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Abstract In this paper, we study visibility representations of graphs
that are embedded on a torus or a Klein bottle. Mohar and Rosenstiehl
showed that any toroidal graph has a visibility representation on a flat
torus bounded by a parallelogram, but left open the question whether
one can assume a rectangular flat torus, i.e., a flat torus bounded by a
rectangle. Independently the same question was asked by Tamassia and
Tollis. We answer this question in the positive. With the same technique,
we can also show that any graph embedded on a Klein bottle has a
visibility representation on the rectangular flat Klein bottle.

1 Introduction

Visibility representations are one of the oldest topics studied in graph draw-
ing. Introduced as horvert-drawings by Otten and Van Wijk in 1978 [21], and
independently as S-representations by Duchet, Hamidoune, Las Vergnas and
Meyniel in 1983 [10], they consist of assigning disjoint horizontal segments to
vertices and disjoint vertical segments to every edge such that for each edge
the segment ends at the two vertex-segments of its endpoints and intersects no
other vertex-segment. (Fig. 2(d) gives an example.) Later papers studied exactly
which planar graphs have such visibility representations [23,24,27] and general-
ized them to the rolling cylinder [26], Möbius band [7], projective plane [16] or
torus [20]. (There are numerous other generalizations, e.g. to higher dimensions
[3], or permitting rectangles for vertices and horizontal and vertical edges [4], or
permitting edges to go through a limited set of vertex-segments [8].)

The motivation for the current paper is the work by Mohar and Rosenstiehl
[20], who showed that any toroidal graph (i.e., a graph that can be drawn on
a torus without crossings) has a visibility representation on the flat torus, i.e.,
a parallelogram Q where opposite edges have been identified. They explicitly
stated as open problem whether the same holds for a rectangular flat torus,
i.e., where Q must be a rectangle—their method cannot be generalized to this
case. (See also Fig. 5.) The same question was asked independently earlier by
Tamassia and Tollis [26]. This paper answers this question in the positive.

Theorem 1. Let G be a toroidal graph without loops. Then G has a visibility
representation on the rectangular flat torus.
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Figure 1. The complete graph K7 embedded on the rectangular flat torus and the
Petersen-graph embedded on the rectangular flat Klein bottle.

There are quite a few graph drawing results for toroidal graphs; see Castelli
Aleardi et al. [5] and the references therein for increasingly better results for
straight-line drawings. Their approach is to convert the toroidal graph into a
planar graph by deleting edges, then draw this planar graph, and then reinsert
the edges. (Other papers [16,20] instead use a reduction approach, where the
graph-size is reduced while staying in the same graph class until some small
graph is reached, draw this graph, and then undo the reduction in the drawing.)
We follow the first approach (i.e., delete edges to make the graph planar), but
face a major challenge when wanting to reinsert an edge (v, w). For this, we
need the segments of v and w to be visible across the horizontal boundary of the
fundamental rectangle, and in particular, to share an x-coordinate. We achieve
this by keeping two halves of each removed edge, connecting corresponding half-
edges along paths, and then forcing these paths to be drawn along columns; the
ability to do so may be of independent interest.

2 Background

We assume familiarity with graph theory and planar graphs, see for example
Diestel’s book [9]. Throughout, let G = (V,E) be a connected graph without
loops, with |V | = n and |E| = m. A map M on a surface Σ is a 2-connected graph
G together with an embedding of G in Σ such that every face (i.e., connected
region of Σ \M) is bounded by a simple cycle. Maps correspond naturally to
rotation systems on the underlying graphs, up to homomorphisms among the
embeddings [15]. Here a rotation system is a set of cyclic permutations ρv (for
v ∈ V ) where ρv corresponds to the clockwise cyclic order in which the edges
incident to v emanate from v in the embedding. For ease of description we often
assume that we have a map, though all algorithmic steps could be performed on
the rotation system alone.

We study surfaces that have a flat representation consisting of a fundamental
parallelogram Q in the plane with some sides identified. (We may assume that
two sides of Q are horizontal, hence Q has a left/right/top/bottom side.) A
(standing) flat cylinder is obtained by identifying the left and right side of Q
in the same direction (bottom-to-top). (We usually omit ‘standing’ since we
will not discuss other kinds.) A flat torus is obtained from a flat cylinder by
identifying the top and bottom side in the same direction (left-to-right), while a



flat Klein bottle is obtained from a flat cylinder by identifying the top and bottom
side in opposite direction. Figs. 1, 5, 6 give some examples. A rectangular flat
torus [rectangular Klein bottle] is a flat torus [flat Klein bottle] for which the
fundamental parallelogram Q is required to be a rectangle.

Flat representations carry the local geometry of the plane; in particular when
we speak of a segment or an x-interval then we specifically permit it to go across
a side of the fundamental parallelogram Q. So for example in a flat cylinder Q =
[0, w]× [0, h], an x-interval can have the form [x′, x′′] for two x-coordinates x′ <
x′′, but it can also have the form [0, x′′]∪[x′, w] for some x′′ < x′. A row/column of
Q is a horizontal/vertical line with integer coordinate that intersects the interior
of Q.

A visibility representation of a graph G is a mapping of vertices into non-
overlapping horizontal segments (called vertex-segments) and of edges of G into
non-overlapping vertical segments (called edge-segments) such that for each edge
(u, v), the associated edge-segment has its endpoints on the vertex-segments
corresponding to u and v and it does not intersect any other vertex-segment.

3 Creating Visibility Representations

We first give an outline of our approach. Quite similar to what was was done for
straight-line drawings of toroidal graphs [5], we remove a set of edges to convert
the given graph into a planar graph. In contrast to the earlier work, we keep the
edges but split each of them into two ‘half-edges’ that end at two new vertices
s, t (Section 3.1). We will later need to re-connect these half-edges, and to this
end, choose a ‘path-system’ that connects each pair of half-edges while keep-
ing all the paths non-crossing and (after duplicating some edges) edge-disjoint
(Section 3.2). Then we create a visibility representation on the flat cylinder for
which these paths are drawn vertically. To be able to do so we first must argue
that we can find an st-order that enumerates vertices of all paths in order (Sec-
tion 3.3). Then we build the visibility representation (Section 3.4). Removing
the segments of s and t and possibly inserting more columns gives the desired
visibility representation. Figs. 2 and 3-4 illustrate the approach for K7 and the
Petersen-graph.

3.1 Making the Graph Planar

In this section we explain how to modify the input graph G to make it planar.
We assume that G has no loop and comes embedded on a flat realization Q
(either a torus or a Klein bottle). We first modify this embedding to achieve the
following: (1) Every face is bounded by a simple cycle, so the embedding is a
map. (2) No edge crosses the horizontal boundary of Q twice. (3) Parallelogram
Q is a rectangle. (4) No vertex lies on the boundary of Q. (5) Edges intersect the
boundary of Q in a finite set of points, and do not use a corner of Q. Conditions
(1-5) can easily be achieved if arbitrary curves are allowed for edges as follows:
(1) holds after adding sufficiently many edges (which can be deleted in the
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Figure 2. The construction for the complete graph K7.

final visibility representation), (2) can be achieved by re-routing the horizontal
boundary of Q along a so-called tambourine [5], (3) holds after a shear and (4-5)
hold after locally re-routing.

Assume first that G is toroidal, so Q is a rectangular flat torus. Enumerate
the edges that intersect the bottom side of Q as (si, ti) (for i = 1, . . . , d) from left
to right, named such that part of the edge that goes upward from the bottom
side ends at si for i = 1, . . . , d. (This is feasible by condition (2) above.) Create
a new graph Gst by removing edges (si, ti) for i = 1, . . . , s, adding a new vertex
t incident to t1, . . . , td and a new vertex s incident to s1, . . . , sd. See Fig. 2(a).

