2205.08025v1 [cs.DM] 16 May 2022

arxXiv

The Hamiltonian Path Graph is Connected for
Simple s,t Paths in Rectangular Grid Graphs

Rahnuma Islam Nishat®, Venkatesh Srinivasan?, and Sue Whitesides?

! Department of Computer Science, Toronto Metropolitan University, ON, Canada
rnishat@ryerson.ca
2 Department of Computer Science, University of Victoria, BC, Canada
{srinivas,sue}@uvic.ca

Abstract. A simple s,t path P in a rectangular grid graph G is a Hamil-
tonian path from the top-left corner s to the bottom-right corner ¢ such
that each internal subpath of P with both endpoints a and b on the
boundary of G has the minimum number of bends needed to travel from
a to b (i.e., 0, 1, or 2 bends, depending on whether a and b are on oppo-
site, adjacent, or the same side of the bounding rectangle). Here, we show
that P can be reconfigured to any other simple s,t path of G by switch-
ing 2 X 2 squares, where at most 5|G|/4 such operations are required.
Furthermore, each square-switch is done in O(1) time and keeps the re-
sulting path in the same family of simple s, ¢ paths. Our reconfiguration
result proves that the Hamiltonian path graph G for simple s,t paths
is connected and has diameter at most 5|G|/4 which is asymptotically
tight.

1 Introduction

An m xn rectangular grid graph G is an induced subgraph of the infinite integer
grid embedded on m rows and n columns. The outer boundary of G is a rectangle
Rg composed of four boundaries: £, W, N and S; the inner faces of G are 1 x 1
grid cells. An s,t Hamiltonian path P of G is a Hamiltonian path with endpoints
at the top left and bottom right vertices s and t of Rg. Path P is called simple
if each internal subpath (i.e., a subpath of P that starts and ends on the outer
boundary of G and contains only vertices internal to G otherwise) contains the
minimum possible number of bends. In other words, P is simple if an internal
subpath P, , contains no bends when u and v are on opposite boundaries (£
and W, or A and S), exactly one bend when they are on adjacent boundaries
(e.g., & and N etc.), and two bends when they are on the same boundary.

The reconfiguration of simple paths in G asks the following question: given
any two simple s, t paths P and P’ of G, is there an operation, preferably local to
a small subgrid, and a sequence of simple paths P = Py, P, ..., P’ of G such that
each path in the sequence can be obtained from the previous path by applying
the operation? Alternately, suppose that we define the simple s,t Hamiltonian
path graph of G with respect to an operation as the graph G, where each simple
s,t Hamiltonian path of G is represented by a vertex, and two vertices u,v of G

2 Nishat, Srinivasan, and Whitesides

are connected by an edge if the defined operation reconfigures the Hamiltonian
path represented by the one to the other. Then, the reconfiguration problem for
simple paths in G stated above asks whether G is connected with respect to the
operation. See Figure 1.

Fig.1: The simple s,t Hamiltonian path graph G with respect to the square-
switch operation. Nodes Py, P>, and P represent canonical and almost canonical
paths (defined in Section 2).

In previous work [13], we provided a partial answer to this question. We
introduced simple s, t paths in rectangular grid graphs in [13] and gave a structure
theorem that we used to design an O(|G|) time algorithm to find a sequence of
s,t Hamiltonian paths between two given simple s,¢ paths of G. We used pairs
of cell-switch operations. See Figure 2 for an example of a cell-switch, which
exchanges two parallel edges of P on a cell for two non-edges of P on that
cell. However, our approach had two limitations: the intermediate paths in that
sequence obtained by pairs of cell-switches were not necessarily simple, and the
pair of cells that were switched at each step were not always close to each other
in G. In other words, the pair of switch operations was not local in G.

In this paper, we overcome these limitations and solve the reconfiguration
problem for simple paths of G completely. We introduce a new local operation we
call square-switch or switching a square. Briefly, in a square subgrid sq consisting
of 4 cells, the operation exchanges four edges of P for four non-edges of P, and
leaves the other grid edges of sq unchanged. The four edges and non-edges of P
occur in two diagonally opposite cells of sq, and the square-switch can be viewed
as switching these two cells as illustrated in Figure 3(a) (other conditions apply;
see Section 2 for details). We give an O(|G|) time algorithm to reconfigure any

Reconfiguring Hamiltonian Paths 3

. b P a a , e e
[T i Sy
a ® de——ec 7 ‘ e ‘

(@ ") d © ¢

Fig.2: (a) A cell-switch, (b) the cell-switch breaks an s, ¢ Hamiltonian path for
G into a path-cycle cover for G consisting of one cycle and one s, t path.

s
\
t Q -

B

Mk

:
|

%’
il

(d)

Fig.3: (a) a square-switch on sq (b)—(e) (read clockwise) using square-switches
to make lines.

simple s,t path of G to another such path using square-switches. The core ideas
in our algorithm are shown in Figure 3(b)-(f), where the simple path in (b)
is transformed into the simple path in (f) using a sequence of square-switch
operations. Moreover, we show that our reconfiguration algorithm uses at most
5|G|/4 such operations. This implies that the diameter of G with respect to the
square-switch operation (see Figure 1) is at most 5|G|/4.

Our Contributions. (1) We introduce a new operation called square-switch.
A square-switch is a local operation on a small subgrid, only changing edges
in the square. Our square-switch operation maintains Hamiltonicity after each
square-switch in the reconfiguration. (2) We give a O(|G|) time algorithm that
reconfigures a simple s,¢ Hamiltonian path in a rectangular grid graph to an-
other using 5|G|/4 square-switches in such a way that the intermediate paths
remain simple after each square-switch. (3) We give an affirmative answer to the
connectivity question for the simple s,t Hamiltonian path graph, G, of an m x n
grid graph G. Our algorithm provides a constructive proof that G has diameter
at most 5|G|/4 which is asymptotically tight.

Related Work and Applications. Reconfiguration problems have attracted
attention for some time [7,17]. Takaoka [21] and Lignos [10] studied reconfigu-
ration of Hamiltonian cycles in unembedded graphs using switches. However, for
embedded graphs, a single switch operation increases the number of components
in the path-cycle cover of the graph and hence needs to be paired with another
switch operation right after the first one to restore the number of the compo-

4 Nishat, Srinivasan, and Whitesides

nents. This observation led us to use pairs of cell-switches in reconfiguration of
simple s, t paths [13] and 1-complez s,t paths [14].

Previously, Nishat and Whitesides studied reconfiguration of 1-complex Hamil-
tonian cycles in grid graphs without holes [15,16,12], where each internal vertex
is connected to a boundary of the grid graph with a single turn-free segment
on the cycle. They used two operations flip and transpose, and showed that the
Hamiltonian cycle graph with respect to those two operations is connected for
1-complex cycles in rectangular grids and L-shaped grid graphs.

Apart from reconfiguration, the complexity of finding Hamiltonian cycles
and paths in grid graphs has been extensively studied [6,3,9,22,20], as well as
various combinatorial aspects of the problem [8,19,2], which has many possible
application areas (e.g., in robot navigation [5], 3D printing [11], and polymer
science [18]). The reconfiguration of paths and cycles has the potential to reduce
turn costs and travel time and to increase navigation accuracy (e.g., [1], [1], [23]).

2 Preliminaries

In this section, we define the square-switch operation and show that it preserves
Hamiltonicity. In Sections 3 and 4, we show how a carefully chosen sequence of
square-switch operations, called the zip, can be applied repeatedly to design a
reconfiguration algorithm for simple s, ¢ paths. We start with basic terminology,
some of which has been defined in [13], and is repeated here for completeness.

A simple path always means a simple s,t Hamiltonian path of G; it visits
each node of G exactly once and uses only edges in G.

A cell of G is an internal face of G. A vertex of G with coordinates (z,y) is
denoted by v, ,, where 0 <2 <n —1and 0 <y < m — 1. The top left corner
vertex s of G has coordinates (0,0), and the positive y-direction is downward.
We use the two terms node and vertexr interchangeably.

Column x of G is the shortest path of G between v, ¢ and v -1, and Row
y is the shortest path between vg , and vy,—1,. We call Columns 0 and n —1 the
west (W) and east (€) boundaries of G, respectively, and Rows 0 and m — 1 the
north (N) and south (S) boundaries.

Let P be a simple path of G. The directed subpath of P from vertex u to
w is denoted by P, ,,. Straight subpaths are called segments, denoted seg[u, v],
where u and v are the segment endpoints. An internal subpath P, , of P, defined
in Section 1, is called a cookie if both u,v are on the same boundary (i.e., N, S,
&, and W); otherwise, P, ,, is called a separator.

Cookies and Separators. A cookie can be an £, W, N, S cookie, according to
the boundary where the cookie has its end points. A cookie c¢ is formed by three
segments of P. The common length of the two parallel segments measures the
size of c. The boundary edge between the endpoints of ¢ is the base of ¢, and it
does not belong to P.

Assumption [13]. Let a and S denote the bottom left and top right cor-
ner vertices of G. Without loss of generality, we assume the input simple path

Reconfiguring Hamiltonian Paths 5

Ps ¢ visits a before 3. The target simple path for the reconfiguration as well as
intermediate configurations may visit 5 before a.

Since separators of P have endpoints on distinct boundaries, there are two
kinds: a corner separator p; or v; has one bend, and a straight separator 1; has
no bends. Traveling along FP; ., we denote the ¢-th straight separator we meet
by n;, where 1 < ¢ < k. The endpoints of 7; are denoted s(n;) and t(n);), where
s(n;) is the first endpoint met. We say a corner separator cuts off a corner (s or
t). Traveling along P, ;, we denote the i-th corner separator cutting off s by p;,
where 1 <4 < j. We denote its internal bend by b(y;), and its endpoints by s(u;)
and t(p;), where s(p;) is the first endpoint met. Similarly, we denote the i-th
corner separator cutting off ¢ by v;; endpoint s(ul) is met before t(ui). Corner
separator v; has an internal bend at b(v;), where 1 <4 < £. A corner separator
that has one of its endpoints connected to s or ¢t by a segment of P is called a
corner cookie. It is regarded as a cookie and not counted as a corner separator.
We have j corner separators u; cutting off s, and k straight separators 7; where
k must be odd (see [13]), and £ corner separators v; cutting off ¢.

