
Mutual Witness Gabriel Drawings
of Complete Bipartite Graphs ?

William J. Lenhart1, Giuseppe Liotta2

1 Williams College, US
wlenhart@williams.edu
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Abstract. Let Γ be a straight-line drawing of a graph and let u and v
be two vertices of Γ . The Gabriel disk of u, v is the disk having u and v
as antipodal points. A pair 〈Γ0, Γ1〉 of vertex-disjoint straight-line draw-
ings form a mutual witness Gabriel drawing when, for i = 0, 1, any two
vertices u and v of Γi are adjacent if and only if their Gabriel disk does
not contain any vertex of Γ1−i. We characterize the pairs 〈G0, G1〉 of
complete bipartite graphs that admit a mutual witness Gabriel drawing.
The characterization leads to a linear time testing algorithm. We also
show that when at least one of the graphs in the pair 〈G0, G1〉 is com-
plete k-partite with k > 2 and all partition sets in the two graphs have
size greater than one, the pair does not admit a mutual witness Gabriel
drawing.

Keywords: Proximity drawings, · Gabriel drawings, · witness proximity
drawings, · simultaneous drawing of two graphs.

1 Introduction

Proximity drawings, including Delaunay triangulations, rectangle of influence
drawings, minimum spanning trees, and unit disk graphs, are among the most
studied geometric graphs. They are commonly used as descriptors of the “shape”
of a point set and are used in a variety of applications, including machine learn-
ing, pattern recognition, and computer graphics (see, e.g., [14]). They have also
been used to measure the faithfulness of large graph visualizations (see, e.g., [11]).

Proximity drawings are geometric graphs in which two vertices are adjacent
if and only if they are deemed close by some measure. A common approach to
define the closeness of two vertices u and v uses a region of influence of u and
v, which is a convex region whose shape depends only on the relative position of
u with respect to v. Then we say that u and v are adjacent if and only if their
region of influence does not contain some obstacle, often another vertex of the
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Fig. 1. A mutual witness Gabriel drawing of two trees (Gabriel disks are dotted).

drawing. For example, a Gabriel drawing Γ is a proximity drawing where the
region of influence u and v is the disk having u and v as antipodal points, called
the Gabriel region of u and v; u and v are adjacent in Γ if and only if their
Gabriel region does not contain any other vertex. See also [16] for a survey on
different types of proximity regions and drawings.

An interesting generalization of proximity drawings is given in a sequence of
papers by Aronov, Dulieu, and Hurtado who introduce and study witness prox-
imity drawings and mutual witness proximity drawings [2,3,4,5]. In a witness
proximity drawing the obstacles are points, called witnesses, that are suitably
placed in the plane to impede the existence of edges between non-adjacent ver-
tices; these points may or may not include some of the vertices of the drawing
itself. A mutual witness proximity drawing is a pair of witness proximity draw-
ings that are computed simultaneously and such that the vertices of one drawing
are the witnesses of the other drawing. For example, Figure 1 depicts a mutual
witness Gabriel drawing (MWG-drawing for short) of two trees. In the figure,
the Gabriel disk of v0, v1 of Γ0 includes vertex v2 but no vertices of Γ1 and hence
v0, v1 are adjacent in Γ0; conversely, v1 and v2 are not adjacent in Γ0 because
their Gabriel disk contains vertex u1 of Γ1.

In this paper we characterize those pairs of complete bipartite graphs that
admit an MWG-drawing. While every complete bipartite graph has a witness
Gabriel drawing [3], not all pairs of complete bipartite graphs admit an MWG-
drawing. To characterize the drawable pairs we also investigate some properties
of MWG-drawings that go beyond complete bipartiteness. More precisely:

– We show that if 〈Γ0, Γ1〉 is an MWG-drawing such that both Γ0 and Γ1 have
diameter two, then the set of vertices of Γ0 is linearly separable from the
set of vertices of Γ1. This extends a result of [4], where linear separability is
proved when the diameter is one, i.e. when the two graphs are complete.

– We show, perhaps surprisingly, that if 〈G0, G1〉 is a pair of complete bipartite
graphs that admits an MWG-drawing, then both must be planar.
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– The above result let us characterize those pairs 〈G0, G1〉 of complete bipartite
graphs that admit an MWG-drawing and leads to a linear time testing algo-
rithm. When the test returns that 〈G0, G1〉 is drawable, an MWG-drawing
can be constructed in linear time in the real RAM model.

– We show that relaxing the bipartiteness assumption does not significantly
enlarge the class of representable graph pairs: We consider those pairs of
complete multi-partite graphs each having all partition sets of size at least
two and prove that if at least one of the graphs in the pair has more than
two partition sets, then the pair does not admit an MWG-drawing.

We remark that our contribution not only fits into the rich literature devoted
to proximity drawings, but it also relates to two other well studied topics in graph
drawing, namely simultaneous embeddings (see, e.g., [8,20] for references) and
obstacle representations (see, e.g., [1,6,9,10,12,15,17,18,19]). As in simultaneous
embeddings, the coordinates of the vertices of Γi in a mutual witness proximity
drawing are defined by taking into account the (geometric and topological) prop-
erties of Γ1−i; as in obstacle graph representations, the adjacency of the vertices
Γi depends on whether their geometric interaction is obstructed by some exter-
nal obstacles, namely the vertices of Γ1−i;. Finally, mutual witness proximity
drawings are of interest in pattern recognition, where they have been used in the
design of trained classifiers to convey information about the interclass structure
of two sets of features (see, e.g. [13]).

2 Preliminaries

We assume familiarity with basic definitions and results of graph drawing [7].
We assume that all drawings occur in the Euclidean plane with standard x and y
axes, and so concepts such as above/below a (non-vertical) line are unambiguous.
Given two distinct points p and q in the plane, we denote by pq the straight-line
segment whose endpoints are p and q. Also, let a, b, c be three distinct points in
the Euclidean plane, we denote by ∆(abc) the triangle whose vertices are a, b, c.
Given two non-axis-parallel lines `1 and `2 intersecting at a point b, those lines
divide the plane into four wedges: the top, bottom, left, and right wedges of b
with respect to `1 and `2. The top and bottom wedges lie entirely above and
below the horizontal line through b, respectively; the left and right wedges lie
entirely to the left and right of the vertical line through b. When the two lines
are determined by providing a point (other than b) on each line, say a and c,
we denote the wedges by WT [b, a, c], WB [b, a, c], WL[b, a, c], and WR[b, a, c] when
we want to include the boundary of each wedge as part of that wedge and by
WT (b, a, c), WB(b, a, c), WL(b, a, c), and WR(b, a, c) when we do not.

Note that exactly one of the four wedges will have both a and c on its
boundary, we denote that wedge as W [b, a, c] (or W (b, a, c)). See Figure 2(a).

Let Γ be a straight line drawing of a graph G and let u and v be two vertices
of Γ (and of G). Vertices u and v may either be adjacent in G and thus uv is an
edge of Γ or u and v are not adjacent vertices, in which case uv is a non-edge of
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W (b, a, c) = WT (b, a.c)

WL(b, a.c) WR(b, a.c)

WB(b, a.c)
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Fig. 2. (a) W (b, a, c) = WT (b, a, c), WB(b, a, c), WL(b, a, c), and WR(b, a, c) (b) If w ∈
∆(vu1v1), at most one of vu1 and vv1 is an edge of a WG-drawing.

Γ . For example, v0v1 in Fig. 1 is an edge while v1v2 is a non-edge of Γ1. Also,
the Gabriel disk of p and q, denoted as D[p, q] is the disk having p and q as
antipodal points; D[p, q] is a closed set.

Let V and P be two sets of distinct points in the plane. A witness Gabriel
drawing (WG-drawing) with vertex set V and witness set P is a geometric graph
Γ whose vertices are the points of V and such that any two vertices u and v form
an edge if and only ifD[u, v]∩P = ∅. A graphG is witness Gabriel drawable (WG-
drawable) if there exist two point sets V and P such that the witness Gabriel
drawing with vertex set V and witness set P represents G (i.e., there is a bijection
between the vertex set of G and the point set V and between the edge set of G
and the edge set of Γ that is incidence-preserving). The following property can
be proved with elementary geometric arguments (see also Figure 2(b)).

Property 1. Let Γ be a WG-drawing with witness set P and let vu1 and vv1 be
two edges of Γ incident on the same vertex v. Then ∆(vu1v1) ∩ P = ∅.

For a pair 〈G0, G1〉 of WG-drawable graphs, a mutual witness Gabriel drawing
(MWG-drawing) is a pair 〈Γ0, Γ1〉 of straight-line drawings such that Γi is a WG-
drawing of Gi with witness set the vertices of Γ1−i (i = 0, 1). If 〈G0, G1〉 admits
an MWG-drawing we say that 〈G0, G1〉 is mutually witness Gabriel drawable
(MWG-drawable).

Details of proofs of statements marked with ’*’ can be found in the appendix.

3 Linear Separability of Diameter-2 MWG-drawings

In this section we extend a result by Aronov et al. [4] about the linear separability
of the MWG-drawings of complete graphs to graphs of diameter two.

Lemma 1. Let 〈Γ0, Γ1〉 be an MWG-drawing such that Γi has diameter at most
2 (i = 0, 1). Then no segment of Γ0 intersects any segment of Γ1.
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u1 v1
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WL(v, u1, v1)

WT (v, u1, v1)

WR(v, u1, v1)

WB(v, u1, v1)

v0R
p q

u0

Fig. 3. Illustration for the proof of Theorem 1: a non-edge u1v1 of Γ1 in a region R
bounded by portions of edges and non-edges of Γ0.

Proof. Note first that by Property 1, a vertex u of Γi cannot lie on a non-edge
u1, v1 of Γ1−i since {u1, v1} have at least one common neighbor v. Also no vertex
of Γi can lie on an edge of Γ1−i. Let u0v0 be an edge of Γ0 and let u1v1 be an edge
of Γ1. Assume that they cross and consider the quadrilateral Q whose vertices
are the end-points of the two crossing edges. Since some internal angle of Q must
be at least π

2 , either D[u0, v0] contains one of {u1, v1} or D[u1, v1] contains one
of {u0, v0} contradicting the fact that both u0v0 is an edge of Γ0 and u1v1 is an
edge of Γ1.

Let u0v0 be an edge of Γ0 and let u1v1 be a non-edge of Γ1. Since Γ1 has
diameter at most two, there is a vertex v in Γ1 such that both vu1 and vv1 are
edges of Γ1. Since u1v1 crosses u0v0, but neither vu1 nor vv1 crosses u0v0, we
have that one of {u0, v0} is a point of ∆(u1, v1, v). However, Γ1 is a WG-drawing
whose witness set is the set of vertices of Γ0 and, by Property 1, no vertex of
Γ0 can be a point of ∆(u1, v1, v). An analogous argument applies when u0v0 is
a non-edge of Γ0 while u1v1 is an edge of Γ1.

It remains to consider the case that u0v0 is a non-edge of Γ0 and u1v1 is a
non-edge of Γ1. Let v be a vertex such that both vu1 and vv1 are edges of Γ1.
By the previous case, neither of these two edges can cross u0v0. It follows that
one of {u0, v0} is a point of ∆(u1, v1, v) which, by Property 1, is impossible.

We are now ready to prove the main result of this section. We denote by
CH (Γ ) the convex hull of the vertex set of a drawing Γ .

Theorem 1. Let 〈Γ0, Γ1〉 be an MWG-drawing such that each Γi has diameter
2 . Then Γ0 and Γ1 are linearly separable.

Proof. By Lemma 1, no vertex, edge or non-edge of Γi intersects any vertex, edge
or non-edge of Γ1−i. Hence, either CH (Γ0) and CH (Γ1) are linearly separable
and we are done, or one of the convex hulls – say CH (Γ1) – is contained in a
convex region R bounded by (portions of) edges and/or non-edges of Γ0. We
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Fig. 4. Non-linearly separable MWG-drawings of: (a) a diameter two graph and a
diameter three graph; (b) a diameter two graph and a diameter one graph.

prove that region R cannot exist, which implies the statement. Suppose for a
contradiction that Γ1 is contained in R and let u1v1 be a non-edge of Γ1 with
x(u1) ≤ x(v1). See Figure 3 for a schematic illustration. Since u1 and v1 are not
adjacent, there is some vertex v of Γ0 such that v ∈ D[u1, v1]. Without loss of
generality, assume that u1v1 is horizontal and that v is below the line through u1
and v1. Since u1 and v1 are points of WT [v, u1, v1] and Γ1 is contained inR, there
is some segment pq of the boundary of R such that pq intersects WT (v, u1, v1)
above the line through u1 and v1. Let u0 and v0 be the two vertices of Γ0 such
that pq is a subset of u0v0. For concreteness, we assume that the x-coordinates
of u0, p, q, and v0 are such that x(u0) ≤ x(p) ≤ x(q) ≤ x(v0).