Now assume that G is embedded on a rectangular flat Klein bottle Q instead.
We construct Gst in almost the same way, but the enumeration of edges is
different. Let the edges that cross the bottom side of Q be (s1, td), . . . , (sd, t1)
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Figure 3. The first few steps for the Petersen-graph from Fig. 1(b).

from left to right, named such that the part of the edge that goes upward from
the bottom side ends at si for i = 1, . . . , d. Since the top and bottom sides of Q
are identified in opposite direction, the order of edges along the top side of Q is
(sd, t1), . . . , (s1, td) from left to right. Remove these edges and replace them by a
vertex s incident to s1, . . . , sd and a vertex t incident to t1, . . . , td. See Fig. 3(a).

In both cases, by placing t above the top side of Q and s below the bottom
side of Q, we obtain an embedding of Gst on the flat cylinder, so it is a plane
graph (i.e., drawn on the plane with a fixed embedding). The edges incident
to s lead to s1, . . . , sd (in clockwise order) and the edges incident to t lead to
t1, . . . , td (in counter-clockwise order).

Observation 1. Graph Gst is 2-connected.

Proof. Since Gst is a plane graph, 2-connectivity is equivalent to all faces being
bounded by a simple cycle. This holds for all faces of G by assumption. The only
faces of Gst that are not in G are those incident to s and t. These consist of part
of the boundary of a face of G, plus two newly added edges that both end at s
(or both end at t). So the boundary of these faces are simple cycles as well.

3.2 Choosing Paths

We now show how to choose a set Π of paths in Gst that satisfy some properties.
A path is called simple if no vertex repeats. Two simple edge-disjoint paths π, π′

are non-crossing if at any vertex v that is interior to both the paths only touch,
i.e., the edges of the paths appear in order π, π, π′, π′ in ρv.

Lemma 1. There exists a planar graph Ĝ (obtained by duplicating edges of Gst)
and a set of simple edge-disjoint non-crossing paths π1, . . . , πd in Ĝ such that
path πi begins with (s, si) and ends with (ti, t) for i = 1, . . . , d.

Before giving the proof, we need to define the operation of splitting a map at
a path π (also used in Figs. 2(b) and 3(b)). Temporarily direct π from one end



to the other. Duplicate all interior vertices of π (say vertex v becomes v` and
vr) and duplicate all edges of π correspondingly. For any interior vertex v of π,
and any edge e incident to v but not on π, we re-connect e to end at v` [vr] if e
occurs before [after] the outgoing edge of π at v when enumerating ρv beginning
with the incoming edge of π on v. Splitting at π creates a new face fπ bounded
by the two copies of π.

Proof. Let π be a simple path that begins with (s, s1) and ends with (t1, t); this
exists since Gst is 2-connected. Temporarily split graph Gst at π to obtain a
planar graph G̃. The resulting new face fπ contains both s and t; for ease of
description we assume that fπ is the outer-face of G̃.

Let G̃+ be the graph obtained from G̃ by replacing any edge e that is not
incident to s or t by a multi-edge that has d+ 1 copies of e. Any s-t-cut of G̃+

either consists of the edges incident to s (then it has size d+1 since (s, s1) exists
twice in G̃) or of the edges incident to t (then it likewise has size d + 1), or it
contains some edge e not incident to either s or t and so has size at least d+ 1.
By the max-flow-min-cut theorem therefore G̃+ has a flow of value d+1 from s
to t; equivalently, it has d+1 edge-disjoint paths π1, . . . , πd+1 from s to t. Since s
and t are both on the outer-face we can find these paths using right-first search
[22]; this will automatically make them crossing-free.

Since the paths are crossing-free and use all edges incident to s, t, and since
s and t are on the outer-face, there is no choice which pair of edges must be the
first and last on each path. The clockwise order of edges at s (beginning after
the outer-face) is (s, sr1), . . . , (s, sd), (s, s

`
1). The counter-clockwise order of edges

at t (beginning after the outer-face) is (t, tr1), . . . , (t, td), (t, t
`
1). Therefore path

πi begins with (s, si) and end with (ti, t) for i = 2, . . . , d, while π1 and πd+1 use
the copies of s1 and t1.

