Skip to main content

Positive Unlabeled Learning by Sample Selection and Prototype Refinement

  • Conference paper
  • First Online:
Book cover Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13725))

Included in the following conference series:

  • 1007 Accesses

Abstract

Positive and Unlabeled learning (PU learning) learns a binary classifier on training data with only positive and unlabeled instances. Recent cost-sensitive methods tackled this problem by designing unbiased loss functions and achieved state-of-the-art performance. However, we observe that the model suffers from overfitting at the late training stage caused by regarding unlabeled positive samples as negative ones. This motivates us to propose PUSP, a novel framework that leverages sample selection and prototype refinement to tackle PU learning problem. We first carefully select reliable samples based on the time consistency of the model output and spatial consistency of different views of image contents. Then we assign labels to those unselected samples based on their feature similarities with the prototypes of the selected ones. We conduct extensive experiments to show the effectiveness of our method on over different datasets and modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arpit, D., et al.: A closer look at memorization in deep networks. In ICML, pp. 233–242. PMLR (2017)

    Google Scholar 

  2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: A holistic approach to semi-supervised learning. In NeurIPS, Mixmatch (2019)

    Google Scholar 

  3. Chaudhari, S., Shevade, S.: Learning from positive and unlabelled examples using maximum margin clustering. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7665, pp. 465–473. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34487-9_56

    Chapter  Google Scholar 

  4. Chen, H., Liu, F., Wang, Y., Zhao, L., Wu, H.: A variational approach for learning from positive and unlabeled data. In: NeurIPS (2019)

    Google Scholar 

  5. Chen, X., et al.: Self-PU: self boosted and calibrated positive-unlabeled training. In: ICML, pp. 1510–1519. PMLR (2020)

    Google Scholar 

  6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  7. Plessis, M.D., Niu, G., Sugiyama, M.: Convex formulation for learning from positive and unlabeled data. In: ICML, pp. 1386–1394. PMLR (2015)

    Google Scholar 

  8. Plessis, M.C.D., Niu, G., Sugiyama, M.: Analysis of learning from positive and unlabeled data. NeurIPS 27, 703–711 (2014)

    Google Scholar 

  9. Fei, G., Liu, B.: Social media text classification under negative covariate shift. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2347–2356 (2015)

    Google Scholar 

  10. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: NeurIPS (2018)

    Google Scholar 

  11. Hendrycks, D., Mazeika, M., Wilson, D., Gimpel, K.: Using trusted data to train deep networks on labels corrupted by severe noise. In: NeurIPS (2018)

    Google Scholar 

  12. Hou, M., Chaib-Draa, B., Li, C., Zhao, Q.: Generative adversarial positive-unlabelled learning. In: IJCAI (2018)

    Google Scholar 

  13. Hsieh, Y.-G., Niu, G., Sugiyama, M.: Classification from positive, unlabeled and biased negative data. In: ICML, pp. 2820–2829. PMLR (2019)

    Google Scholar 

  14. Jiang, L., Zhou, Z., Leung, T., Li, L.-J., Fei-Fei, L.: MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels. In ICML, pp. 2304–2313. PMLR (2018)

    Google Scholar 

  15. Kato, M., Teshima, T., Honda, J.: Learning from positive and unlabeled data with a selection bias. In: ICLR (2018)

    Google Scholar 

  16. Kiryo, R., Niu, G., Plessis, M.C.D., Sugiyama, M.: Positive-unlabeled learning with non-negative risk estimator. In: NeurIPS (2017)

    Google Scholar 

  17. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  18. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2017)

    Google Scholar 

  19. Lang, K.: Newsweeder: learning to filter netnews. In: Machine Learning Proceedings 1995, pp. 331–339. Elsevier (1995)

    Google Scholar 

  20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  21. Li, B., Han, B., Wang, Z., Jiang, J., Long, G.: Confusable learning for large-class few-shot classification. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12458, pp. 707–723. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67661-2_42

    Chapter  Google Scholar 

  22. Li, X., Liu, B.: Learning to classify texts using positive and unlabeled data. In: IJCAI, vol. 3, pp. 587–592. CiteSeer (2003)