Square-Switch Operation. A zipline 2% is an internal gridline (i.e., a row or
a column that is not a boundary) directed from endpoint ¢; to the other endpoint
q2- Since [, is not a boundary, it has two adjacent and parallel grid lines, which
we denote by I, = [a1, az2] and I, = [b1,bs], where a; and b; are adjacent to ¢;
on a boundary of G and as and by are adjacent to g2 on the opposite boundary.
We call the rectangular region enclosed by [, and [, the main track tr, and the
rectangular region enclosed by I, and [, the side track tr'.

Let P be a simple s,t path of G. A cell ¢ of G is switchable with respect to
P if two parallel sides of ¢ lie on P and the other two parallel sides of ¢ are
non-edges of P. A cell-switch of such a cell is illustrated in Figure 2. Let [,
be a zipline of G. A square sqg y is a set of 4 cells of G that share a common
vertex v, , at the center of sq. Coordinates may be dropped when the meaning
is clear. We say square sq = squ , is on the zipline I, if v, , is on [,. For sq on
[, we assign local names to the nodes of sq, denoting the nodes on [, as p1, p2,
p3, with index increasing along directed line [,. We name the nodes of sq on [,
similarly, labelling the center of sq as ps5, and then continue for the nodes on [, as
in Figure 4 (later used to illustrate Definition 1 below). Walking along directed
[, from ¢; to g2, we have the left or right side of the zipline; near side is closer
to ¢1 than ¢o, and far side is closer to ¢2. Based on this terminology, we denote
by cnis Cnr, cf1, and cy, the near-left, near-right, far-left, and the far-right cell
of sq, respectively.

Definition 1 (Switchable square for P and its switch operation).

Let sq be a square on zipline l,. Square sq is switchable for P if: (i) the far
cell in tr' and the near cell in tr are switchable, and (ii) switching the far cell
in tr’ creates a path-cycle cover comprising a cycle in tr and an s,t path ps,
through the nodes of G not on the cycle. A square-switch of such a square sq is
the operation that exchanges the four edges of P in the far cell of tr' and the
near cell of tr for the four non-edges of P in those cells.

6 Nishat, Srinivasan, and Whitesides

DA) = 1 | P
,,fl(,,pl. P2 O['s gl—qu O‘U‘S pg<>—<?p6 Ops PYOnnnnnnnnnn o Ops
tr Cnl H— e cp
pi_ D5 l o ps: l= ¥ : L L
_ _ Y near Z A = Z ar o
................. —_— 5 2 o o6 S, . .oocccepccomonos
> i : Pe: Ps D5 P2 bs Ps D2
o crr cpro oCpr Cnr
I BRI Ps Poo BT GB8 i prg i g Pa P
(a) near (b) near

Fig.4: Square-switch for sq on (a) horizontal [., where cy, is the far cell of ¢’
and (b) vertical I,, where cy; is the far cell of ¢r'.

Figure 4(a),(b) shows a square sq on [, before and after a square-switch
for two different orientations of the zipline. We only perform a square-switch on
switchable squares. By Definition 1(ii), we must have the edge (p2, p3) not shown
in the figure to form a part of the cycle in ¢r both for horizontal (part (a)) and
vertical zipline (part (b)).

The following observation shows that square-switch, when applied to switch-
able squares meeting the criteria of Definition 1, preserves Hamiltonicity. How-
ever, to achieve our reconfiguration goal, we must later take care to use square-
switch in a way that keeps the path simple after each switch.

Observation 1 (Square-switch Hamiltonicity). Let sq be a switchable square for
P on zipline [,. Then performing square-switch on sq yields a new s, ¢ Hamilto-
nian path P’.

Proof. By condition (ii) of Definition 1, P contains a subpath in ¢r that joins ps
and pg, where grid edge (ps,pg) is a non-edge of P on [,. The square-switch of
sq can be thought of as carried out in two steps: first exchange the two edges of
P in the far cell of 7’ for the two non-edges in that cell, and then exchange the
edges and non-edges of the near cell of ¢tr. The first step creates a cycle in tr by
turning grid edge (ps,ps) on [, into an edge, and it also replaces the subpath
of P connecting the endpoints pg and pg with an edge, resulting in a path p;,
containing the remaining nodes of G. The second step, the switch of the near
cell in ¢r, breaks the cycle and replaces the edge (p1,ps) of ps, with a subpath
joining its endpoints p; and py. a

We conclude this section with definitions of two special types of simple paths
that will be used by our reconfiguration algorithm.

Canonical Paths. A canonical path is a simple path P with no bends at internal
vertices. If m is odd, P can be £-W and fill rows of G one by one; if n is odd,
P can be N-S and fill columns. See the nodes P; and P, in Figure 1. There are
no other types.

Almost Canonical Paths. A simple s.t Hamiltonian path is said to be almost
canonical if it is not canonical, and contains straight separators in Columns 2 to
n — 3, or in Rows 2 to m — 3. By definition, an almost canonical path must have

Reconfiguring Hamiltonian Paths 7

at least one of the following: unit size W cookies covering the VW boundary, or
unit size £ cookies covering £. See the node P in Figure 1 for an example that
contains both.

3 Square-switches and the zip operation

In this section, we show how we use the square-switch operation to reconfigure
simple s,t paths. We define a zip operation, which is a sequence of square-
switches for squares on a directed zipline [,, where the centers of the squares
occur at every other position on [,. We prove that switching these squares in
order of occurrence along an interval of [, produces a new simple path after each
square switch. We first describe zip for a special case, where the input path is
almost canonical and we want to reconfigure it to a canonical path (Section 3.1).
We then discuss the more general case, where the input path is neither canonical
nor almost canonical and we want to reconfigure it to a canonical or almost
canonical form (Section 3.2).

3.1 P almost canonical

Let P be an almost canonical path of G that visits a before . Then P must
have either unit W cookies, or unit £ cookies, or unit size cookies on both £
and W boundaries. In this section, we show how we can reconfigure P to an
E-WV canonical path by switching squares such that each such operation gives a
simple s,t path of G. See Figure 3(b)—(f).

We take Row 1 as the zipline [, directed from W to &, I, is the N boundary
and [, is Row 2. Walking on [, from ¢; on the W boundary to g2 on the &, we
define the first switchable square with respect to P to have center on 7;, and
denote the square by sq(n1). The next switchable square sq(ns) on [, has center
on 73, and so on. We show that each of the squares sq(n;), 1 <4 < k and ¢ odd,
is switchable with respect to P.

Lemma 1. Let P be an almost canonical path of G visiting o before B, and let
I, and l, be the Rows 1 and 0, respectively. Then each of the squares sq(n;),
1<i<kandi odd, is switchable with respect to P.

Proof. We prove the claim by showing that for each sq(n;), the cells ¢,; in tr
and cy, in tr’ are the switchable cells, and switching cy, creates a path-cycle
cover with a cycle in tr.

Case 1: If k = 1, then there is just one square sq(n;). The two vertical edges
of ¢, are contributed by 77 and the unit W cookie in tr, or by 11 and segls, «]
on the W boundary. The two vertical edges in cy, are contributed by 7; and
the unit £ cookie in ¢r’/, or by 71 and the segment seg[8,t] on the £ boundary.
If there is no £ cookie in P, then the cell ¢y contains three edges of P, and
switching cy, creates a 1 x 1 cycle in ¢r containing only the cell ¢f;. Therefore,
sq(m) is switchable. Otherwise, switching cy, creates a cycle of two cells in ¢r
that contains cy; and goes through 3, making sq(n:1) switchable.

8 Nishat, Srinivasan, and Whitesides

Case 2: If k > 1, the cell ¢, of sq(n1) and cell g, of sq(nx) will be the same
as Case 1. For i < k, cell ¢y, of sq(n;), ¢ odd, will be between cross separators 7;
and 7,11 in tr’ and thus will be switchable; similarly cell ¢y will be in track tr
between the same two cross separators that are connected by an edge on the N.
Therefore, switching ¢, will create a 1 x 1 cycle in ¢r. Therefore, square sq(n;)
is switchable for ¢ < k. The last square sq(ni) can be proved to be switchable
with respect to P in a similar way as in Case 1. ad

We now define a zip operation that applies switches to the above squares.

Definition 2 (Zip operation W to £). Let P be an almost canonical path of
G wisiting « before B, and let I, and l, be Rows 1 and 0, respectively, directed
W to £. Then the zip W to & operation Z = zip(G, P,l,,1,) applies switches to
the squares sq(n;), 1 <i <k and i odd, in order fromi =1 to k.

We now show that after every square switching of this zip operation we get a
simple s,t path.

Lemma 2. Let P be an almost canonical path of G visiting a before (3, let I, be
Row 1 directed eastward, and l, be Row 0. The path after switching each square
sq(n;), © odd, in the zip operation Z = zip(G, P,1.,l,) is a simple s,t path of G.

Proof. By Lemma 1, each of sq(n;), 1 < i < k and i odd, is switchable with
respect to P. By Observation 1, switching the square sq(7;), i odd, yields a
Hamiltonian path P; of G. We now prove that P; is simple.

For i < k, switching ¢y, in sq(1;) creates an S cookie by shortening the cross
separators 7; and 7;+1; Switching ¢,,; increases the size of the corner W cookie in
track ¢r by 2. The cross separators 7,12 to n; and the £ cookies, if there is any,
are the same in P and P;. Therefore, P; is a simple path. See Figure 3 (c)-(e).

In the path Py obtained after switching the square sq(ny), l, and I, are two
line segments seglai,as = (] and seg|qi, 2] connected by edge (a2 = f,¢2).
Then, Py visits 8 before «, has one horizontal straight separator; and the final
subpath of Py contains S cookies, and probably unit £ cookies preceded by the
only corner separator vy created from 7. In fact, the subpath from s’ = vy 2 to
t is almost canonical. Therefore, Py is simple. See Figure 3 (f). O

3.2 P neither canonical, nor almost canonical

Let P be a simple path of G that visits « before 5. We abbreviate x(n;) — 1
to —1. Thus Col(—1) lies one unit west of 7, and node v_; ¢ is the grid node
on A one unit west of #(n;). Lines l,, I, (the zipline), and I, lie in Col(—1),
Col(—2), and Col(—3), respectively. Since P is neither almost canonical with
unit-size west cookies nor in canonical form, Col(—1), Col(—2), and Col(—3)
are well defined. Zipline [, is directed from ¢; on S to g2 on N. See Figure 5(a).

The following observation shows that Col(—1) contains at least one node
that is joined by a horizontal segment of P to WW. We denote the row index of
the highest and lowest such nodes by hi and lo. It may occur that lo = hi. See
Figure 5(b)-(c).

Reconfiguring Hamiltonian Paths 9

Col(—3) Col(-1)
N \ P 371,0 t(m) UL i
.7

Fig.5: Simple path P in ¢r and ¢’ with [, in Col(—2) (a) corner separator, YW
cookies that reach Col(—1), and an S cookie in ¢r; (b) a W corner cookie that
reaches Col(—1); (c) bend b; of p; in Row(m — 2) and v_1 y,, = V_1,y,,-

Col(—)
J()l) Col(~1) Col(~1) Col(~1) _ 0|

U—1,hi Col(—-1)

R s —
! 0 — segment
I I

« U | |

; u u ‘
¢ Lo 1 5 - R R
0 — segment w 1 . [

(a) (b) () (d)

Fig. 6: Tllustrations for: (a) Observation 2 (b) Observation 3 (c¢) Observation 4
and (d) Observation 5

Observation 2. Path P contains the following: i) edge (v_2,0,v-1,0) on N; ii)
a vertical segment with endpoints v_1 o and v_; p;, where v_q j; is an internal
node of Col(—1); and iii) a horizontal segment in Row(hi) that extends from
v_1,p; to W. Furthermore, either v_; ,; = b;, where b; is the bend in pu;, or
v_1 p; lies on a W corner cookie. See Figure 6(a).

10 Nishat, Srinivasan, and Whitesides

Proof. Node v_1 has degree 3 in G, and in P it has degree 2 but is not adjacent
to t(n:1). Hence v_1 ¢ is incident in P to the boundary edge between v_5 ¢ and
v_10 and is also incident to a vertical edge belonging to a maximal segment of
P between nodes v_; o and v_j p;, where v_; 5; cannot lie on S as 7; is the first
straight separator. The internal path of v_; ; cannot be an N cookie due to
the edge (v_2,0,v_1,0) on N. The only other internal paths that could bend at
v_1,; are a VW corner cookie and a W corner separator. In the latter case, the
corner separator must be p;. O

The next two observations give some properties of the coverage of nodes on
lo in Col(—1) by P.

Observation 3. Let v be a node of Col(—1) that is joined to its neighbor above
and to W by a horizontal segment of P, and let u be the grid node one unit
below v. Then w lies in one of the following positions: i) at the top corner of
a W cookie; ii) at the top right corner of an S cookie in tr; or iii) on segment
segla, s(m)] of P on S. See Figure 6(b).

Proof. If w is an internal node v, , of G, then P joins u to its west and south
neighbors v;_1,, and v, ,41. The only possibilities for the internal path of u are
a W and an S cookie in tr. If u is not internal to G, then v = v_1 4,—1 on S,
where no nodes strictly between « and s(71) can lie on a vertical edge of P. O

Observation 4. From v_y p; to v_1 , inclusive, there are an odd number of nodes
in Col(—1) on horizontal segments of P that extend to W, and these nodes
appear consecutively in Col(—1). Any such segments below the topmost one
occur as horizontal sides of W cookies. See Figure 6(c).

Proof. By Observation 3, either v_j ;, = v_1 s, or else the nodes in Col(—1)
with y-index in the range [hi, lo] occur in pairs on W cookies. O

We denote by k* the number of segments of P that extend from Col(—1) to
W. We call them 6-segments. By the observation above, k' is odd. Analogous to
the 7;, we denote them 41, ..., §,1, with indices increasing along [,. Similarly, we
index the squares on [, with the indices of the §-segments through their centers:
5q1, -y SqiL - Note that Row(lo) is the row of 61, and Row(hi) is the row of ..
Thus v_1 4, and v_; p; occur in sq; and sq. in position py of each respective
square. See Figure 5. The next easy observation is very useful.

Observation 5. The nodes internal to a d-segment of P cannot be adjacent in
P to grid nodes one unit above or below them, as their two incident horizontal
edges give them degree 2 on P. See Figure 6(d).

Lemma 3. The square sq; on l, is switchable for P.
Proof. There are two cases: i) k- > 1 (lo # hi) and ii) k* =1 (lo = hi).

Case 1, k+ > 1: Cells celly; and celly, have lower sides in d; (the segment of P
extending from v_s j, to W). By Observation 4, these cells lie inside a W cookie

Reconfiguring Hamiltonian Paths 11

that ends in C'ol(—1). Hence celly; is switchable for P. The diagonally opposite
cell cell,, is switchable for P, as cell,, has its upper side in ¢; (the lower side
of the W cookie) and its lower side at the end of an S cookie or on §. Thus
condition i) of Definition 1 holds. Condition ii) is satisfied by the subpath Py,
of P in tr. This subpath consists of the edge at the end of the W cookie and
its two adjacent edges on d; and d2 (the lower and upper sides of the cookie).
Therefore, switching cg; will create a 1x 1 cycle in ¢r. Thus sg; on [, is switchable
for P in case 1.

Case 2, k- = 1: By Observation 4, there are no W cookies. By Observation 2,
segment 6; forms part of a W corner cookie or part of p;. By Observation 3,
node p; of sq; either sits on top of an S cookie in tr, or sits on S. Thus ¢, of
sq is the cell with a side at the top of an S cookie in tr, or the cell with a side
in S and a side in either p; or a W corner cookie. In the former case, P contains
segla, s(m)]. Tt follows that c,,. is switchable for P.

Next we show cy; is switchable for P. By Observation 2, c; of sq; is either
a cell in a W corner cookie or a cell with a lower horizontal side on ;. Cell cy,
shares a non-edge of P (i.e., (ps,ps)) on I, with cg; and either lies at the end
of a W corner cookie or has b; as its lower right vertex (i.e., ps). Either way,
crr has edges of P on its right and lower sides and a non-edge of P on its left
side in I,. Cell ¢y, contains the node ps above the center ps of sgi. If ps is an
interior node of G, the only possibilities for its internal path are a N cookie and
pj—1; either way, cell; has both horizontal sides in P. If pg lies on N, then ¢y
lies inside a W corner cookie that ends in C'ol(—1), and thus celly; is switchable.
This completes the proof that both cy; and ¢, are switchable for P.

To complete the proof that sq; on [, is switchable, we show that switching
cyy creates a path-cycle cover whose cycle lies in ¢r. By Observation 2, switching
¢y creates a cycle in ¢r consisting of the following: the segment of P on [, with
an endpoint v_3 ¢ on N (this is of length 0 if P has a W corner cookie); the
boundary edge (v_2,0,v-1,0); the segment of P of positive length from v_; o to
V_1,10; and the horizontal edge of P incident to the center ps of sq;, where the
edge lies on 7 (belongs to a segment of P extending to W).

This completes the proof that sq; on I, is switchable for P in case ii), and
concludes the proof of the statement of the lemma. a

The next two lemmas will help to show that switching the odd-indexed
squares in order from sq; to sqi. yields a simple s,¢ Hamiltonian path after
each square switch, and the switch of square sq;, . results in a simple s, Hamil-
tonian path with k' = k + 2 cross separators, joined by an edge of P on N.

Lemma 4. If P has W cookies, then k+ > 1, and switching square sq; on I,
yields a new simple s,t Hamiltonian path P'. Paths P and P’ are the same
outside sqy, and the horizontal segments of P’ are the remaining segments of P,
namely 0;, for 3 <i < kL.

Proof. Using Lemma 3 and Observation 1, sq; is switchable and switching it
yields a s,t Hamiltonian path P’. The new path is simple, as the internal paths

12 Nishat, Srinivasan, and Whitesides

of nodes are the same for P and P’, with the exception of nodes on the S cookie
in tr of P (if the cookie exists) and the lowest W cookie of P. The switch of sq
shortens the W cookie by two units and lengthens the S cookie by two units (or
grows a S cookie of length 2 in ¢r if none exists in P). Thus each node lies on an
internal path of an appropriate type with respect to P’. To the left of 1, path
P’ = path P above 3. The two segments §; and d2 of P that were in the lowest
W cookie of P have been reconfigured in P’, and the lowest node on Col(—1)
that lies on a segment of P’ extending to W is two units higher than for P. O

Lemma 5. If P has no W cookies, then k+ = 1, and switching square sq; on
l, yields a new simple s,t Hamiltonian path P’ that fills I, and 1, with cross
separators joined by an edge on N'. The path P’ is simple s,t Hamiltonian and
has k' = k + 2 cross separators.

Proof. Using Lemma 3 and Observation 1, sq; is switchable and switching it
yields a s,t Hamiltonian path P’. Furthermore, switching sq; gives P’ the two
edges on [, and I, = Col(—1) (i.e., the non-edge on [, incident to the center of
sq, and the non-edge of P on [, incident to b;) that were missing in P, but does
not remove any path edges from those lines. Thus P’ has two cross separators
in [, and I, joined by an edge on N. To complete the proof, we now show that
P’ is simple by considering the two possible internal paths of v in P: u on an A/
cookie and on fu;_1.

If u lies on an NV cookie, then switching sq; creates a corner separator whose
vertical segment lies one unit west of the new straight separator of P’ and whose
horizontal segment remains in the same row. This forms the last corner separator
u; in P’. The other corner separators are the same in P and P’. The internal
paths for nodes on p; and the N cookie with respect to P are now on ,u;- and the
new cross separator of P’ in l,. The internal paths for internal nodes that were
on an S cookie in ¢r with respect to P are now on cross separators. No other
internal paths of P are changed by the switch of sq, so P’ is simple in this case.

If u lies on pj—1, then switching cy; creates a W cookie in ps ¢ that ends on
Col(—3) = lp. Internal nodes with internal path p;_1 or u; with respect to P
now have internal paths that are either the new W cookie in P’ or the new cross
separator in [,. Switching sq; does not change any other internal paths of P,
which therefore remain the same in P’. Thus P’ is simple in this case.

This completes the proof of the statement of the lemma. O

Similar to the previous subsection, we define a zip operation for simple s,
Hamiltonian paths that have S — N straight separators but are not in canonical
or almost canonical form.

Definition 3 (Zip operation S to N). Let P be a simple s,t Hamiltonian
path visiting o before B, where P is neither canonical nor almost canonical, and
let I, and l, be Cols —1 and —2, respectively, directed S to N'. Then the zip
operation Z = zip(G, P,l,,1l,) applies switches to the squares sq;, 1 < i < k-
and i odd, in order from i =1 to k*.

Reconfiguring Hamiltonian Paths 13

We summarize the running times of the two zip operations in the following
observation.

Observation 6. Each square-switch can be performed in O(1) time. The zip op-
eration S to N takes time ©(m), and the zip operation W to £ takes ©(n)
time.

Proof. Paths can be stored for example as lists of bit vectors for rows and
columns. Zip Z = zip(G, P,1,,l,) can be performed with the following steps:
i) read up I, to find the first non-edge (e.g., the first 0 of the bit vector for 1,).
The upper endpoint of this non-edge is the center ps of sqi, which determines
the row index of 4. ii) Switch sg; by changing in constant time the bit vectors
for its sides in [, [,, and [, and in the rows at and one above and below &;.
iii) while the grid edge above the center of the current square is a non-edge
of P, advance 2 units along [, and repeat step ii). Output the new simple s,¢
Hamiltonian path.

4 Reconfiguration Algorithm

In this section, we give an algorithm to reconfigure any simple path P to another
simple path P’, maintaining the simplicity of the intermediate path after each
application of square-switch. The algorithm reconfigures P and P’ to canonical
paths P and P, respectively. If P # [, i.e., one is N-S and the other is £-W,
the algorithm reconfigures P to P’ and then reverses the steps taken from P’ to
P’ to complete the reconfiguration.

4.1 Reconfiguring P to P

We give an algorithm RECONFIGSIMP to reconfigure any simple path P = P ;
(straight separators assumed to be N-S) to a canonical path P, where the re-
sulting P might be either N-§ or £-W. The algorithm runs in three steps:

Step (a): Reconfigure the initial subpath of P, up to 7;: take Column (—2)
as the zipline [, Column (—1) as the line l,, and apply zip from S to N to
get another simple path P; that contains two straight separators in [, and [,. If
x(n1) < 2in Pi, move to Step (b). Otherwise, take Column (—2) of P; as the [,
in effect shifting the previous [, two units to the W. Apply zip from S to N on
Py similar to the zip on P. Repeat this process until a simple path P, is reached
such that x(n;) < 2, and then move to Step (b).

Step (b): We rotate the grid graph 180° about its center, and exchange the
roles of s and t in P,. Apply the same process as in Step (a) until a path Ps
is reached that has x(n;) < 2. Path P5 either is a canonical path or an almost
canonical path. If Ps is a canonical path, then terminate. Otherwise, Ps is an
almost canonical path, so move to Step (c).

Step (c): P; must have at least one run of unit size £ or W cookies. Take Row
1 as the zipline ., the N boundary as l,, and apply zip from W to £. Let P,

14 Nishat, Srinivasan, and Whitesides

be the path obtained after the zip. Then [, and [, are segments in P;. Move
each of the lines l,, [, and I, two rows down, and perform the next W to £ zip.
Repeatedly zip and move downward until reaching an £~V canonical path of G.

We now prove that the correctness and time complexity of RECONFIGSIMP.

Theorem 1. Algorithm RECONFIGSIMP reconfigures a simple path in a rectan-
gular grid graph G to a canonical path of G in O(|G|) time by switching at most
|G|/2 squares. Fach square-switch produces a simple path.

Proof. For Steps (a) and (b), each of the squares on the zipline [, in Column
(—2) is switchable by Lemma 3. By Lemma 4 and 5, each square switching gives
a simple s,t path, and by Lemma 5, [, and [, are covered by two new straight
separators after the zip. Each zip in these steps increases the number of straight
separators by 2, and we end up with a canonical or almost canonical path. Since
the zipline is moved two columns after each zip, the squares that are switched do
not overlap in cells. Therefore, at most |G|/4 squares are switched. In Step (c),
the squares are switchable by Lemma 1, and after each square-switch we obtain
a simple path by Lemma 2. Since no two squares contain a common cell, at most
|G|/4 squares are switched. The total number of square-switches is |G|/2. O

4.2 Reconfiguring P to P’

This step is similar to Step (c¢) of RECONFIGSIMP. If PP is N-S, we grow horizontal
straight separators by sweeping the zipline downward. Otherwise, we transpose
the grid with the embedded path, and apply the same technique as above. We
call this algorithm RECONFIGCANONICAL. We now prove its correctness.

Theorem 2. Let P and P’ be two different canonical paths of G. Then RECON-
FIGCANONICAL reconfigures P to P’ in O(|G|) time by switching at most |G|/4
squares.

Proof. To check whether P contains vertical separators, we just check in O(1)
time whether the first edge on P is vertical or horizontal. As in the proof of
Theorem 1 we can prove that a total of at most |G|/4 squares are switched,
which takes O(|G|) time. O

4.3 Main Result
We summarize our main algorithmic result in the following theorem.

Theorem 3. Let P and P’ be two simple paths of a rectangular grid graph G.
Then P can be reconfigured to P’ in O(|G|) time by at most 5|G|/4 square-
switches, where each square-switch produces a simple path.

Proof. By Theorem 1, P can be reconfigured to a canonical path P in O(|G])
time by switching |G|/2 squares. Similarly, P’ can be reconfigured to a canonical
path P’ in O(|G|) time by at most |G|/2 square-switches. Reconfiguring P to P’

Reconfiguring Hamiltonian Paths 15

takes O(|G|) time and |G|/4 square-switches by Theorem 2. If needed, reversing
the steps of reconfiguring P’ to P’ takes O(|G|) time. Hence the total time to
reconfigure P to P’ is O(|G]), where at most 5/G|/4 squares are switched. All
square-switches produce simple paths. a

We observe that reconfiguring a N-S canonical path P to a £-W canonical
path P’ requires at least |G|/4 square-switch operations as each such operation
can only produce 4 edges of P’. This observation together with above theorem
immediately implies the following result.