Claim. u0 ∈WL(v, u1, v1) , v0 ∈WR(v, u1, v1) and u0v0 is a non-edge of Γ0.

Proof of the claim: Suppose for a contradiction that a vertex of {u0, v0} – say
v0 – were a point of WT [v, u1, v1]. Since pq intersects WT (v, u1, v1) above the
horizontal line through u1 and v1, we have that v0 must also be above this
horizontal line or else u0v0 and u1v1 would cross, contradicting Lemma 1. How-
ever, if v0 is above the line through u1 and v1 we have that u1v1 and vv0 cross
which again contradicts Lemma 1. Therefore, v0 6∈ WT [v, u1, v1] and, by the
same argument, u0 6∈ WT [v, u1, v1]. Note that this argument also precludes
either point of {u0, v0} from being in WB [v, u1, v1], since, because pq inter-
sects WT [v, u1, v1], we would then have that the other point of {u0, v0} lies
in WT [v, u1, v1]. Finally, observe that if u0 and v0 were both points of either
WL(v, u1, v1) or WR(v, u1, v1), segment pq would not intersect WT (v, u1, v1). It
follows that u0 ∈WL(v, u1, v1) and v0 ∈WR(v, u1, v1). Note that 4(u0vv0) con-
tains both u1 and v1, so ∠u0vv0 > ∠u1vv1 ≥ π

2 , which implies that ∠u0v1v0 > π
2

and so u0v0 is a non-edge of Γ0. This concludes the proof of the claim.

By the claim above and by the assumption that Γ0 has diameter two, there
is some vertex z such that both zu0 and zv0 are edges of Γ0. Vertex z may
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or may not coincide with v. If z coincides with v or if z ∈ WB [v, u1, v1], we
have that ∆(zu0v0) contains both u1 and v1 and two of its sides are edges of
Γ0, which contradicts Property 1. If z ∈ WT [v, u1, v1] and z is above the line
through u1 and v1, we have that vz and u1v1 cross, which contradicts Lemma 1.
If z ∈WT [v, u1, v1] and z is below the line through u1 and v1, either u1v1 crosses
one of {zu0, zv0} contradicting Lemma 1, or ∆(zu0v0) contains both u1 and v1
contradicting Property 1. If z ∈ WL(v, u1, v1), we consider three cases. If edge
zv0 crosses u1v1, we would violate Lemma 1. If edge zv0 is above u1v1, then
∠zvv0 > π

2 and since both u1 and v1 are in the interior of 4(zvv0), we have that
u1 and v1 are in D[z, v0], contradicting the fact that zv0 is an edge of Γ0. If edge
zv0 is below u1v1, 4(u0zv0) contains both u1 and v1, which violates Property 1.
By a symmetric argument, we have that z cannot be a point of WR(v, u1, v1)
either. Since point z does not exist, it follows that R does not exist.

Theorem 1 shows that MWG-drawings with diameter two capture useful in-
formation about the interaction of two point sets. As pointed out by both Ichino
and Slansky [13] and by Aronov et al. [4], the linear separability of mutual wit-
ness proximity drawings gives useful information about the interclass structure
of two set of points. It is also worth noting that if at least one of the graphs in
the pair has diameter different from two, a non-linearly separable drawing may
exist. For example Figure 4(a) and Figure 4(b) show MWG-drawings of graph
pairs in which the diameter two property is violated for one of the two graphs.

4 MWG-drawable Complete Bipartite Graphs

In this section we exploit Theorem 1 to characterize those pairs of complete
bipartite graphs that admit an MWG-drawing. In Section 4.1 we prove that any
two complete bipartite graphs that form an MWG-drawable pair are planar. The
complete characterization is then given in Section 4.2. In what follows we shall
assume without loss of generality that the line separating a drawing Γ from
its set of witnesses is horizontal and it coincides with the line y = 0, with the
witnesses in the negative half-plane. The proof of the following property is trivial
and therefore omitted, but Figure 5(a) and its caption illustrate it.

Property 2. Let Γ be a WG-drawing with witness set P , let uv be a non-edge
of Γ with witness p ∈ P , and let z be a vertex of Γ such that both zu and zv
are edges of Γ . Then z ∈W (p, u, v).

4.1 Planarity

Let Γ be a WG-drawing; an alternating 4-cycle in Γ consists of two vertex-
disjoint edges u0u1 and v0v1 of Γ such that u0v0 and u1v1 are both non-edges
in the drawing. For example, Figure 5(b) shows a WG-drawing Γ whose witness
set consists of points p0 and p1. In the figure, u0u1 and v0v1 are edges of Γ
while u0v0 and u1v1 are non-edges of Γ : these two pairs of edges and non-edges
(bolder in the figure) form an alternating 4-cycle in Γ .
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W (p, u, v)

zℓ
v

> π
2

(a)

v1
Γ

v0

u1u0

p1p0

ℓ

(b)

Fig. 5. (a) If z 6∈ W (p, u, v), then p ∈ D[z, v] and zv is not an edge of Γ . (b) A
WG-drawing Γ with an alternating 4-cycle highlighted in bold.

Lemma 2. Let Γ be a WG-drawing of a complete bipartite graph such that Γ
is linearly separable from its witness set P and let C be an alternating 4-cycle
defined on Γ . The two edges of Γ in C do not cross while the two non-edges of
Γ in C do cross.

Proof. Let ` be the line separating Γ from its witness set. Let u0, u1, v1, v0 be
the four vertices of C such that u0u1 and v0v1 are two edges of Γ while u0v0 and
u1v1 are two non-edges of Γ . Since the drawing is a complete bipartite graph,
u0v1 and v0u1 are edges of Γ . We prove that u0v0 and u1v1 must cross in Γ ,
which implies that u0u1 and v0v1 do not cross.

