61.8 62.1 50.1 49.1 50.8 46.6 45.5
Photo 78.4 67.2 65.4 75.0 56.7 59.0 59.7 58.9
Pose 55.2 53.1 49.8 50.2 44.5 47.2 41.3 42.0
Purch. 58.1 53.6 52.7 43.0 44.4 43.9 45.1 46.7
Sit 74.0 71.7 69.2 55.8 57.2 57.9 52.7 52.8
SitD 94.6 86.7 85.2 73.9 66.1 61.9 60.2 59.4
Smoke 62.3 61.5 57.4 54.1 47.5 49.7 45.8 46.7
Wait 59.1 53.4 58.4 55.6 44.8 46.6 43.1 42.8
WalkD 65.1 61.6 43.6 58.2 49.2 51.3 47.7 46.6
Walk 49.5 47.1 60.1 43.3 32.6 37.1 33.7 34.7
WalkT 52.4 53.4 47.7 43.3 34.0 39.4 37.1 36.8
Avg 62.9 59.1 58.6 52.8 47.1 48.8 45.6 45.3

*The table reports the result with CPN 2D detection pose key points as input.
The last line is the average of all 15 action results in millimeter. Best results in
bold, second best underlined.
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4 Experiments

4.1 Dataset and Metrics

We evaluate our method on the public dataset Human3.6M, widely used in
other work [8]. The Human3.6M dataset is collected by a motion capture sys-
tem. As one of the largest 3D human pose estimation datasets, 11 professional
actors performed 15 scenarios consisting of 3.6 million video frames. There are
four digital video cameras, one time-of-flight sensor, and ten motion cameras to
capture the human pose. Our experiments follow the previous work [20] to adopt
a standard 17-joints skeleton and split the dataset into a training set (S1, S5,
S6, S7, S8) and a testing set (S9, S11).

We take two widely used protocols to evaluate our model: Protocol 1 is the
mean per joint position error (MPJPE) defined in Equation 3. MPJPE calculates
the Euclidean distance between the estimated positions of the joints and ground
truth in millimeters. Protocol 2 is the Procrustes mean per joint position error
(P-MPJPE), which calculates the error after aligning the estimated 3D pose to
the ground truth in a rigid transformation, such as translation, rotation, and
scale.

4.2 Implementation Details

We train our model with input in camera space for consistency of other work
through quaternion transformation. Here, we set our temporal convolutional
model with 243 frames to benefit from the consecutive video stream. We choose
Adam [10] as an optimizer and train our model with 100 epochs. The learning
rate starts from 0.001 and decays exponentially every epoch. We adopt fine-
tuned 2D pose detection key points through the Cascaded Pyramid Network [4]
and ground truth 2D as our input. We apply the data augmentation method,
pose flipping horizontally in the training set, with settings similar to [20].

4.3 Comparison with State-of-the-art Methods

This section reports our model’s performance on 15 actions belonging to S9 and
S11. First, we use the CPN network as the 2D pose detector to obtain the 2D
key points as our input data. We compare them using Protocol 1 and Protocol
2, shown in Table 1 and 2. Our model has a lower average error than all other
approaches under both protocols and does not rely on additional data as many
other approaches. Under Protocol 1 (Table 1), our model slightly outperforms
the previous best result [28] by 0.3 mm on the average, corresponding to a
0.6% error reduction. To be more specific, we got the best 7 out of 15 actions
and 7 second best actions. This indicates that our model’s architecture has a
better learning ability to extract features in the latent space in order to keep the
spatial and temporal information. For Protocol 2, our model achieves the best
results in terms of average P-MJPJE, with a 1.4% error reduction. However,
for individual actions, most actions predicted by our model only achieve the
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Table 2: Detailed results under Protocol 2 (P-MPJPE)
Methods Martinez Sun Yang Lee Pavllo Liu Xu Our

[15] [22] [30] [13] [20] [14] [28]
Direct. 39.5 42.1 26.9 34.9 34.2 32.5 31.0 30.8
Discuss. 43.2 44.3 30.9 35.2 36.8 35.3 36.8 34.6
Eat 46.4 45.0 36.3 43.2 33.9 34.3 34.7 34.1
Greet 47.0 45.4 39.9 42.6 37.5 36.2 34.4 35.8
Phone 51.0 51.5 43.9 46.2 37.1 37.8 36.2 35.3
Photo 56.0 53.0 47.4 55.0 43.2 43.0 43.9 43.2
Pose 41.4 43.2 28.8 37.6 34.4 33.0 31.6 31.9
Purch. 40.6 41.3 29.4 38.8 33.5 32.2 33.5 32.5
Sit 56.5 59.3 36.9 50.9 45.3 45.7 42.3 42.1
SitD 69.4 73.3 58.4 67.3 52.7 51.8 49.0 49.9
Smoke 49.2 51.0 41.5 48.9 37.7 38.4 37.1 39.0
Wait 45.0 44.0 30.5 35.2 34.1 32.8 33.0 32.6
WalkD 49.5 48.0 29.5 50.7 38.0 37.5 39.1 37.2
Walk 38.0 38.3 42.5 31.0 25.8 25.8 26.9 26.9
WalkT 43.1 44.8 32.2 34.6 27.7 28.9 31.9 29.7
Avg 47.7 48.3 37.7 43.4 36.8 36.8 36.2 35.7

*The table reports the result with CPN 2D detection pose key points as input.
The last line is the average of all 15 action results in millimeter. Best in bold,
second best underlined.

second-best results. Yang’s [30] work reports a significant improvement in the
actions with complex spatial relationships, such as sitting or direction, achieving
the seven best results. Compared to results in Table 1, their method uses the
feature of GANs but makes it hard to detect the global position of the 3D human
pose, leading the better performance in Protocol 1.