To obtain Ĝ, re-combine any two vertices v` and vr that resulted from split-
ting an interior vertex v of π, and keep all edges of G̃+ except (s, s`1) and (t`1, t).
Since these two edges were used by πd+1, they were used by no other path in
π1, . . . , πd, and we have hence obtained our desired path-system.

3.3 A Path-Constrained st-order

By Lemma 1, we can fix a supergraph Ĝ of Gst and a path-system Π, i.e., a set of
simple edge-disjoint non-crossing paths from s to t. To draw Ĝ, we add vertices
one-by-one, and to draw the paths in Π vertically, we require a vertex-order with
special properties.

We need some definitions. A bipolar orientation is an assignment of directions
to the edges that is acyclic and has exactly one source and one sink. An st-order
is a vertex order v1, . . . , vn such that orienting all edges from the lower-indexed to
the higher-indexed vertex gives a bipolar orientation. Vice versa, for any bipolar
orientation, enumerating the vertices in topological order gives an st-order. It
is well-known that any 2-connected graph has a bipolar orientation, even if we
fix a-priori which vertices should be the source and sink [17]; it can be found in
linear time [11].



We say that a bipolar orientation respects a path system Π if every path in Π
is directed from s to t in the bipolar orientation. We phrase the following result
for an arbitrary graph H since it does not depend on the graph stemming from
a toroidal or Klein-bottle graph and may be of independent interest.

Lemma 2. Let H be a 2-connected plane graph with two vertices s 6= t. Let Π
be a set of simple edge-disjoint crossing-free paths from s to t. Then H has a
bipolar orientation that respects Π and has source s and sink t.

Proof. Consider the graph Ĥ obtained from H by splitting H at each path in
Π. See Figs. 2(b) and 3(b). Any face of Ĥ is either a face of H (then it is a
simple cycle since H is 2-connected) or f is bounded by the two copies of some
path π ∈ Π (then it is a simple cycle since π is simple). So Ĥ is 2-connected
and has a bipolar orientation D̂ with source s and sink t.

It is well-known [24] that in D̂ any face has a unique source and sink. In any
face fπ bounded by two copies of some π ∈ Π, the unique source is s and the
unique sink is t. Therefore both copies of π are directed from s to t and undoing
the splitting gives the desired orientation.

3.4 Path-Constrained Visibility Representations

In this section, we give an easy construction of a visibility representation on the
flat cylinder where a given path-system Π is drawn vertically. Formally, we say
that a path π lies on an exclusive column ` (in a visibility representation Γ ) if all
edges of π are represented by segments on `, and column ` intersects no vertex-
or edge-segment except the ones that belong to vertices/edges of π.

Our approach to create visibility representations is quite different from prior
constructions [16,20,21,23,24,26,27], which either read the coordinates for the
segments directly from the orientation (using the length of the longest paths in
the primal and dual graph), or reduced the graph (or its dual) by removing an
edge somewhere in the graph, creating a representation recursively, and expand-
ing. In contrast to this, we use here an incremental approach which resembles
more the incremental approaches taken for straight-line drawings [5,13] or or-
thogonal drawings [2]. This uses a vertex ordering and adds the vertices to the
drawing one-by-one.

Theorem 2. Let H be a 2-connected plane graph with two vertices s, t and let
Π be a set of simple edge-disjoint non-crossing paths from s to t. Then H has
a visibility representation on the flat cylinder such that each π ∈ Π lies on an
exclusive column.

Proof. Fix a bipolar orientation using Lemma 2 and extract an st-order v1, . . . , vn
from it; we know v1 = s and vn = t and the numbers along any path in Π in-
crease from s to t. For i = 1, . . . , n let Hi be the subgraph induced by v1, . . . , vi
and let the cut Ei:i+1 be the set of all edges (vh, vj) with h ≤ i < j. There
is a natural cyclic order of the edges in Ei:i+1 implied by the embedding of H
(specifically, if we contracted the vertices v1, . . . , vi into a supernode, then the



order of Ei:i+1 would be the clockwise order of edges at this supernode). We will
use induction on i to create a visibility representation of Hi on a flat cylinder
that satisfies the following for i < n:

1. Every edge e = (vh, vj), h<j in cut Ei:i+1 is associated with a column that
intersects vh and that is empty above vh.

2. The left-to-right order of columns associated with Ei:i+1 respects the cyclic
order of edges in Ei:i+1.

3. For any path π ∈ Π, the sub-path of π in Hi lies on an exclusive column,
and the same column is associated with the unique edge of π in Ei:i+1.