Theorem 4. The Hamiltonian path graph G of G for simple s,t Hamiltonian
paths is connected with respect to the operation square-switch, and the diameter
of G is O(|G|) and indeed at most 5|G|/4.

5 Conclusion and Open Problems

In this paper, we introduced a square-switch operation, and gave a linear time
algorithm that uses at most 5|G|/4 square-switches to reconfigure any simple
s,t Hamiltonian path in a rectangular grid graph G to any other such path. We
ensured that each square-switch made by the algorithm yields a simple path. This
result proves the connectivity of the Hamiltonian path graph G of G for simple
paths with respect to the square-switch operation, and shows that the diameter
of G is linear in the size of the grid graph G. We defined a very restricted notion
of square-switch to achieve our results. We propose that the square-switch, or a
generalization of it, can be used to solve a reconfiguration problems for a variety
of other families of s,t Hamiltonian paths in the same or other settings.

References

1. Arkin, E.M., Bender, M.A., Demaine, E.D., Fekete, S.P., Mitchell, J.S.B., Sethia,
S.: Optimal covering tours with turn costs. In: Proceedings of the Twelfth Ann.
ACM-SIAM Symp. on Discrete Algorithms. pp. 138-147. SODA ’01, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (2001)

2. Collins, K.L., Krompart, L.B.: The number of Hamiltonian paths in a rectangular
grid. Discrete Mathematics 169(1-3), 29-38 (1997)

3. Everett, H.: Hamiltonian paths in nonrectangular grid graphs. Master’s thesis,
University of Saskatchewan, Canada (1986)

4. Fellows, M., Giannopoulos, P.; Knauer, C., Paul, C., Rosamond, F.A., Whitesides,
S., Yu, N.: Milling a graph with turn costs: A parameterized complexity perspec-
tive. In: WG 2010. LNCS, vol. 6410, pp. 123-134. Springer (2010)

5. Gorbenko, A., Popov, V., Sheka, A.: Localization on discrete grid graphs. In: CICA
2011. pp. 971-978. Springer Netherlands, Dordrecht (2012)

6. Ttai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM Journal on Computing 11(4), 676-686 (1982)

7. Ito, T., Demaine, E.D., Harvey, N.J., Papadimitriou, C.H., Sideri, M., Uehara, R.,
Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer
Science 412(12), 1054 — 1065 (2011)

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Nishat, Srinivasan, and Whitesides

Jacobsen, J.L.: Exact enumeration of Hamiltonian circuits, walks and chains in
two and three dimensions. J. of Phys. A: Math. Theor. 40, 14667-14678 (2007)
Keshavarz-Kohjerdi, F., Bagheri, A.: Hamiltonian paths in L-shaped grid graphs.
Theoretical Computer Science 621, 37-56 (2016)

Lignos, I.: Reconfigurations of Combinatorial Problems: Graph Colouring and
Hamiltonian Cycle. Ph.D. thesis, Durham University (2017)

Muller, P., Hascoet, J.Y., Mognol, P.: Toolpaths for additive manufacturing of
functionally graded materials (FGM) parts. Rapid Prototyping Journal 20(6), 511—
522 (2014)

Nishat, R.I.: Reconfiguration of Hamiltonian Cycles and Paths in Grid Graphs.
Ph.D. thesis, University of Victoria, Canada (2020)

Nishat, R.I., Srinivasan, V., Whitesides, S.: Reconfiguring simple s,t Hamiltonian
paths in rectangular grid graphs. In: IWOCA 2021. LNCS, vol. 12757, pp. 501-515.
(2021)

Nishat, R.I., Srinivasan, V., Whitesides, S.: 1-complex s,¢ hamiltonian paths:
Structure and reconfiguration in rectangular grids. In: WALCOM 2022. p. (to
appear) (2022)

Nishat, R.I., Whitesides, S.: Bend complexity and Hamiltonian cycles in grid
graphs. In: COCOON 2017. LNCS, vol. 10392, pp. 445-456 (2017)

Nishat, R.I., Whitesides, S.: Reconfiguring Hamiltonian cycles in l-shaped grid
graphs. In: WG 2019. LNCS, vol. 11789, pp. 325-337. (2019)

Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
Bodroza Pantié, O., Panti¢, B., Panti¢, 1., Bodroza Solarov, M.: Enumeration of
Hamiltonian cycles in some grid graphs. MATCH Communications in Mathemat-
ical and in Computer Chemistry 70, 181-204 (2013)

Pettersson, V.: Enumerating Hamiltonian cycles. The Electronic Journal of Com-
binatorics 21(4), P4.7 (2014)

Ruskey, F., Sawada, J.: Bent hamilton cycles in d-dimensional grid graphs. the
electronic journal of combinatorics 10(1), R1 (2003)

Takaoka, A.: Complexity of Hamiltonian cycle reconfiguration. Algorithms 11(9),
140 (2018)

Umans, C., Lenhart, W.: Hamiltonian cycles in solid grid graphs. In: 38th Ann.
Symp. on Foundations of Computer Science, FOCS ’97. pp. 496-505 (1997)
Winter, S.: Modeling costs of turns in route planning. Geoinformatica 6(4), 345—
361 (dec 2002)

	The Hamiltonian Path Graph is Connected for Simple s,t Paths in Rectangular Grid Graphs