To further study our method, we utilize the ground truth of 2D key points as
our input to evaluate our model, with results shown in Table 3 under Protocol
1 and Protocol 2. By using 2D ground truth, the models generally get better
performance than Table 2. Compared to the previous best result [14], our model
outperforms by 1.3 mm on the average. Our method highlights the reuse of the
2D key points for the 2D MPJPE loss, so the model depends more on the 2D
key points than other models that only use those data at the input stage. This
is evident from the higher error deduction comparing our model to previously
implemented methods between Table 2 and Table 3. More discussion about the
improvement in performance in this case is presented in a later section. We also
report our model’s performance in Protocol 2, resulting in better performance
of 25.3 mm on the average, outperforming the state-of-the-art.

4.4 Ablation Study

Analysis of re-projected 2D pose loss We further analyze the MPJPE
loss between the re-projected 2D pose and the original input. We choose the
encoder only consisting of MPJPE loss for the estimated 3D human pose as our
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Table 3: Detailed results based on ground truth of 2D human pose.
Protocol 1 Protocol 2

Methods Hossain Lee Liu Our Our
[7] [13] [14]

Direct. 35.2 32.1 34.5 29.5 21.1
Discuss. 40.8 36.6 37.1 33.6 23.9
Eat 37.2 34.3 33.6 32.8 24.5
Greet 37.4 37.8 34.2 32.5 24.6
Phone 43.2 44.5 32.9 32.5 25.3
Photo 44.0 49.9 37.1 33.6 29.9
Pose 38.9 40.9 39.6 37.5 21.1
Purch. 35.6 36.2 35.8 29.8 23.7
Sit 42.3 44.1 40.7 30.7 30.4
SitD 44.6 45.6 41.4 38.1 38.9
Smoke 39.7 35.3 33.0 46.4 26.9
Wait 39.7 35.9 33.8 35.9 23.1
WalkD 40.2 30.3 33.0 31.8 27.7
Walk 32.8 37.6 26.6 25.5 18.8
WalkT 35.5 35.5 26.9 28.5 19.6
Avg 39.2 38.4 34.7 33.4 25.3

*Utilize the ground truth 2D human pose to predict the target. The
table reports results of both Protocal 1 (left side) and Protocol 2
(right side). We label the best in bold.

encoder and add kinematic constraint as Baseline* to compare with SPGNet,
as shown in Figure 4a. The histogram indicates that our model dramatically
benefits from the MPJPE loss of the re-projected 2D pose, leading to the re-
projected 2D pose being closer to the ground truth 2D human pose. Furthermore,
the kinematic constraint slightly improves the model’s accuracy, by adding a
bone length constraint.

Analysis of size of input frames The size of the input frames has a sig-
nificant impact on the pose estimation performance. For example, the chart in
Figure 4b shows that the error in Protocol 1 decreases by 0.9 millimeters and
1.8 millimeters while the size of the input frames increases from 27 to 81 and
243, respectively. A similar error decrease trend is also reflected in Protocol 2.
Consequently, we conclude that the larger size of sequential input provides more
temporal information to allow our model to capture the movement of the 3D
human pose between frames, similar to [20].

4.5 Effect of kinematic constraints

In this section, we compare the sixteen bone lengths measured in different frames
in one particular walking scenario, shown in Figure 5. We can see that the
difference in most small bones is almost negligible. Some large bones, such as leg
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(a) Comparisons of different settings (b) Comparisons of size of input frames

Fig. 4: Clustered column charts (a) and (b) illustrate the comparisons of different
sittings and input frames, respectively. The error shows a decreasing trend as
the model is applied from the Baseline to our SPGNet or the size of input frames
increases. Notably, in Figure 4a, Baseline is the model only learned from MPJPE
loss, and Baseline* represents the Baseline adding kinematic constraints. In the
chart 4b, J represents the number of frames in the input sequence.

bone or spine, have some relatively large variance compared to the small bone.
However, the errors are all within 0.065 meters, which is acceptable and may be
caused by movement of the frame. As a consequence, this line chart indicates
that our kinematic constraint is effective.

Fig. 5: Line chart of the measured bone lengths in seven different frames ex-
tracted from S11 walking scenarios. The different colors of lines represent the
sixteen bones of a 3D human pose (tree-like structure).

4.6 Shielding problem

We further analyze the limitation of our method from visualization results, shown
in Figure 6. We found that in the first row, which represents the action of sitting,
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the human limbs barely overlap in the camera’s view. Thus, our results cannot
be distinguished by the human eye if the consideration of global position is
ignored. However, in the third row, the red arm of the human overlaps with the
human body, which forms a shield masking the inner limbs. Consequently, the
spatial relationship is not perfectly represented for both human pose in the third
row, the variance of body tilt, and the difference of the arm’s spatial positions,
respectively.

Fig. 6: Visualization of qualitative results on video clips.

5 Conclusion

We proposed SPGNet, a fully convolutional network based on supervised learn-
ing for human 3D pose estimation. To utilize our 2D-to-3d-lifting network, we
used 2D key points in both input and re-projection stages and introduced kine-
matic constraints of human bone length and the corresponding loss function. Our
model achieved more reliable estimates than state-of-the-art methods. SPGNet
utilizes 2D labels in a more effective way, so the performance is expected to in-
crease using image-to-2D methods with higher accuracies. Furthermore, besides
the popular Human3.6M dataset, more datasets need to be tested for better
analysis of our method.
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