Fig. 4(a-b) illustrates the following construction. For i = 1, we create the de-
sired visibility representation simply by defining a horizontal line segment s(v1)
for v1 with y-coordinate 0 and width |E1:2|, and assigning columns intersecting
s(v1) to edges in E1:2 in the correct order.

For i > 1, assume we have created a visibility representation of Hi−1 already.
Define edge-sets E−i := {(vh, vi) : h < i} and E+

i := {(vi, vj) : i < j}; the former
is non-empty by i > 1 since we have an st-order. It is well-known [17] that E−i is
consecutive in the cyclic order of edges in Ei−1:i. By the invariant therefore there
exists an x-interval Xi on the flat cylinder that intersects all columns associated
with edges in E−i in its interior and intersects no other columns associated with
Ei−1:i. Define the segment s(vi) of vi to have x-range Xi and a y-coordinate
that is higher than the one of all its neighbours in E−i . These edges can then be
completed along their associated columns.

To associate columns with E+
i , we insert new columns as needed. First con-

sider any edge e ∈ E+
i in some path π ∈ Π. Since π begins at s and i > 1, and

since indices increase along π, some edge e′ ∈ E−i also belongs to π. Associate
the column of e′ with e. Notice that this associates columns in the correct order,
because if multiple paths π1, . . . , πk ∈ Π all went through vi, then the counter-
clockwise order of their edges in E−i at vi must be the same as the clockwise
order of their edges in E+

i at vi, otherwise two of these paths would cross at vi.
Now consider any edge e ∈ E+

i that does not belong to a path in Π. Assign a
ray upward from s(vi) to e, choosing rays such that all edges in E+

i use distinct
rays/columns and their order reflects the order of edges at vi. By stretching
horizontal segments as needed, we can re-assign coordinates so that all inserted
rays lie on integer coordinates, hence become new columns. This gives the desired
visibility representation of Hi.

3.5 Putting It All Together

We now have all ingredients to prove our main result (Theorem 1): Any toroidal
graph G without loops has a visibility representation on the rectangular flat
torus. See Fig. 2 for the entire process.

Proof. Add edges to G until all its faces are simple cycles. As described in
Subsections 3.1-3.4, split G at edges (si, ti) (for i = 1, . . . , d) to obtain Gst,
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find a supergraph Ĝ with a path-system Π where path πi begins with (s, si)
and ends with (ti, t), find an orientation that respects Π, and find a visibility
representation Γ of Ĝ on the flat cylinder Q such that πi is drawn along an
exclusive column `i. Remove the segments that represent s and t and complete
(si, ti) along column `i. After re-interpreting Q as a rectangular flat torus this
gives the desired visibility representation of G after deleting all added edges.

With a bit more care when reconnecting edges, the same approach also works
for Klein-bottle graphs.

Theorem 3. Let G be a graph without loops embedded on the Klein bottle. Then
G has a visibility representation on the rectangular flat Klein bottle.

Proof. Exactly as in the previous proof, create a visibility representation Γ of
Ĝ on the flat cylinder Q such that πi is drawn along an exclusive column `i.
Remove the segments that represent s and t and extend (si, s) and (ti, t) along
`i until they reach the horizontal boundary of Q.

We are not quite done yet, because we must ensure that column `i ‘lines
up’ with column `d+1−i (for i = 1, . . . , bd/2c) so that edges (si, td+1−i) and
(sd+1−1, ti) are connected correctly when interpreting Q as the flat Klein bottle.
This is easily achieved by inserting columns. Namely, assume Q has x-range
[0, w] and let x(`) denote the x-coordinate of column `. For i = 1, . . . , bd/2c,
while x(`i) < w−x(`d+1−i), insert an empty column to the left of `i, and while
x(`i) > w−x(`d+1−i), insert an empty column to the right of `d+1−i See Fig. 4(c).
This maintains distances of `1, . . . , `i−1 to the left boundary and distances of
`d+2−i, . . . , `d to the right boundary of Q. So performing this for i = 1, . . . , bd/2c
gives the desired visibility representation on the flat Klein bottle.

We note here that our visibility representations exactly respect the given
embedding. Under this restriction, the condition ‘no loops’ cannot be avoided.



(This was essentially observed by Mohar and Rosenstiehl [20] already.) Namely,
let M0 be a graph with a single vertex v and two loops `1, `2 such that ρv =
〈`1, `2, `1, `2〉. This is toroidal, but has no visibility representation on the rect-
angular flat torus that respects the embedding since the rotation scheme at v in
such an embedding is necessarily `1, `1, `2, `2.

`1

`1

`2`2

(a)

`1

`1 `2

`2

(b)

`1

`1`2

`2
`2

(c)

Figure 5. (a) Graph M0. (b) The only possible visibility representation on a rectan-
gular flat torus. (c) An embedding-preserving visibility on the flat torus.

3.6 Grid-Size

We can give a bound on the grid-size of Theorem 1, assuming that the input is
already a map (i.e., all faces are simple cycles). We say that a visibility represen-
tation has grid-size w × h if the fundamental rectangle Q intersects w columns
and h rows, not counting the boundaries of Q. In our current approach, the visi-
bility representation Γst of Gst uses significantly more area than it needs to since
we may duplicate quite a few edges of Gst to obtain the path system (see also
the discussion below). However, as for all visibility representations, one should
apply compaction steps (similar as for VLSI design [18]) to reduce the size of
the drawing. We claim that after doing this, the visibility representation Γ of a
toroidal graph G has grid-size at most (m− n)× n.

To see this, observe that we need at most n rows, since assigning row i to
vertex vi will certainly place it high enough and the rows for s, t can be deleted
during compaction. As for the number of columns, each column must contain at
least one edge, else it could have been deleted. Furthermore, we used a bipolar
orientation of Ĝ, which means that every vertex other than s and t has both
an incoming and an outgoing edge. Since Ĝ is obtained from Gst by duplicating
edges, the same holds in Gst. Vertices s and t are removed in the final visibility
representation (but their incident edges remain and are re-combined). With the
standard compaction steps, therefore at least one column at each vertex v is
used for two edges incident to v. It follows that each vertex saves at least one
column, hence the number of columns is m− n.



3.7 Run-time

Following the steps of our algorithm, it is very clear that our visibility repre-
sentations can be found in polynomial time. In fact, the drawing in Theorem 2
can be found in linear time with standard-approaches: do not explicitly main-
tain the x-coordinates, but store the drawing implicitly by computing x-spans of
vertex-segments and x-offsets of edge-segments from the left endpoints of their
lower endpoints. The final drawing can then be computed with one pass over
the entire graph after all vertices have been placed.

Unfortunately finding the drawings in Theorems 1 and 3 may take superlinear
time since the supergraph Ĝ may have many extra edges. If Gst has Ω(n) disjoint
edge-cuts that separate s and t, then each of the |Π| paths must duplicate an
edge in each edge-cut, leading to Ω(m+ |Π|n) edges for Ĝ. One can show that
|Π| ∈ O(

√
n) can be achieved, because any toroidal graph has a non-contractible

cycle of length O(
√
n) [1], and we can use such a cycle in the dual graph to find

an embedding where O(
√
n) edges cross the horizontal side and hence necessitate

a path in Π. With this choice we get |Ĝ| ∈ O(n1.5) and run-time O(n1.5).
Reducing this to linear time seems not implausible: we need the paths in

Π only to steer us towards placing edges in the visibility representation at a
suitable place, and it may be possible to encode this in a smaller data structure
that permits linear run-time. This remains for future work.

4 Other Drawing Styles

We close the paper by discussing how our results do (or do not) imply results in
some other graph drawing styles that are closely related to visibility represen-
tations. The first drawing style that we consider are orthogonal point-drawings,
where vertices are represented by points and every edge is a polygonal curve be-
tween its endpoints that uses only horizontal and vertical segments and does not
intersect other edges or vertices. (These can only exist if the graph has maximum
degree at most four.)

Theorem 4. Every toroidal graph with maximum degree four has an orthogo-
nal point-drawing on the rectangular flat torus. Every Klein-bottle graph with
maximum degree four has an orthogonal point-drawing on the flat Klein bottle.

Proof. Tamassia and Tollis [25] showed how to create orthogonal point-drawings
by starting with a visibility representation and replacing vertex-segments locally
by points and polygonal curves that connect to the edge-segments. The exact
same transformations can be applied to any visibility representation that lies on a
flat representation, so using it with Theorem 1 and Theorem 3 (after subdividing
loops, if any) gives the desired orthogonal point-drawings.

Two other related drawing styles are grid contact and tessellation represen-
tations. A bipartite graph has a vertex-partition V = W ∪B such that there are
no edges within W or within B. In a grid contact representation of a bipartite



graph, the vertices of W and B are assigned to horizontal and vertical segments,
respectively, with all segments disjoint except that any segment of one kind may
touch at both of its ends an interior point of a segment of the other kind, and
such a common point occurs only if the two vertices are adjacent. See Fig. 6(b).
It is well-known [12] that every planar bipartite graph has a grid contact repre-
sentation in the plane, and Mohar and Rosenstiehl [20] showed that any toroidal
bipartite graph has a grid contact representation on the flat (not necessarily
rectangular) torus. A tessellation representation of a graph G is a grid contact
representation of the bipartite graph whose vertices are the faces and vertices of
G and whose edges are the incidences between them.1 See Fig. 6(c).

(a) (b) (c)

Figure 6. (a) A set of segments that is a grid contact representation of K4,4 (shown
in (b)) or a tessellation representation of the graph in (c).

Mohar and Rosenstiehl constructed tessellation representations of toroidal
graphs (on a flat torus), from which their results on grid contact representations
and visibility representations follow easily. They must permit a non-rectangular
flat torus because they reduce their graph to M0 (or another single-vertex graph
with loops), which cannot be represented on a rectangular flat torus. But does
it help to have no loops?

Conjecture 1. Every toroidal graph without loops has a tessellation representa-
tion on the rectangular flat torus.

Conjecture 2. Every bipartite toroidal graph without loops has a grid contact
representation on the rectangular flat torus.

At first sight one might think that Theorem 1 implies Conjecture 1, because
Mohar and Rosenstiehl [20] show that a visibility representation can be converted
to a tessellation representation. Alas, their definition of “visibility representa-
tion” uses the ‘strong’ model where all visibilities must lead to an edge, hence
faces are triangles, and this is vital in their proof. On the positive side, their
proof does not affect the shape of the flat representation, so using it one can
show that Conjecture 1 holds for toroidal graphs where all faces are triangles.

1 In contrast to earlier work [20], we use here weak models, where not all adjacencies
that could be added must exist.



Finally we are interested in segment intersection representations, i.e., every
vertex is assigned to a segment (of arbitrary slope) on the flat torus, with seg-
ments intersecting if and only if the vertices are adjacent. Such representations
exist for all planar graphs [6], and one proof of this proceeds by representing
a planar graph as the intersection-graph of L-shaped curves in the plane [14]
and then converting the L-shaped curves into segments [19]. The corresponding
questions on the flat torus appear to be open even if we drop ‘rectangular’:

Question 1. Does every simple toroidal graph have a segment intersection rep-
resentation on the flat torus?

Question 2. Is every simple toroidal graph the intersection-graph of L-shaped
curves on the flat torus?

Question 3. If a graph is the intersection-graph of L-shaped curves on the flat
torus, then is it also the intersection-graph of segments on the flat torus?

Finally all these questions could be asked also for graphs embedded on the
Klein bottle (or other surfaces, such as the projective plane).
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