Let p0 ∈ P such that p0 ∈ D[u0, v0]. By Property 2, both u1 and v1 lie in the
wedge W (p0, u0, v0) = WT (p0, u0, v0). Observe that p0 cannot also be a witness
for the pair u1 and v1 as otherwise, by Property 2, we should have that also u0
and v0 lie in the top wedge WT (p0, u1, v1), which is impossible. So, let p1 ∈ P be
distinct from p0 and such that p1 ∈ D[u1, v1]. If p0 were a point in WT [p1, u1, v1],
p0 would also be a point in 4(v1p1u1) and we would have p0 ∈ D[u1, v1], which
we just argued is impossible (see, e.g. Figure 6). By analogous reasoning we
have that p1 cannot be a point of WT [p0, u0, v0]. Also, p1 6∈ WB [p0, u0, v0] or
else p0 would be in WT [p1, u1, v1] since WT (p1, u1, v1) contains both u0 and v0.
It follows that either p1 ∈ WL(p0, u0, v0) or p1 ∈ WR(p0, u0, v0). In either case,
WT (p1, u1, v1) can contain both u0 and v0 only if u0v0 and u1v1 cross.

The following corollaries are a consequence of Lemma 2 and of Theorem 1 .

Corollary 1 (*). Let G0 and G1 be two vertex disjoint complete bipartite graphs.
If the pair 〈G0, G1〉 is MWG-drawable, then both G0 and G1 are planar graphs.

Corollary 2 (*). Let Γ be a WG-drawing of a complete bipartite graph such
that Γ is linearly separable from its witness set. Any 4-cycle formed by edges of
Γ is a convex polygon.
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u1

p1

u0
ℓ

v1

v0

p0

WT (p1, u1, v1)

Fig. 6. If p0 ∈WT [p1, u1, v1], then p0 ∈ D[u1, v1].

4.2 Characterization

We start with two technical lemmas.

Lemma 3 (*). Let 〈G0, G1〉 be an MWG-drawable pair admitting a linearly
separable MWG-drawing. Then the pair 〈G0 ∪ {v0}, G1〉 also admits a linearly
separable MWG-drawing, where v0 is a vertex not in G0 and is adjacent to all
vertices in G0—that is, a universal vertex of G0 ∪ {v0}.

Figure 7(b) shows the addition of the universal vertex v0 to the MWG-
drawing of Figure 7(a). In fact, a universal vertex can be added to either drawing
as long as it is positioned sufficiently far from the separating line.

Let u0, u1 be two points with x(u0) < x(u1). The open vertical strip of u0,
u1, denoted as S(u0, u1), is the set of points (x, y) such that x(u0) < x < x(u1).
Assume now that u0 and u1 are vertices of a WG-drawing Γ such that Γ is
linearly separable from its witness set by a line `. Segment u0u1 divides S(u0, u1)
into two (open) half-strips: SN (u0, u1) is the (near) half-strip on the same side
of u0u1 as ` and SF (u0, u1) is the other (far) half-strip. S[u0, u1], SN [u0, u1],
and SF [u0, u1] consist of S(u0, u1), SN (u0, u1), and SF (u0, u1) along with their
respective boundaries.

Lemma 4 (*). Let 〈G0, G1〉 be an MWG-drawable pair admitting a linearly
separable MWG-drawing. Then at least one of the pairs 〈G0∪{v0}, G1〉, 〈G0, G1∪
{v1}〉 also admits a linearly separable MWG-drawing, where, for i = 0, 1, vi is a
vertex not in Gi and has no edges to any vertex in Gi—that is, vi is an isolated
vertex of Gi.

Figure 8(b) shows the addition of the isolated vertex v0 to the MWG-drawing
of Figure 8(a). In fact, an isolated vertex can be added to the left (right) of
whichever of the two drawings has the leftmost (rightmost) vertex, as long as it
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Γ0

Γ1

(a)

ℓ

ℓ′

pmax

v0

Γ0 ∪ {v0}

Γ1

p

(b)

Fig. 7. (a) A linearly separable MWG-drawing 〈Γ0, Γ1〉. (b)Adding a universal vertex
v0 to Γ0 by placing it far enough from p on `′.

is positioned sufficiently far enough to the left (right) of that vertex. Lemmas 3
and 4 are used in the following lemma, where we use colors to distinguish vertices
in distinct partition sets.

Lemma 5. 〈K1,n0 ,K1,n1〉 has a MWG-drawing if |n0 − n1| ≤ 2 .

Proof. Observe that two independent sets whose sizes differ by at most 1, one
consisting of red vertices and one consisting of blue vertices, admit a linearly
separable MWG-drawing where the red vertices are above a horizonal separat-
ing line ` while the blue vertices are below `: start with one red vertex with
coordinates (0, 1) and a blue vertex with coordinates (−1,−1) and iteratively
add red and blue vertices by applying the isolated vertex-addition procedure in
the proof of Lemma 4. Let Gi = K1,ni , for i = 0, 1.

Denote by v0 the non-leaf vertex of G0 and by u0 the non-leaf vertex of G1.
Assume first that |n0−n1| ≤ 1. By the previous observation, 〈G0\{v0}, G1\{u0}〉
admits a linearly separable MWG-drawing. Therefore, by Lemma 3 applied to
〈G0 \ {v0}, G1 \ {u0}〉 we have that 〈G0, G1 \ {u0}〉 admits a a linearly separable
MWG-drawing. By Lemma 3 applied to 〈G0, G1\{u0}〉 we have that if |n0−n1| ≤
1, the pair 〈G0, G1〉 is MWG-drawable.

Consider now the case |n0 − n1| = 2 and assume that n0 > n1 (the proof
when n1 > n0 is analogous). Let v1 be a leaf of G0. With the same reasoning as
in the previous case, 〈G0 \{v0, v1}, G1 \{u0}〉 admits a linearly separable MWG-
drawing that we denote as 〈Γ0\{v0, v1}, Γ1\{u0}〉. By the technique in the proof
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v1

v2 v3 v4

u0

u1

u2
u3

Γ0

Γ1

ℓ

(a)

v1

v2 v3 v4

u0

u1

u2
u3

Γ0 ∪ {v0}

Γ1

ℓ v0

v1
ℓmax

(b)

Fig. 8. (a) A linearly separable MWG-drawing 〈Γ0, Γ1〉. (b)Adding an isolated vertex
v0 to Γ0.

of Lemma 3, we add the universal vertex u0 to Γ1 \{u0} in such a way that u0 is
the rightmost vertex of the linearly separable MWG-drawing 〈Γ0 \ {v0, v1}, Γ1〉.
We now exploit the construction of Lemma 4 to add the isolated vertex v1 to
〈Γ0 \ {v0, v1}, Γ1〉 and obtain a linearly separable MWG-drawing 〈Γ0 \ {v0}, Γ1〉.
Finally, we use Lemma 3 to construct an MWG-drawing of 〈G0, G1〉 also when
|n0 − n1| = 2.

Lemma 6. Let Γ be a WG-drawing of a graph such that Γ is linearly separable
from its witness set P . If uv is an edge of Γ and z ∈ SF [u, v] is a vertex of Γ ,
then both uz and vz are edges of Γ .

Proof. Consider, w.l.o.g., the segment uz. If it is not an edge of Γ , then it
must have a witness in SN (u, z). But any such point will also be in D[u, v],
contradicting the fact that uv is an edge of Γ .

Lemma 7 (*). Let Γ be a WG-drawing of a graph such that Γ is linearly
separable from its witness set P . Let u0, u1, v0, v1 be such that u0, v0, u1, v1 induce
a C4 in Γ . We have that: (i) v0 and v1 are in opposite half-planes with respect
to the line through u0, u1, and (ii) one of {v0, v1} is a point of SN (u0, u1) and
the other is not in S[u0, u1].

By means of Lemma 7 we can restrict the set of complete bipartite graph
pairs that are MWG-drawable.

Lemma 8 (*). Let Γ be a WG-drawing of a complete bipartite graph such that
Γ is linearly separable from its witness set. Then Γ does not have K2,3 as a
subgraph.

We now characterize the MWG-drawable pairs of complete bipartite graphs.
We recall that Aronov et al. prove that every complete bipartite graph admits a
WG-drawing (Theorem 5 of [3]). The following theorem can be regarded as an
analog of the result by Aronov et al. in the context of MWG-drawings.

11



v0Γ0 v1

u1u0

u1u0 u0

ℓ

Γ1

Fig. 9. An MWG-drawing of K2,2 and of an independent set of size three.

Theorem 2. Let 〈G0, G1〉 be a pair of complete bipartite graphs such that Gi
has ni vertices. The pair 〈G0, G1〉 admits an MWG-drawing if and only if, for
i = 0, 1, Gi is either K1,ni−1 or K2,2 and |n0 − n1| ≤ 2.

Proof. By Theorem 1, any MWG-drawing 〈Γ0, Γ1〉 of G0 and G1 is linearly
separable, so any witnes for a non-edge uv in Γi must lie in S(u, v). By Corollary 1
both G0 and G1 must be planar. By Lemma 8 each of the two graphs is either
K2,2 or a star (i.e. K1,ni−1, i = 0, 1). Together, these imply that the difference
in the cardinalities of the vertex sets in the two graphs is at most two.

If G0 = K1,n0−1 and G1 = K1,n1−1, the theorem follows by Lemma 5. If
G0 = K2,2 and G1 = K2,2 the pair 〈G0, G1〉 has an MWG-drawing as shown,
for example, in Figure 7(a). By removing one of the bottom-most vertices of
Γ1 in Figure 7(a) we obtain an MWG-drawing of 〈K2,2,K1,2〉 and by remov-
ing both the bottom-most vertices of Γ1 in Figure 7(a) we obtain an MWG-
drawing of 〈K2,2,K1,1〉. To complete the proof we have to show that 〈K2,2,K1,3〉,
〈K2,2,K1,4〉, and 〈K2,2,K1,5〉 are also MWG-drawable pairs. To this end refer to
Figure 9 that shows an MWG-drawing 〈Γ0, Γ1〉 where Γ0 is K2,2 while Γ1 is an
independent set consisting of three vertices. By applying Lemma 3 we can add a
universal vertex to Γ1, thus obtaining an MWG-drawing of 〈K2,2,K1,3〉. In order
to construct MWG-drawings of 〈K2,2,K1,4〉 and of 〈K2,2,K1,5〉, notice that in
Figure 9 v0 is the leftmost vertex and v1 is the rightmost vertex of 〈Γ0, Γ1〉. By
Lemma 4 we can add either one isolated vertex or two isolated vertices to Γ1. In
the former case we obtain an MWG-drawing of K2,2 and of an independent set
of size four which can be extended to an MWG-drawing of 〈K2,2,K1,4〉 by means
of Lemma 3. In the latter case, we again use Lemma 3 to add a universal vertex
to the drawing of the independent set of size five and obtain an MWG-drawing
of 〈K2,2,K1,5〉.

The following theorem is a consequence of Theorem 2 and of the constructive
arguments of Lemma 5

12



v2

v4v3

u1

u2

ℓ

v5

v1 v6

u′2

WL(u2, v2, v2+k)
WB(v4, u2, u

′
2)

SN(u2, u
′
2)

Fig. 10. v4 ∈ SN (u2, u
′
2) implies WL(u2, v2, v2+k) ∩WB(v4, u2, u

′
2) = ∅ .

Theorem 3. Let 〈G0, G1〉 be a pair of complete bipartite graphs such that G0

has n0 vertices and G1 has n1 vertices. There exists an O(n0+n1)-time algorithm
that tests whether 〈G0, G1〉 admits an MWG-drawing. In the affirmative case,
there exists an O(n0 + n1)-time algorithms to compute an MWG-drawing of
〈G0, G1〉 in the real RAM model of computation.

5 MWG-drawable Complete k-partite graphs

Aronov et al. also showed that there exists a complete multipartite graph, namely
K3,3,3,3, which does not admit a WG-drawing (Theorem 15 of [3]). We extend
this result in the context of MWG-drawings by proving the following result.

Theorem 4 (*). Let 〈G0, G1〉 be a pair of complete multi-partite graphs such
that for each of the graphs every partition set has size at least two. The pair is
mutually Gabriel drawable if and only if it is 〈K2,2,K2,2〉.

Proof (Sketch). Let Γ be a WG-drawing of a complete k-partite graph, with
k ≥ 2 such that Γ is linearly separable from its witness set P by a separating line
`. Note that any induced subgraph G′ of G admits a WG-drawing with witness
set P , which can be derived from Γ by removing the vertices not in G′. By this
observation, Theorem 1, and Lemma 8 we conclude that if 〈G0, G1〉 is a pair of
complete MWG-drawable multi-partite graphs, then neither G0 nor G1 can have
K2,3 as a subgraph. Therefore we can assume that all partition sets in each of
the two graphs have size exactly two. Refer to Figure 10.
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The proof proceeds by first showing that CH (Γ ) is a convex terrain with
respect to `; that is for each vertex v on the boundary of CH (Γ ), the segment
from v to ` perpendicular to ` does not intersect CH (Γ ). Using this property we
can order the vertices of Γ by increasing x-coordinate and show that the i-th
partite set consists of vertices vi, vi+k. Let pi be a witness for vertices vi and
vk+i and let pj be a witness for vertices vj and vk+j . Thirdly, we show that if
i < j then pi ∈ WL(pj , vj , vj+k); if i > j then pi ∈ WR(pj , vj , vj+k). Consider
now an MWG-drawing 〈Γ0, Γ1〉 where Γ0 is in the upper half-plane with respect
to the separating line ` and it has at least three partition sets. Let u1, u2 and
u3 be three vertices of Γ1 that act as witnesses for partition sets {v1, v1+k},
{v2, v2+k}, and {v3, v3+k}, respectively. We have u1 ∈WL(u2, v2, v2+k) and u3 ∈
WR(u2, v2, v2+k). Let u′2 be the vertex of Γ1 that is in the same partition set
as u2 and assume that u′2 is to the right of u2 (the proof in the other case
being symmetric). Let v be a vertex of Γ0 that is a witness of u2 and u′2 (i.e.
v ∈ D[u2, u

′
2]).

By Property 2 either v ∈ {v2, v2+k} or v ∈ WT (u2, v2, v2+k), hence v ∈
WT [u2, v2, v2+k]. Again by Property 2, all vertices of Γ1 must lie in WB [v, u2, u

′
2].

Because v ∈WT [u2, v2, v2+k],WB [v, u2, u
′
2] is disjoint fromWL(u2, v2, v2+k). But

u1 ∈WL(u2, v2, v2+k), a contradiction.

6 Open Problems

The results of this paper naturally suggest many interesting open problems.
For example: (i) Can one give a complete characterization of those pairs of
complete multipartite graphs that admit an MWG-drawing extending Theorem 4
by taking into account graphs some of whose partition sets have size one? It is
not hard to see that the ideas of Lemmas 3 and 5 can be used to construct
MWG-drawings of graph pairs of the form 〈K1,··· ,1,n0 ,K1,··· ,1,n1〉 as long as the
number of partition sets of size one in the two graphs differ by at most two.
However, this may not be a complete characterization. (ii) Which other pairs of
diameter-2 graphs admit an MWG-drawing? (iii) Which pairs of (not necessarily
complete) bipartite graphs admit an MWG-drawing? (iv) Finally, it would be
interesting to study mutual witness drawings for other proximity regions.
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Appendix

Proofs omitted from Section 4

Corollary 1 (*). Let G0 and G1 be two vertex disjoint complete bipartite graphs.
If the pair 〈G0, G1〉 is MWG-drawable, then both G0 and G1 are planar graphs.

Proof. Let 〈Γ0, Γ1〉 be an MWG-drawing of 〈G0, G1〉. By Theorem 1, Γ0 and Γ1

are linearly separable. Any two vertex-disjoint edges of Γi induce an alternating
4-cycle and thus, by Lemma 2, they cannot cross. And, of course, two edges that
share a vertex cannot cross, so both graphs are planar.

Corollary 2 (*). Let Γ be a WG-drawing of a complete bipartite graph such
that Γ is linearly separable from its witness set. Any 4-cycle formed by edges of
Γ is a convex polygon.

Proof. By the same argument as in Corollary 1, no two edges of Γ can cross.
Let C be a 4-cycle formed ny four edges u0v0, v0u1, u1v1, v1u0 of Γ . Since any
the two pairs of non adjacent edges of C form an alternating 4-cyle with the two
non-edges u0u1 and v0v1, by Lemma 2 we have that non-edges u0u1 and v0v1
cross in Γ , which implies that C is a convex polygon.

Lemma 3 (*). Let 〈G0, G1〉 be an MWG-drawable pair admitting a linearly
separable MWG-drawing. Then the pair 〈G0 ∪ {v0}, G1〉 also admits a linearly
separable MWG-drawing, where v0 is a vertex not in G0 and is adjacent to all
vertices in G0—that is, a universal vertex of G0 ∪ {v0}.

Proof. Let 〈Γ0, Γ1〉 be a linearly separable MWG-drawing of 〈G0, G1〉 and let
` be the horizontal line separating Γ0 from Γ1; see, for example, Figure 7(a).
Assume that Γ0 is in the top half-plane defined by ` and let `′ be a vertical line
not passing through any vertices of Γ0. Let p be the intersection point of ` with
`′. For each vertex v ∈ Γ0 let `v be the line passing through v and orthogonal to
segment pv. Let pv be the intersection point of `v with `′ and let p′ the topmost
of such intersection points defined by considering all vertices of Γ0. Also, let p′′

be the topmost intersection point between D[u, u′] and `′, taken over all edges
uu′ of Γ1. Let pmax be any point of `′ above both p′ and p′′. A linearly separable
MWG-drawing of 〈G0∪{v0}, G1〉 such that v0 is a universal vertex of G0 can be
obtained from 〈Γ0, Γ1〉 by adding v0 at any point along `′ above pmax. See, for
example, Figure 7(b). By construction, we have that: (i) for any vertex v ∈ Γ0,
we have D[v, v0] ∩ ` = ∅ which implies that v0 is adjacent to all vertices of Γ0;
(ii) for any pair uu′ of vertices of Γ1, the Gabriel disk D[u, u′] contains a vertex
of Γ0 ∪ {v0} if and only if it contains a vertex of Γ0; (iii) since no vertex has
been added or deleted in Γ1, all edges and non-edges of Γ0 are maintained in
〈Γ0 ∪ {v0}, Γ1〉.

Lemma 4 (*). Let 〈G0, G1〉 be an MWG-drawable pair admitting a linearly
separable MWG-drawing. Then at least one of the pairs 〈G0∪{v0}, G1〉, 〈G0, G1∪
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{v1}〉 also admits a linearly separable MWG-drawing, where, for i = 0, 1, vi is a
vertex not in Gi and has no edges to any vertex in Gi—that is, vi is an isolated
vertex of Gi.

Proof. Let 〈Γ0, Γ1〉 be a linearly separable MWG-drawing of 〈G0, G1〉, let ` be
the horizontal line separating Γ0 from Γ1, and assume that Γ0 is in the top half-
plane defined by `. Let u be the rightmost vertex of the MWG-drawing. If u
belongs to Γ1 we add an isolated vertex to Γ0, else we add an isolated vertex to
Γ1. For concreteness, we describe the construction in the case that u is a vertex
of Γ1, the other case being symmetric. See, for example, Figure 8(a). For each
vertex v ∈ Γ0 let `v be the line through u orthogonal to segment vu. Let pv be the
intersection point of `v with ` and let pmax be the rightmost of such intersection
points defined by considering all vertices of Γ0 and `max be the line from the
set {`v : v ∈ Γ0} intersecting ` at pmax. See, for example, Figure 8(b). Add a
vertex v0 to the right of `max and above `. We now show that 〈Γ0 ∪ {v0}, Γ1〉 is
an MWG-drawing.

Since v0 is to the right of any vertex of Γ1, v0 is in the top half-plane and Γ1

is in the bottom half-plane, by Property 3 we have that for any pair of vertices
ui, uj of Γ1, v0 is not a point of D[ui, uj ]. It follows that for any pair ui, uj
of vertices of Γ1, the Gabriel disk D[ui, uj ] contains a vertex of Γ0 ∪ {v0} if
and only if it contains a vertex of Γ0. Also, for any vertex v ∈ Γ0, we have
∠vuv0 > π

2 which implies that u ∈ D[v, v0] and v0 is not adjacent to any vertex
of Γ0. Finally, since no vertex has been added or deleted in Γ1, all edges and
non-edges of Γ0 are maintained in 〈Γ0 ∪ {v0}, Γ1〉. We conclude that if 〈Γ0, Γ1〉
is a linearly separable MWG-drawing, also 〈Γ0 ∪{v0}, Γ1〉 is a linearly separable
MWG-drawing.

The following property can be proved with elementary geometric arguments.

Property 3. Let 〈Γ0, Γ1〉 be a linearly separable MWG-drawing of 〈G0, G1〉, let
` be the (horizontal) line separating Γ0 from Γ1, let i ∈ {0, 1}, let u0, u1 be a
pair of non-adjacent vertices of Γi with x(u0) < x(u1), and let z be a vertex of
Γ1−i such that z ∈ D[u0, u1]. We have that z ∈ SN (u0, u1).

Lemma 7 (*). Let Γ be a WG-drawing of a graph such that Γ is linearly
separable from its witness set P . Let u0, u1, v0, v1 be such that u0, v0, u1, v1 induce
a C4 in Γ . We have that: (i) v0 and v1 are in opposite half-planes with respect
to the line through u0, u1, and (ii) one of {v0, v1} is a point of SN (u0, u1) and
the other is not in S[u0, u1].

Proof. Let λ be the line through u0 and u1. If both v0 and v1 lie in the same
half-plane defined by λ we have that one of v0u0, v0u1 crosses one of v1u0, v1u1,
which is impossible by Lemma 2. Hence, Property (i) holds. Let p be a witness
point such that p ∈ D[u0, u1]; by Property 3 p ∈ SN (u0, u1). Let v0 be the vertex
in the same half-plane as p with respect to λ. Vertex v0 must also be a point of
SN (u0, u1) or else we would have that either ∠u0pv0 > π

2 or ∠u1pv0 > π
2 , which

is impossible because both v0u0 and v0u1 are edges of Γ .
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Now suppose v1 ∈ S[u0, u1]. Then either v1 ∈ S[u0, v0] or v1 ∈ S[v0, u1].
Assume that v1 ∈ S[u0, v0] (the other case is analogous). Then, by Lemma 6,
v0v1 is an edge of Γ0, a contradiction. Thus v1 6∈ S[u0, u1] and hence Property
(ii) holds.

Lemma 8 (*). Let Γ be a WG-drawing of a complete bipartite graph such that
Γ is linearly separable from its witness set. Then Γ does not have K2,3 as a
subgraph.

Proof. Suppose Γ contains K2,3 as a subgraph. Let u0, u1, u2, v0, v1 be the ver-
tices of K2,3 such that u0, u1, u2 are in the same partition set and assume
x(u0) ≤ x(u1) ≤ x(u2). Consider the 4-cycle C0 with vertices v0, u0, v1, u1 and
the 4-cycle C1 with vertices v0, u1, v1, u2. By Corollary 2 Γ is such that both C0

and C1 are convex quadrilaterals, which implies that v0, u1, and v1 are vertically
aligned points. However, by Lemma 7 one of {v0, v1}–say v0–must be a point of
SN (u0, u1) that is x(u0) < x(v0) < x(u1), a contradiction.

Proofs omitted from Section 5

Observe that if Γ is a WG-drawing of a graph G with witness set P , then any
induced subgraph G′ of G admits a WG-drawing with witness set P , which can
be derived from Γ by removing the vertices not in G′. Also, by Theorem 1, if
G0 and G1 are MWG-drawable, their drawings must be linearly separable. By
this observation and Lemma 8 we conclude that if 〈G0, G1〉 is a pair of complete
MWG-drawable multi-partite graphs, then neither G0 nor G1 can have K2,3 as
a subgraph. It follows that in order to prove Theorem 4 we can assume that all
partition sets in each of the two graphs have size exactly two.