    Google Scholar 

  23. Liu, B., Lee, W.S., Yu, P.S., Li, X.: Partially supervised classification of text documents. In ICML, vol. 2, pp. 387–394 (2002)

    Google Scholar 

  24. Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2378–2392 (2021)

    Article  MathSciNet  Google Scholar 

  25. Chuan Luo, P., Zhao, C.C., Qiao, B., Chao, D., Zhang, H., Wei, W., Cai, S., He, B., Rajmohan, S., et al.: Pulns: Positive-unlabeled learning with effective negative sample selector. Proc. AAAI Conf. Artif. Intell. 35, 8784–8792 (2021)

    Google Scholar 

  26. Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150 (2011)

    Google Scholar 

  27. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  28. Niu, G., du Plessis, M.C., Sakai, T., Ma, Y., Sugiyama, M.: Theoretical comparisons of positive-unlabeled learning against positive-negative learning. In: NeurIPS (2016)

    Google Scholar 

  29. Northcutt, C., Jiang, L., Chuang, I.: Confident learning: estimating uncertainty in dataset labels. J. Artif. Intell. Res. 70, 1373–1411 (2021)

    Google Scholar 

  30. Patrini, G., Rozza, A., Menon, A.K., Nock, R., Qu, L.: Making deep neural networks robust to label noise: a loss correction approach. In CVPR, pp. 1944–1952 (2017)

    Google Scholar 

  31. Peters, M.E., et al.: Knowledge enhanced contextual word representations. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  32. Ramaswamy, H., Scott, C., Tewari, A.: Mixture proportion estimation via kernel embeddings of distributions. In ICML, pp. 2052–2060. PMLR (2016)

    Google Scholar 

  33. Ren, Y., Ji, D., Zhang, H.: Positive unlabeled learning for deceptive reviews detection. In EMNLP, pp. 488–498 (2014)

    Google Scholar 

  34. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recommendations as treatments: debiasing learning and evaluation. In: International Conference on Machine Learning, pp. 1670–1679. PMLR (2016)

    Google Scholar 

  35. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: NeurIPS (2017)

    Google Scholar 

  36. Sohn, K., et al.: Simplifying semi-supervised learning with consistency and confidence. In: NeurIPS, Fixmatch (2020)

    Google Scholar 

  37. Tan, Y., et al.: Fedproto: federated prototype learning across heterogeneous clients. In AAAI Conference on Artificial Intelligence, vol. 1, p. 3 (2022)

    Google Scholar 

  38. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS (2017)

    Google Scholar 

  39. Wang, Z., et al.: SemiNLL: a framework of noisy-label learning by semi-supervised learning. in: Transactions on Machine Learning Research (2022)

    Google Scholar 

  40. Wang, Z., Zhou, T., Long, G., Han, B., Jiang, J.: FedNOiL: a simple two-level sampling method for federated learning with noisy labels. arXiv preprint arXiv:2205.10110 (2022)

  41. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  42. Xu, J., Chen, Z., Quek, T.Q.S., Chong, K.F.E.: FedCorr: multi-stage federated learning for label noise correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10184–10193 (2022)

    Google Scholar 

  43. Yang, Y., Jiang, J., Wang, Z., Duan, Q., Shi, Y.: BiES: adaptive policy optimization for model-based offline reinforcement learning. In: Long, G., Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 570–581. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_46

    Chapter  Google Scholar 

  44. Zhang, B., Zuo, W.: Reliable negative extracting based on KNN for learning from positive and unlabeled examples. J. Comput. 4(1), 94–101 (2009)

    Article  MathSciNet  Google Scholar 

  45. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuowei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Long, G. (2022). Positive Unlabeled Learning by Sample Selection and Prototype Refinement. In: Chen, W., Yao, L., Cai, T., Pan, S., Shen, T., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13725. Springer, Cham. https://doi.org/10.1007/978-3-031-22064-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22064-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22063-0

  • Online ISBN: 978-3-031-22064-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics