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Abstract. We present an O(n2)-time algorithm to test whether an n-
vertex directed partial 2-tree is upward planar. This result improves upon
the previously best known algorithm, which runs in O(n4) time.

1 Introduction

A digraph is upward planar if it admits a drawing that is at the same time
planar, i.e., it has no crossings, and upward, i.e., all edges are drawn as curves
monotonically increasing in the vertical direction. Upward planarity is a natural
variant of planarity for directed graphs and finds applications in those domains
where one wants to visualize networks with a hierarchical structure.

Upward planarity is a classical research topic in Graph Drawing since the
early 90s. Garg and Tamassia have shown that recognizing upward planar di-
graphs is NP-complete [13], however polynomial-time algorithms have been pro-
posed for various cases, including digraphs with fixed embedding [1], single-
source digraphs [2,3,16,17], outerplanar digraphs [18]. The case of directed par-
tial 2-trees, which is of central interest to this paper and includes, among others,
series-parallel digraphs, has been investigated by Didimo et al. [10] who pre-
sented an O(n4)-time testing algorithm. The parameterized complexity of the
upward planarity testing problem has also been investigated [4,5,10,15].

In this paper, we present an O(n2)-time algorithm to test upward planarity
of directed partial 2-trees, improving upon the O(n4)-time algorithm by Didimo
et al. [10]. There are two main ingredients that allow us to achieve such result.

First, following the approach in [5], our algorithm traverses the SPQ-tree of
the input digraph G while computing, for each component of G, the possible
“shapes” of its upward planar embeddings. The algorithm in [5] only works
for expanded digraphs, i.e., digraphs such that every vertex has at most one
incoming or outgoing edge. Although every digraph can be made expanded while
preserving its upward planarity by “splitting” its vertices [2], this modification
might not maintain that the digraph is a directed partial 2-tree; see Fig. 1.
We present a novel algorithm that is applicable to non-expanded digraphs. We
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Fig. 1. Splitting a vertex in a non-expanded directed partial 2-tree (a) might result in
an expanded digraph (b) which is not a directed partial 2-tree.

propose a new strategy to process P-nodes, which is simpler than the one of [5]
and allows us to compute some additional information that is needed by the
second ingredient. Further, we give a more efficient procedure than the one of [5]
to process the S-nodes; this is vital for the overall running time of our algorithm.

Second, the traversal of the SPQ-tree T of G tests the upward planarity of
G with the constraint that the edge corresponding to the root of T is incident
to the outer face. Then O(n) traversals with different choices for the root of T
can be used to test the upward planarity of G without that constraint. However,
following a recently developed strategy [11,12], in the first traversal of T we
compute some information additional to the possible shapes of the upward planar
embeddings of the components of G. A clever use of this information allows us
to handle P-nodes more efficiently in later traversals. Our testing algorithms can
be enhanced to output an upward planar drawing, if one exists, although we do
not describe the process explicitly.

Paper organization In Section 2 we give some preliminaries. In Section 3 we
describe the algorithm for biconnected digraphs with a prescribed edge on the
outer face, while in Section 4 we deal with general biconnected digraphs. Sec-
tion 5 extends our result to simply connected digraphs. Future research directions
are presented in Section 6. Lemmas and theorems whose proofs are omitted are
marked with a (?) and can be found in the full version of the paper.

2 Preliminaries

In a digraph, a switch is a source or a sink. The underlying graph of a digraph is
the undirected graph obtained by ignoring the edge directions. When we mention
connectivity of a digraph, we mean the connectivity of its underlying graph.

A planar embedding of a connected graph is an equivalence class of planar
drawings, where two drawings are equivalent if: (i) the clockwise order of the
edges incident to each vertex is the same; and (ii) the sequence of vertices and
edges along the boundary of the outer face is the same.

A drawing of a digraph is upward if every edge is represented by a Jordan arc
whose y-coordinates monotonically increase from the source to the sink of the
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Fig. 2. (a) Labels at the angles of an upward planar embedding E of a bicon-
nected directed partial 2-tree G; the missing labels are −1. (b) An SPQ-tree T of
G with respect to e∗. The restriction of E to Gσ∗ is a uv-external upward pla-
nar embedding Eσ∗ with shape description 〈0, 1, 1, 0, out, out, in, out〉. The shape se-
quence of Eσ∗ is [〈0, 0, 1, 1, out, out, in, in〉, 〈0, 0, 1, 1, out, out, in, in〉, 〈−1, 1, 1, 1, out,
out, out, out〉, 〈−1, 1, 1, 1, out, out, out, out〉]. The contracted shape sequence of Eσ∗ is
[〈0, 0, 1, 1, out, out, in, in〉, 〈−1, 1, 1, 1, out, out, out, out〉].

edge. A drawing of a digraph is upward planar if it is both upward and planar.
An upward planar drawing of a graph determines an assignment of labels to the
angles of the corresponding planar embedding, where an angle α at a vertex u
in a face f of a planar embedding represents an incidence of u on f . Specifically,
α is flat and gets label 0 if the edges delimiting it are one incoming and one
outgoing at u. Otherwise, α is a switch angle; in this case, α is small (and gets
label −1) or large (and gets label 1) depending on whether the (geometric) angle
at f representing α is smaller or larger than 180◦, respectively, see Fig. 2(a). An
upward planar embedding is an equivalence class of upward planar drawings of a
digraph G, where two drawings are equivalent if they determine the same planar
embedding E for G and the same label assignment for the angles of E .

Theorem 1 ([1,10]). Let G be a digraph with planar embedding E, and λ be
a label assignment for the angles of E. Then E and λ define an upward planar
embedding of G if and only if the following hold:

(UP0) If α is a switch angle then α is small or large, otherwise it is flat.
(UP1) If v is a switch vertex, the number of small, flat and large angles incident
to v is equal to deg(v)− 1, 0, and 1, respectively.
(UP2) If v is a non-switch vertex, the number of small, flat and large angles
incident to v is equal to deg(v)− 2, 2, and 0, respectively.
(UP3) If f is an internal face (the outer face) of E, the number of small angles
in f is equal to the number of large angles in f plus 2 (resp. minus 2).

The class of partial 2-trees can be defined equivalently as the graphs with
treewidth at most two, or as the graphs that exclude K4 as a minor, or as the
subgraphs of the 2-trees. Notably, it includes the class of series-parallel graphs.



Let G be a biconnected partial 2-tree and let e∗ be an edge of G. An SPQ-
tree T of G with respect to e∗ (see Fig. 2(b)) is a tree that describes a recursive
decomposition of G into its “components”. SPQ-trees are a specialization of
SPQR-trees [8,14]. Each node µ of T represents a subgraph Gµ of G, called the
pertinent graph of µ, and is associated with two special vertices ofGµ, called poles
of µ. The nodes of T are of three types: a Q-node µ represents an edge whose
end-vertices are the poles of µ, an S-node µ with children ν1 and ν2 represents
a series composition in which the components Gν1 and Gν2 share a pole to form
Gµ, and a P-node µ with children ν1, . . . , νk represents a parallel composition
in which the components Gν1 , . . . , Gνk share both poles to form Gµ. The root
of T is the Q-node representing the edge e∗. By our definition, every S-node has
exactly two children that can also be S-nodes; because of this assumption, the
SPQ-tree of a biconnected partial 2-tree is not unique. However, from an SPQ-
tree T , we can obtain an SPQ-tree of G with respect to another reference edge
e∗∗ by selecting the Q-node representing e∗∗ as the new root of T (see Fig. 3).

A directed partial 2-tree is a digraph whose underlying graph is a partial 2-
tree. When talking about an SPQ-tree T of a biconnected directed partial 2-tree
G, we always refer to an SPQ-tree of its underlying graph, although the edges of
the pertinent graph of each node of T are oriented as in G. Let µ be a node of T
with poles u and v. A uv-external upward planar embedding of Gµ is an upward
planar embedding of Gµ in which u and v are incident to the outer face. In our
algorithms, when testing the upward planarity of G, choosing an edge e∗ of G
as the root of T corresponds to requiring e∗ to be incident to the outer face of
the sought upward planar embedding E of G. For each node µ of T with poles u
and v, the restriction of E to Gµ is a uv-external upward planar embedding Eµ
of Gµ. In [5], the possible “shapes” of the cycle bounding the outer face fµ of Eµ
have been described by the concept of shape description. This is the tuple 〈τl,
τr, λ(u), λ(v), ρlu, ρ

r
u, ρ

l
v, ρ

r
v〉, defined as follows. Let the left outer path Pl (the

right outer path Pr) of Eµ be the path that is traversed when walking from u to
v in clockwise (resp. counterclockwise) direction along the boundary of fµ. The
value τl, called left-turn-number of Eµ, is the sum of the labels of the angles at
the vertices of Pl different from u and v in fµ; the right-turn-number τr of Eµ is
defined similarly. The values λ(u) and λ(v) are the labels of the angles at u and
v in fµ, respectively. The value ρlu is in (out) if the edge incident to u in Pl is
incoming (outgoing) at u; the values ρru, ρlv, and ρrv are defined similarly. The
values of a shape description depend on each other, as in the following.

Observation 1 ([5]). The shape description 〈τl, τr, λ(u), λ(v), ρlu, ρ
r
u, ρ

l
v, ρ

r
v〉 of

Eµ satisfies the following properties:

(i) ρlu and ρru have the same value if λ(u) ∈ {−1, 1}, while they have different
values if λ(u) = 0;

(ii) ρlv and ρrv have the same value if λ(v) ∈ {−1, 1}, while they have different
values if λ(v) = 0;

(iii) ρlu and ρlv have the same value if τl is odd, while they have different values
if τl is even;

(iv) τl + τr + λ(u) + λ(v) = 2.
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Fig. 3. Two different choices for the root of the SPQ-tree of Fig. 2. The reference edge
is shown in bold.



A set S of shape descriptions is n-universal if, for every n-vertex biconnected
directed partial 2-tree G, for every rooted SPQ-tree T of G, for every node µ of
T with poles u and v, and for every uv-external upward planar embedding Eµ of
Gµ, the shape description of Eµ belongs to S. Thus, an n-universal set is a super-
set of the feasible set Fµ of µ, that is, the set of shape descriptions s such that
Gµ admits a uv-external upward planar embedding with shape description s.
Our algorithm will determine Fµ by inspecting each shape description s in an
n-universal set and deciding whether Gµ admits a uv-external upward planar
embedding with shape description s or not. We have the following lemmas.

Lemma 1 (?). An n-universal set S of shape descriptions with |S| ∈ O(n) can
be constructed in O(n) time.

Lemma 2 (?). Any subset F of an n-universal set can be stored in O(n) time
and space and querying whether a shape description is in F takes O(1) time.

Consider a P-node µ in an SPQ-tree T of a biconnected directed partial 2-
tree G. Let ν1, . . . , νk be the children of µ in T . Consider any uv-external upward
planar embedding Eµ of Gµ. For i = 1, . . . , k, the restriction of Eµ to Gνi is a
uv-external upward planar embedding Eνi of Gνi ; let σi be the shape description
of Eνi . Assume that Eν1 , . . . , Eνk appear in this clockwise order around u, where
the left outer path of Eν1 and the right outer path of Eνk delimit the outer face
of Eµ. We call σ = [σ1, . . . , σk] the shape sequence of Eµ. Further, consider the
sequence S = [s1, . . . , sx] obtained from σ by identifying consecutive identical
shape descriptions. We call S the contracted shape sequence of Eµ; see Fig. 2.

3 A Prescribed Edge on the Outer Face

Let G be an n-vertex biconnected directed partial 2-tree and T be its SPQ-tree
rooted at any Q-node ρ∗, which corresponds to an edge e∗ of G. In this section,
we show an algorithm that computes the feasible set Fµ of every node µ of T .
Let u and v be the poles of µ. Note that G admits an upward planar embedding
such that e∗ is incident to the outer face if and only if the feasible set of ρ∗

is non-empty. Hence, the algorithm could be applied repeatedly (once for each
Q-node as the root) to test the upward planarity of G; however, in Section 4
we devise a more efficient way to handle multiple choices for the root of T . We
first deal with S-nodes, then with P-nodes, and finally with the root of T . For
Q-nodes, it is easy to show the following lemma.

Lemma 3 ([5]). For a non-root Q-node µ, Fµ can be computed in O(1) time.

S-nodes. We improve an algorithm from [5]. Let ν1 and ν2 be the children of µ
in T , let nµ1 = |V (Gν1)| and nµ2 = |V (Gν2)|, and let w be the vertex shared by
Gν1 and Gν2 . Furthermore, let nµ3 be the number of vertices in the subgraph Hµ

of G induced by V (G) \ V (Gµ)∪ {u, v}. Note that nµ3 = |V (G)| − (nµ1 +nµ2 ) + 3.
We distinguish two cases, depending on which of nµ1 , nµ2 , and nµ3 is largest.



If nµ3 ≥ max(nµ1 , n
µ
2 ), we proceed as in [5, Lemma 6], by combining every

shape description in Fν1 with every shape description in Fν2 ; for every such
combination, the algorithm assigns the angles at w in the outer face with every
possible label in {−1, 0, 1}. If the combination and assignment result in a shape
description s of µ (the satisfaction of the properties of Theorem 1 are checked
here), the algorithm adds s to Fµ. This allows us to compute the feasible set Fµ
of µ in time O(n + |Fν1 | · |Fν2 |), which is in O(n + nµ1 · n

µ
2 ), as |Fν1 | ∈ O(nµ1 )

and |Fν2 | ∈ O(nµ2 ) by Lemma 1.
The most interesting case is when, say, nµ1 ≥ max(nµ2 , n

µ
3 ). Here, in order to

keep the overall runtime in O(n2), we cannot combine every shape description
in Fν1 with every shape description in Fν2 . Rather, we proceed as follows. Note
that every shape description in Fµ whose absolute value of the (left- or right-)
turn-number exceeds nµ3 + 4 does not result in an upward planar embedding of
G, by Property UP3 of Theorem 1 and since the absolute value of the turn-
number of any path in any upward planar embedding of Hµ does not exceed
nµ3 . We hence construct an (nµ3 + 4)-universal set S in O(nµ3 ) time by Lemma 1,
and then test whether each shape description s in S belongs to the feasible set
Fµ of µ. In order to do that, we consider every shape description s2 in Fν2
individually. There are O(1) shape descriptions in Fν1 which combined with s2
might result in s, since the turn numbers add to each other when combining the
shape descriptions in Fν1 and Fν2 , with a constant offset. Hence, by Lemma 2,
we check in O(1) time if there is a shape description s1 in Fν1 which combined
with s2 leads to s. The running time of this procedure is hence O(n+ nµ2 · n

µ
3 ),

as |Fν2 | ∈ O(nµ2 ) and |S| ∈ O(nµ3 ) by Lemma 1. This yields the following.

Lemma 4. Let µ be an S-node of T with children ν1 and ν2. Given the feasible
sets Fν1 and Fν2 of ν1 and ν2, respectively, the feasible set Fµ of µ can be
computed in O(n+ min{nµ1 · n

µ
2 , n

µ
2 · n

µ
3 , n

µ
1 · n

µ
3}) time.

P-nodes. To compute the feasible set Fµ of a P-node µ from the feasible sets
Fν1 , . . . ,Fνk of its children, the algorithm constructs an n-universal set S in
O(n) time by Lemma 1. Then it examines every shape description s ∈ S and
decides whether it belongs to Fµ. Hence, we focus on a single shape description
s and give an algorithm that decides in O(k) time whether s belongs to Fµ.

The basic structural tool we need for our algorithm is the following lemma.
We call generating set G(s) of a shape description s the set of contracted shape
sequences that the pertinent graph of any P-node with poles u and v can have
in a uv-external upward planar embedding with shape description s.

Lemma 5 (?). For any shape description s, G(s) has size O(1) and can be
constructed in O(1) time. Also, any sequence in G(s) has O(1) length.

A contracted shape sequence S ∈ G(s) is realizable by µ if there exists a
uv-external upward planar embedding of Gµ whose contracted shape sequence
is a subsequence of S containing the first and last elements of S.

We now describe an algorithm that decides in O(k) time whether s belongs to
Fµ. Also, for each contracted shape sequence S = [s1, . . . , sx] in the generating
set G(s) of s, the algorithm computes and stores the following information:



– Three labels f1(µ, S), f2(µ, S), and f3(µ, S) which reference three distinct
children νi of µ such that s1 ∈ Fνi .

– Three labels l1(µ, S), l2(µ, S), and l3(µ, S) which reference three distinct
children νi of µ such that sx ∈ Fνi .

– Two labels uf1(µ, S) and uf2(µ, S) which reference two distinct children νi
of µ such that Fνi does not contain any shape description in S.

For each label type, if the number of children with the described properties is
smaller than the number of labels, then labels with larger indices are null. We
call the set of relevant labels for µ and S the set of labels described above.

The algorithm is as follows. First, by Lemma 5, we construct G(s) in O(1)
time. Then we consider each sequence S = [s1, . . . , sx] in G(s). By Lemma 5,
there are O(1) such sequences, each with length O(1). We decide whether S is
realizable by µ and compute the set of relevant labels for µ and S as follows.

We initialize all the labels to null and process ν1, . . . , νk one by one. For each
νi, by Lemma 2 we test in O(1) time which of the shape descriptions s1, . . . , sx
belong to Fνi and update the labels accordingly. For example, if s1 ∈ Fνi , then
we update fj(µ, S) = νi for the smallest j ∈ {1, 2, 3} with fj(µ, S) = null.

After processing ν1, . . . , νk, we decide whether S is realizable by µ as follows.
If uf1(µ, S) 6= null, then S is not realizable by µ. Otherwise, each feasible
set Fνi contains a shape description among s1, . . . , sx. Still, we have to check
whether Fνi contains s1 and Fνj contains sx, for two distinct nodes νi and νj . If
f1(µ, S) = null or l1(µ, S) = null, then S is not realizable by µ, as the feasible
set of no child contains s1 or sx, respectively. Otherwise, if f1(µ, S) 6= l1(µ, S),
then S is realizable by µ, as f1(µ, S) can be assigned with s1 and l1(µ, S) with
sx. Otherwise, if f2(µ, S) 6= null or l2(µ, S) 6= null, then S is realizable by
µ, as f2(µ, S) can be assigned with s1 and l1(µ, S) with sx, or f1(µ, S) can be
assigned with s1 and l2(µ, S) with sx, respectively. Otherwise, S is not realizable
by µ, as s1 and sx are in the feasible set of a single child f1(µ, S) = l1(µ, S) of µ.

Finally, we have that s belongs to Fµ if and only if there exists a contracted
shape sequence S in the generating set G(s) of s which is realizable by µ.

Lemma 6 (?). Let µ be an P-node of T with children ν1, . . . , νk. Given their
feasible sets Fν1 , . . . ,Fνk , the feasible set Fµ of µ can be computed in O(nk)
time. Further, for every shape description s in an n-universal set S and every
contracted shape sequence S in the generating set G(s) of s, the set of relevant
labels for µ and S can be computed and stored in overall O(nk) time and space.

Root. As in [5], the root ρ∗ of T is treated as a P-node with two children, whose
pertinent graphs are e∗ and the pertinent graph of the child σ∗ of ρ∗ in T .

Lemma 7 ([5]). Given the feasible set Fσ∗ , the feasible set Fρ∗ of the root ρ∗

of T can be computed in O(n) time.

4 No Prescribed Edge on the Outer Face

In this section, we show an O(n2)-time algorithm to test the upward planarity
of a biconnected directed partial 2-tree G. Let e1, . . . , em be any order of the



edges of G. For i = 1, . . . ,m, let ρi be the Q-node of the SPQ-tree T of G
corresponding to ei and Ti be the rooted tree obtained by selecting ρi as the
root of T . For a node µ of T , distinct choices for the root of T define different
pertinent graphs Gµ of µ. Thus, we change the previous notation and denote by
Gµ→τ and Fµ→τ the pertinent graph and the feasible set of a node µ when its
parent is a node τ . We denote by Fρi the feasible set of the root ρi of Ti.

Our algorithm performs traversals of T1, . . . , Tm. The traversal of T1 is spe-
cial; it is a bottom-up traversal using the results from Section 3 to compute the
feasible set Fµ→τ of every node µ with parent τ in T1, as well as auxiliary infor-
mation that is going to be used by later traversals. For i = 2, . . . ,m, we perform
a top-down traversal of Ti that computes the feasible set Fµ→τ of every node
µ with parent τ in Ti. Due to the information computed by the traversal of T1,
this can be carried out in O(n) time for each P-node. Further, the traversal of
Ti visits a subtree of Ti only if that has not been visited “in the same direction”
during a traversal Tj with j < i. We start with two auxiliary lemmas.

Lemma 8 (?). Suppose that, for some i ∈ {1, . . . ,m}, a node µ with parent τ
has a child νj in Ti such that Fνj→µ = ∅. Then Fµ→τ = ∅.

Lemma 9 (?). Suppose that a node µ has two neighbors νj and νk such that
Fνj→µ = Fνk→µ = ∅. Then G admits no upward planar embedding.

Bottom-up Traversal of T1. The first step of the algorithm consists of a
bottom-up traversal of T1. This step either rejects the instance (i.e., it concludes
that G admits no upward planar embedding) or computes and stores, for each
non-root node µ of T1 with parent τ , the feasible set Fµ→τ of µ, as well as the
feasible set Fρ1 of the root ρ1. Further, if µ is an S- or P-node, it also computes
the following information.

– A label p(µ) referencing the parent τ of µ in T1.
– A label uc(µ) referencing a node ν such that Fν→µ has not been computed.

Initially this is τ , and once Fτ→µ is computed, this label changes to null.
– A label b(µ) referencing any neighbor ν of µ such that Fν→µ = ∅. This label

remains null until such neighbor is found.

Finally, if µ is a P-node, for each shape description s in an n-universal set S
and each contracted shape sequence S = [s1, . . . , sx] in the generating set G(s)
of s, the algorithm computes and stores the set of relevant labels for µ and S.

The bottom-up traversal of T1 computes the feasible set Fµ→τ in O(1) time
by Lemma 3, for any Q-node µ 6= ρ1 with parent τ . When an S- or P-node µ with
parent τ is visited, the algorithm stores in p(µ) and uc(µ) a reference to τ . Then
it considers b(µ). Suppose that b(µ) 6= null (the label b(µ) might have been
assigned a value different from null when visiting a child of µ). By Lemma 8 we
have Fµ→τ = ∅, hence if b(τ) 6= null, then by Lemma 9, the algorithm rejects
the instance, otherwise it sets b(τ) = µ and concludes the visit of µ. Suppose next
that b(µ) = null. Then we have Fνj→µ 6= ∅, for every child νj of µ, thus Fµ→τ
is computed using Lemma 4 or 6, if µ is an S-node or a P-node, respectively. If



Fµ→τ = ∅, then the algorithm checks whether b(τ) 6= null (and then it rejects
the instance) or not (and then it sets b(τ) = µ). This concludes the visit of µ.
Finally, when the algorithm reaches ρ1, it checks whether b(ρ1) = null and if
the test is positive, then it concludes that Fρ1 = ∅. Otherwise, it computes Fρ1
by means of Lemma 7 and completes the traversal of T1.

Top-Down Traversal of Ti. The top-down traversal of Ti computes Fµ→τ , for
each non-root node µ with parent τ in Ti, as well as Fρi . For each S- or P-node
µ, the labels uc(µ) and b(µ) might be updated during the traversal of Ti, while
p(µ) and the sets of relevant labels are never altered after the traversal of T1.
The traversal of Ti visits a node µ with parent τ only if Fµ→τ has not been
computed yet; this information is retrieved in O(1) time from the label uc(τ).

When the traversal visits an S- or P-node µ with parent τ and children
ν1, . . . , νk, it proceeds as follows. Note that p(µ) 6= τ , as otherwise Fµ→τ would
have been already computed. Then we have p(µ) = νj∗ , for some j∗ ∈ {1, . . . , k}.

If uc(µ) = νj∗ , then before computing Fµ→τ , the algorithm descends in νj∗ in
order to compute Fνj∗→µ. Otherwise, Fνj→µ has been computed for j = 1, . . . , k.

If b(µ) = νj , for some j ∈ {1, . . . , k}, then by Lemma 8 we have Fµ→τ = ∅,
hence if b(τ) 6= null and b(τ) 6= µ, then the algorithm rejects the instance by
Lemma 9, otherwise it sets b(τ) = µ and concludes the visit of µ. Conversely, if
b(µ) = null or b(µ) = τ , then Fνj→µ 6= ∅ for j = 1, . . . , k. The algorithm then
computes Fµ→τ , as described below. Afterwards, if uc(τ) = µ, the algorithm sets
uc(τ) = null. Further, if Fµ→τ = ∅, the algorithm checks whether b(τ) 6= null
(and then rejects the instance) or not (and then sets b(τ) = µ).

The computation of Fµ→τ distinguishes the case when µ is an S-node or a
P-node. If µ is an S-node, then the computation of Fµ→τ is done by means of
Lemma 4. The running time of the procedure for the S-nodes sums up to O(n2),
over all S-nodes and all traversals of T . If µ is a P-node, then the computation
of Fµ→τ cannot be done by just applying the algorithm from Lemma 6, as
that would take Θ(n3) time for all P-nodes and all traversals of T . Instead, the
information computed when traversing T1 allows us to determine in O(1) time
whether any shape description is in Fµ→τ . This results in an O(n) time for
processing µ in Ti, which sums up to O(nk) time over all traversals of T , and
thus in a O(n2) total running time for the entire algorithm.

The algorithm determines Fµ→τ by examining each shape description s in
an n-universal set S, which has O(n) elements and is constructed in O(n) time
by Lemma 1, and deciding whether it is in Fµ→τ or not. This is done as follows.
We construct in O(1) time the generating set G(s) of s, by Lemma 5. Recall that
G(s) contains O(1) contracted shape sequences, each with length O(1). For each
sequence S = [s1, . . . , sx] in G(s), we test whether S is realizable by µ as follows.

– If uf2(µ, S) 6= null, or if uf1(µ, S) 6= null and uf1(µ, S) 6= τ , then there
exists a child νj of µ in Ti such that Fνj→µ does not contain any shape
description in S. Then we conclude that S is not realizable by µ.

– Otherwise, we test whether Fνj∗→µ contains any shape description among
the ones in S. If not, S is not realizable by µ. Otherwise, for j = 1, . . . , k,



Fνj→µ contains a shape description in S. However, this does not imply that
S is realizable by µ, as we need to ensure that s1 ∈ Fνj→µ and sx ∈ Fνl→µ
for two distinct children νj and νl of µ in Ti. This can be tested as follows.
We construct a bipartite graph Bµ→τ (S) in which one family has two vertices
labeled s1 and sx. The other one has a vertex for each child of µ in the
set {f1(µ, S), f2(µ, S), f3(µ, S), l1(µ, S), l2(µ, S), l3(µ, S), νj∗}. The graph
Bµ→τ (S) contains an edge between the vertex representing a child νj of µ
and a vertex representing s1 or sx if s1 or sx belongs to Fνj→µ, respectively.
We now have that s1 ∈ Fνj→µ and sx ∈ Fνl→µ for two distinct children
νj and νl of µ in Ti (and thus S is realizable by µ) if and only if Bµ→τ (S)
contains a size-2 matching, which can be tested in O(1) time.

Testing whether S is realizable by µ can be done in O(1) time, as it only
requires to check O(1) labels, to find a size-2 matching in a O(1)-size graph, and
to check O(1) times whether a shape description belongs to a feasible set. The
last operation requires O(1) time by Lemma 2. We conclude that s is in Fµ→τ
if and only if at least one contracted shape sequence S in G(s) is realizable by
µ. This concludes the description of how the algorithm handles a P-node.

Finally, Fρi is computed in O(n) time by Lemma 7. We get the following.

Lemma 10 (?). The described algorithm runs in O(n2) time and either cor-
rectly concludes that G admits no upward planar embedding, or computes the
feasible sets Fρ1 , . . . ,Fρm .

5 Single-Connected Graphs

In this section, we extend Lemma 10 from the biconnected case to arbitrary
partial 2-trees. To this end, we obtain a general lemma that allows us to test
upward planarity of digraphs from the feasible sets of biconnected components.

Lemma 11 (?). Let G be an n-vertex digraph. Let B1, . . . , Bt be the maximal
biconnected components of G. For i ∈ [t], let the edges of Bi be ei1, . . . , eimi

,
and the respective Q-nodes in the SPQR-tree of Bi be ρi1, . . . , ρimi

. There is an
algorithm that, given G and the feasible sets Fρij for each i ∈ [t] and j ∈ [mi], in

time O(n2) correctly decides whether G admits an upward planar embedding.

Note that Lemma 11 holds for all digraphs, not only partial 2-trees. In fact,
it generalizes [5, Section 5], where an analogous statement has been shown for
all expanded graphs. Our main result follows from Lemmas 11 and 10.

Theorem 2 (?). Let G be an n-vertex directed partial 2-tree. It is possible to
determine whether G admits an upward planar embedding in time O(n2).

Hence, all that remains now is to prove Lemma 11. To give an intuition of the
proof, we start by guessing the root of the block-cut tree of G, which corresponds
to a biconnected component that is assumed to see the outer face in the desired
upward planar embedding of G. The core of the proof is the following lemma,
which states that leaf components can be disregarded as long as certain simple
conditions on their parent cut-vertex are met.



Lemma 12 (?). Consider a rooted block-cut tree of a digraph G, its cut vertex
v that is adjacent to leaf blocks B1,...,B`, and the parent block P . Denote by

GP the subgraph G
[(
V (G) \

⋃
i∈[`]Bi

)
∪ {v}

]
. Any upward planar embedding

of GP in which the root block is adjacent to the outer face, can be extended to
an embedding of G with the same property if the following conditions hold:

1. Each Bi has an upward planar embedding with v on the outer face fi.
2. If v is a non-switch vertex in P , each Bi has an upward planar embedding

with v on fi where the angle at v in fi is not small.
3. If there is j ∈ [`] such that v is a non-switch vertex in Bj, and all upward

planar embeddings of Bj with v on fj have a small angle at v in fj, then for
all i ∈ [`] s.t. i 6= j and v is a non-switch vertex in Bi, Bi has an upward
planar embedding with v on fi where the angle at v in fi is flat.

Moreover, if G admits an upward planar embedding in which the root block is
adjacent to the outer face, the conditions above are necessarily satisfied.

The proof of Lemma 12 essentially boils down to a case distinction on how
the leaf blocks are attached; the cases that need to be considered are intuitively
illustrated in Figure 4. With this, we finally have all the components necessary
to prove Theorem 2. Intuitively, the algorithm proceeds in a leaf-to-root fashion
along the block-cut tree, and at each point it checks whether the conditions of
Lemma 12 are satisfied. If they are, the algorithm removes the respective leaf
components and proceeds upwards, while otherwise we reject the instance.
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Fig. 4. Illustrations for the proof of Lemma 12.

6 Concluding Remarks

We have provided an O(n2)-time algorithm for testing the upward planarity
of n-vertex directed partial 2-trees, substantially improving on the state of the
art [10]. There are several major obstacles to overcome for improving this runtime
to linear; hence, it would be worth investigating whether the quadratic bound
is tight. Another interesting direction for future work is to see whether our new
techniques can be used to obtain quadratic algorithms for related problems, such
as computing orthogonal drawings with the minimum number of bends [7,9].
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Symposium on Graph Drawing and Network Visualization, GD 2019. Lecture Notes
in Computer Science, vol. 11904, pp. 517–531. Springer (2019)

4. Chan, H.Y.: A parameterized algorithm for upward planarity testing. In: Albers,
S., Radzik, T. (eds.) 12th Annual European Symposium on Algorithms, ESA 2004.
Lecture Notes in Computer Science, vol. 3221, pp. 157–168. Springer (2004)

5. Chaplick, S., Di Giacomo, E., Frati, F., Ganian, R., Raftopoulou, C.N., Simonov,
K.: Parameterized algorithms for upward planarity. In: Goaoc, X., Kerber, M.
(eds.) 38th International Symposium on Computational Geometry (SoCG 2022).
LIPIcs, vol. 224, pp. 26:1–26:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022)

6. Chaplick, S., Giacomo, E.D., Frati, F., Ganian, R., Raftopoulou, C.N., Simonov,
K.: Testing upward planarity of partial 2-trees. CoRR abs/xxxx.xxxxx (2022),
https://doi.org/xxxx.xxxxx

7. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings.
SIAM J. Comput. 27(6), 1764–1811 (1998)

8. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5),
956–997 (1996)

9. Di Giacomo, E., Liotta, G., Montecchiani, F.: Orthogonal planarity testing of
bounded treewidth graphs. J. Comput. Syst. Sci. 125, 129–148 (2022)

10. Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity test-
ing. SIAM J. Discret. Math. 23(4), 1842–1899 (2009)

11. Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings
of planar 3-graphs in linear time. In: Chawla, S. (ed.) SODA ’20. pp. 806–825.
SIAM (2020)

12. Frati, F.: Planar rectilinear drawings of outerplanar graphs in linear time. Comput.
Geom. 103, 101854 (2022)

13. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

14. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks,
J. (ed.) 8th International Symposium on Graph Drawing, GD ’00. Lecture Notes
in Computer Science, vol. 1984, pp. 77–90. Springer (2000)

15. Healy, P., Lynch, K.: Two fixed-parameter tractable algorithms for testing upward
planarity. Int. J. Found. Comput. Sci. 17(5), 1095–1114 (2006)

16. Hutton, M.D., Lubiw, A.: Upward planar drawing of single source acyclic digraphs.
In: Aggarwal, A. (ed.) 2nd Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, SODA 1991. pp. 203–211. ACM/SIAM (1991)

17. Hutton, M.D., Lubiw, A.: Upward planar drawing of single-source acyclic digraphs.
SIAM J. Comput. 25(2), 291–311 (1996)

18. Papakostas, A.: Upward planarity testing of outerplanar dags. In: Tamassia, R.,
Tollis, I.G. (eds.) DIMACS International Workshop on Graph Drawing, GD ’94.
Lecture Notes in Computer Science, vol. 894, pp. 298–306. Springer (1994)

https://doi.org/xxxx.xxxxx

	Testing Upward Planarity of Partial 2-Trees