To prove Theorem 4 we introduce some terminology and a technical result
from Aronov et al [3]. Let ` be a line and let Π be a convex polygon in one of
the half-planes of `. We say that Π is a convex terrain with respect to ` if for
each vertex v on the boundary of Π, the segment from v to ` perpendicular to
` does not intersect Π. To be consistent with [3], we associate each partition set
of Γ with a distinct color. We shall also sometimes say that two vertices are in
the same color class to mean that they belong to the same partition set.

Lemma 9. [3] Let Γ be a WG-drawing of a complete k-partite graph, with
k ≥ 2. Then CH (Γ ) contains at least two vertices of each color class on its
boundary.

Lemma 10. Let Γ be a WG-drawing of a complete k-partite graph, with k ≥ 2
such that Γ is linearly separable from its witness set by a separating line ` and
such that every color class of Γ has size two. Then CH (Γ ) is a convex terrain
with respect to `.

Proof. As usual, we assume that ` is a horizontal line. Note that by Lemma 9,
every vertex of Γ is on the boundary of CH (Γ ). Label the vertices as v1, . . . , v2k
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Fig. 11. p1 ∈WL(p2, v2, v5) and p3 ∈WR(p2, v2, v5).

in order of increasing x-coordinate (we can assume that the vertices have distinct
x-coordinates). We first show that, for i = 1, . . . , k, vi and vk+i have the same
color.

Let u1 = v1 and let u′1 be the other vertex having the same color as u1;
call this color c1. Now let w1 and w′1 be two vertices of the same color (but
different from c1). By Lemma 7, exactly one of w1, w

′
1 is in S(u1, u

′
1); in fact it is

in SN (u1, u
′
1). Thus, SN (u1, u

′
1) contains exactly one vertex of every color other

than c1. Thus u′1 = vk+1 and v1, . . . , vk all have distinct colors c1, . . . , ck.

Now let u2 = v2 and let u′2 be the other vertex having the same color as
u2; so u2 has color c2. By the same argument, S(u2, u

′
2) (in fact SN (u2, u

′
2))

contains exactly one vertex of each of the other colors and so u′2 must be vk+2,
and, similarly, for i = 1, . . . k, we have that vi = vk+i, and that vi+1, . . . , vk+i−1
are in SN (vi, vk+i).

Thus v1, . . . , v2k, v1 is a convex polygon and so every diagonal vi, vj is con-
tained within CH (Γ ) and thus, for each vi, the vertical segment from vi to `
does not intersect CH (Γ ), making CH (Γ ) a convex terrain with respect to `.

An example of the configuration described in the statement of Lemma 10 is
shown in Figure 11. In the following lemma we assume, without loss of generality,
that for every p ∈ P , p is contained in the Gabriel disk of some pair of vertices
of Γ . Indeed, if P contained a point p which is not in any Gabriel disk of any
pair of non-adjacent vertices of Γ , then P \ {p} would also be a witness set for
Γ .

Lemma 11. Let Γ be a WG-drawing of a complete k-partite graph, with k ≥ 2
such that Γ is linearly separable from its witness set P by a separating line `
and such that every color class of Γ has size two. Let pi be a witness for vertices
vi and vk+i and let pj be a witness for vertices vj and vk+j. If i < j then
pi ∈WL(pj , vj , vj+k); if i > j then pi ∈WR(pj , vj , vj+k).
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Proof. We assume, w.l.o.g, the separating line is horizontal and that Γ is in the
upper half-plane (see for example Figure 11). We begin with an observation. Let
{vi, vi+k} be one of the color classes of Γ and let pi ∈ P be in D[vi, vi+k]. Since
every other vertex v of Γ is adjacent to both vi and vi+k, by Property 2 it follows
that v must lie in WT (pi, vi, vi+k) and that no p ∈ P can be a witness for two
different color classes.

It is also the case that if {vi, vi+k} is a color class distinct from {vj , vj+k},
then no witness pi for {vi, vi+k} can be contained in WT (pj , vj , vj+k), because
then pi would be contained in 4(pj , vj , vj+k), which would imply that

∠vj , pi, vj+k > ∠vj , pj , vj+k ≥
π

2
,

which makes pi a witness for {vj , vj+k} as well as for {vi, vi+k}.
Similarly, pi cannot be contained in WB(pj , vj , vj+k) since then, in order for

WT (pi, vi, vi+k) to contain both of {vj , vj+k}, WT (pi, vi, vi+k) would also need to
contain pj , which we just showed cannot occur. So, either pi ∈ WL(pj , vj , vj+k)
or pi ∈WR(pj , vj , vj+k).

Assume that i < j (the proof when i > j is analogous). Since, by Lemma 10,
the vertices of Γ form a convex terrain with respect to the separating line,
we have that pi is in WL(pj , vj , vj+k), as otherwise WT (pi, vi, vi+k) would not
contain vj .

We are now ready to prove Theorem 4. As noted at the beginning of this
section, it suffices to consider graphs all of whose partitions sets have size two.

Theorem 4 (*). Let 〈G0, G1〉 be a pair of complete multi-partite graphs such
that for each of the graphs every partition set has size at least two. The pair is
mutually Gabriel drawable if and only if it is 〈K2,2,K2,2〉.

Proof. Assume that Γ0 is above the separating line and that it has at least three
color classes. Let u1, u2 and u3 be three vertices of Γ1 that act as witnesses for
color classes {v1, v1+k}, {v2, v2+k}, and {v3, v3+k}, respectively. By Lemma 11,
we have u1 ∈WL(u2, v2, v2+k) and u3 ∈WR(u2, v2, v2+k). Let u′2 be the vertex of
Γ1 that is in the same color class as u2 and assume that u′2 is to the right of u2 (the
proof in the other case being symmetric). Let v be a vertex of Γ0 that is a witness
of u2 and u′2 (i.e. v ∈ D[u2, u

′
2]). See for example Figure 10 where vertex v is v4.

Vertex v is above the separating line and, by Property 3, v ∈ SN (u2, u
′
2). Also

either v coincides with one of {v2, v2+k} or, by Property 2 v ∈WT (u2, v2, v2+k).
In either case, we have that WL(u2, v2, v2+k) ∩ WB(v, u2, u

′
2) = ∅. However,

WB(v, u2, u
′
2) must, by Property 2, contain all vertices of Γ1, a contradiction

since u1 ∈WL(u2, v2, v2+k).
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